
Ćwiczenia: lista zadań nr 9 29 listopada 2005

Algorytmy i Struktury Danych
podział, scalanie, wybór

Instytut Informatyki Uniwersytetu Wrocławskiego Paweł Rzechonek

1. [∗∗] Poniżej przedstawiono procedurę podziału tablicy liczb według pierwszego elementu,
której autorem jest N. Lomuto. Ta wersja podziału tablicy tworzy dwa obszary: elementy
mniejsze lub równe pivotowi A[0 . . . i− 1] i elementy większe od pivota A[i . . . n− 1].

(1) function Lomuto-partition (number A[0 . . . n− 1]) 7→ integer
(2) {
(3) integer pivot← A0 ;
(4) integer i← 1 ;
(5) for j = 1 . . . n− 1 do
(6) if Aj ≤ pivot then
(7) {
(8) Ai ↔ Aj ;
(9) i + + ;
(10) }
(11) return i ;
(12) }

(a) Uzasadnij poprawność procedury Lomuto-partition.

(b) Oszacuj złożoność tej procedury (ile razy każdy element może być przesuwany w trak-
cie jej działania).

(c) Jak poprawić procedurę Lomuto-partition, aby dokonywany przez nią podział zawsze
był właściwy.

2. [∗∗∗∗] Rozważmy następujący pomysł na trójpodział: z n-elementowej tablicy losowo
wybieramy dwa; mniejszy z nich x przenosimy na początek tablicy a większy y na koniec;
następnie przesuwamy pozostałe elementy w taki sposób, aby najpierw występowały ≤ x
(pierwszy blok), potem te które są > x ale < y (drugi blok), a na końcu ≥ y (trzeci blok).
Napisz imlementację takiego algorytmu (powinna to być funkcja, która po przestawieniu
wszystkich elemntów, zwróci parę liczb: pozycje, od których rozpoczynają się drugi i trzeci
blok). Jakie jest prawdopodobieństwo, że po trójpodziale żaden z trzech bloków nie będzie

1

mniejszy niż 1
6n, jeśli każda para pivotów mogła być wylosowana z jednakowym prawdo-

podobieństwem?
Uwaga: Możesz założyć, że n jest wielokrotnością 6, oraz że wszystkie elementy w tablicy
są różne.

3. W dużej n-elemntowej tablicy T wyróżnione są dwa sąsiednie bloki U = T [p . . . q − 1]
i V = T [q . . . r− 1], gdzie 0 ≤ p < q < r ≤ n. Zadanie polega na tym, aby zamienić ze sobą
te bloki nie zmieniając występującego w nich uporządkowania.

(a) [∗] Wymyśl algorytm, który będzie działać w miejscu wykonując ≤ (|U |+|V |) zamian.
Wskazówka: Zacznij od zamiany pierwszego elementu z u z ostatnim elementem z V .

(b) [∗∗] Wymyśl algorytm, który będzie działać w miejscu wykonując < (|U |+ |V |) ale
≥ max(|U |, |V |) zamian.
Wskazówka: Zacznij od zamiany miejscami mniejszego bloku z sąsiadującym fragmen-
tam bloku drugiego.

4. [∗∗∗∗] W dużej n-elemntowej tablicy T wyróżnione są dwa sąsiednie bloki U = T [p . . . q−1]
i V = T [q . . . r − 1], gdzie 0 ≤ p < q < r ≤ n. Tak jak poprzednio, zadanie polega na
tym, aby zamienić ze sobą te bloki nie zmieniając występującego w nich uporządkowania.
Wymyśl algorytm, który będzie działać w miejscu wykonując tylko |U |+ |V |+gcd(|U |, |V |)
przesunięć. Uzasadnij, że gcd(|U |, |V |) ≤ max(|U |, |V |).
Uwaga: Przesunięcie to nie to samo co zamiana — przesunięcie to przepisanie wartości
z jednego miejsca do drugiego, zamiana składa się więc z 3 przesunięć.
Wskazówka: Wyciągnij jeden element z tablicy, a na jego miejsce wstaw właściwy, itd.
Technikę z latającą dziurą opracowali w roku 1981 K. Dudziński i A. Dydek.

5. [∗∗∗] Na wykładzie został przedstawiony uproszczony algorytm M. A. Kronroda z roku
1969 scalania w miejscu dwóch posortowanych ciągów z liczbami zapisanych w jednej ta-
blicy. Posortowane ciągi o długościach odpowiednio p i n− p, gdzie 0 < p < n, są umiesz-
czone w n-elementowej tablicy T [0 . . . n − 1], w taki sposób że T0 ≤ T1 ≤ . . . ≤ Tp−1 oraz
Tp ≤ Tp+1 ≤ . . . ≤ Tn−1. Wylicz, ile przestawień wykona ten algorytm w najgorszym
przypadku.
Uwaga: Zakładamy, że

√
n ∈ N oraz

√
n | p).

6. [∗∗∗∗] Na wykładzie został przedstawiony uproszczony algorytm Kronroda scalania w miej-
scu dwóch posortowanych ciągów z liczbami zapisanych w jednej tablicy. Posortowane ciągi
o długościach odpowiednio p i n − p, gdzie 0 < p < n, są umieszczone w n-elementowej
tablicy T [0 . . . n− 1], w taki sposób że T0 ≤ T1 ≤ . . . ≤ Tp−1 oraz Tp ≤ Tp+1 ≤ . . . ≤ Tn−1.
W wersji uproszczonej zakładaliśmy, że

√
n ∈ N oraz

√
n | p Uogólnij ten algorytm na

przypadek dowolnych wielkości n i p, aby nie pogorszyć liniowej złożoności algorytmu.

7. [∗∗] Podaj stabilne algorytmy scalania w miejscu ciągów binarnych i trynarnych. Twoje
algorytmy mają działać w liniowym czasie.
Uwaga: Algorytm operujący na tablicy jest stabilny, gdy nie zmienia wzajemnego poło-
żenia elementów o takich samych wartościach kluczowych.

8. [∗∗∗] Mamy dostęp do algorytmu czarna skrzynka, który w liniowym czasie znajduje
medianę nieuporządkowanego ciągu liczb. W jaki sposób, korzystając z czarnej skrzynki,
wyznaczyć dowolny k-ty co do wielkości element w nieuporządkowanym ciągu liczb. Twój
algorytm także powinien działać w czasie liniowym.

2

