zadanie nr 7 termin realizacji: 18 kwiecien 2005

C++

drzewa AVL (klasy abstrakcyjne) studia dzienne

Drzewo AVL to zréwnowazone pod wzgledem wysokosci drzewo binarnych poszukiwari BST.
Drzewa AVL shuzg do przechowywania elementéw z pewnego uniwersum z okre§lonym na tych
elementach porzadkiem liniowym.

Zadefiniuj abstrakcyjna klase ElemPorownywalny, jako klase bazowa dla elementéw jakiego$
zbioru z porzadkiem liniowym.

class ElemPorownywalny
{
public:
virtual “ElemPorownywalny () {}
public:
// funkcja klonuje obiekt na stercie wykorzystujgc konstruktor kopiujacy
// funkcje ta trzeba implementowal w kazdej klasie
virtual ElemPorownywalny * new_clone () const = O;
protected:
// funkcja porownanie(el) zwraca:
// +1 gdy *this<el
// 0 gdy *this==el
// -1 gdy *this>el
virtual int porownanie (const ElemPorownywalny &el) const = 0;
public:
bool operator < (const ElemPorownywalny &el) const
{ return porownanie(el)>0; }
bool operator > (const ElemPorownywalny &el) const
{ return porownanie(el)<0; }

bool operator == (const ElemPorownywalny &el) const
{ return porownanie(el)==0; }
bool operator != (const ElemPorownywalny &el) const

{ return porownanie(el)!=0; }

bool operator <= (const ElemPorownywalny &el) const
{ return porownanie(el)>=0; }

bool operator >= (const ElemPorownywalny &el) const
{ return porownanie(el)<=0; }

};

Nastepnie zdefiniuj abstrakcyjng klase Zbior z podstawowymi operacjami wstawiania, usuwa-
nia i wyszukiwania elementéw typu ElemPorownywalny w zbiorze. Klasa ta bedzie bazows dla
klasy DzrzewoAVL przechowujacej elementy zbioru w postaci zréwnowazonego drzewa binarnych
poszukiwan.

class Zbior
{
public:
virtual ~Zbior ();
public:
// sprawdzenie, czy podany element jest w zbirze
virtual bool szukaj (const ElemPorownywalny &el) const = O;
// wstawienie nowego elementu do zbioru
// btad, gdy element juz jest w zbiorze
virtual void wstaw (const ElemPorownywalny &el) throw (Blad) = 0;
// usunigcie elementu ze zbioru
// btad, gdy elementu nie ma w zbiorze
virtual void usun (const ElemPorownywalny &el) throw (Blad) = O;

};

Dalej, zdefiniuj klase DrzewoAVL reprezentujgcg zréwnowazone drzewo poszukiwar binarnych
AVL. Klasa ta powinna dziedziczy¢ po abstarkcyjnej klasie Zbior i opakowywaé rzeczywistg im-
plementacje operacji na drzewie AVL, realizowang w wewnetrznej klasie DrzewoAVL: :WezelAVL.

class DrzewoAVL: public Zbior

{
class WezelAVL: public Zbior
{
protected:
WezelAVL lewe, prawe;
ElemPorownywalny element;
/] ...
};
protected:
WezelAVL *korzen;
/...
};

Klasa DrzewoAVL powinna posiadaé¢ kosstruktor domyslny (drzewo puste), konstruktor kopiujacy,
wirtualny destruktor, operator przypisania kopiujacego oraz zaprzyjazniony operator wypisywa-
nia drzewa do strumienia wyj$ciowego (mozna sobie wyobrazi¢ jego dzialanie w postaci przegla-
dania drzewa w porzadku in-order). Warto zadbac o to, by w klasie WezelAVL takze znalazl sie
zaprzyjazniony operator pisania do strumienia.

Nastepnie zdefiniuj klase ElemInt dziedziczacs po ElemPorownywalny do pamietania liczb cal-
kowitych — bedzie to nasz podstawowy obiekt do testowania zbioru. Nietrywialng definicje
polimorficznej metody porownanie przedstawiam ponizej:

int ElemInt::porownanie (const ElemPorownywalny &el) const
{
const ElemInt &e = dynamic_cast<const ElemInt &>(el);
return wart>e.wart?-1:wart<e.wart?1:0 ;

}

Klase ElemInt wykorzystaj w programie testowym, sprawdzajacym poprawnos$é¢ wykonywanych
na drzewie operacji wstawiania i usuwania elementéw.

Uwaga! Klasa DrzewoAVL bedzie wykorzystywana w nastepnych zadaniach, a zatem warto
napisaé jg bardzo starannie.

Uwaga! Opis drzew AVL mozna znalezé w nastepujacej literaturze:

e L. Banachowski, K. Diks, W.Rytter: Algorytmy i struktury danych. WNT, 2003.

e N.Wirth: Algorytmy + struktury danych = programy. WNT, 2001.

http://www.microsoft.com/poland/developer/jak_zaczac/structures_czesc4.mspx

http://prioris.mini.pw.edu.pl/Wawrzek/asd/avl.html

http://www.mini.pw.edu.pl/kotowski/ASiD/AVL.htm

Uniwersytet Wroctawski Pawet Rzechonek
Instytut Informatyki

ul. Przesmyckiego 20

PL-51-151 Wroctaw

