zadanie nr 5 termin realizacji: 4 kwieciert 2005

C++

Tablica bitéw (klasa z operatorami) studia dzienne

Zdefiniuj klase TabBit reprezentujgcg tablice bitéw. Najproéciej implementuje sie taka struk-
ture danych za pomoca zwyktej tablicy typu int[], przeznaczajac na zapamietanie bitu cale
stowo. Jest to rozwigzanie proste, ale bardzo rozrzutne co do zuzywanej pamieci — tablica bi-
tow pamietana w ten sposob jest kilka/kilanascie razy obszerniejsza niz potrzeba. A wiec takie
rozwigzanie nas nie satysfakcjonuje, szczegoélnie gdy trzeba postugiwaé sie w programie wieloma
duzymi tablicami (chodzi o tablice zawierajgce tysigce a nawet miliony bitow).

Nalezy zatem tak zaprojektowac tablice bitowe, aby przydzielona pamie¢ byta wykorzystywana
co do bitu (modulo rozmiar stowa). W klasie TabBit zdefiniuj operator indeksowania, ktory
umozliwialby zaréwno czytanie z tablicy, jak rowniez pisanie do niej. Oto fragment kodu, ktory
powinien sie skompilowaé i uruchomié:

TabBit t(72); // tablica 72 bitow

t[0] = 1; // ustawienie bitu 0O-ego bitu na 1

t[71] = true; // ustawienie bitu 71-go bitu na 1

bool b = t[0]; // odczytanie bitu 0-ego

t[40] = b; // ustawienie bitu 40-go

t[36] = t[38] = t[71]; // przepisanie bitu 71-go do bitow 38-go i 36-go
cout<<t<<endl; // wysietlenie zawartosci tablicy bitow na ekranie

Poniewaz nie mozna zaadresowaé pojedynczego bitu (a tym samym nie mozna ustamowié¢ referen-
cji do niego), wiec trzeba sie postuzy¢ specjalng techniks umozliwiajaca dostep do pojedynczego
bitu w tablicy. Robi sie to poprzez zastosowanie obiektéw niewidocznej dla programisty klasy
pomocniczej, umiejgcej odczytaé i zapisa¢ pojedynczy bit.

class TabBit

{
typedef unsigned long long slowo; // komorka w tablicy
static int rozmiarSlowa; // rozmiar slowa w bitach
friend istream & operator >> (istream &we, TabBit &tb);
friend ostream & operator << (ostream &wy, const TabBit &tb);
class Ref; // klasa pomocnicza dla operatora indeksowania
class Zakres {}; // klasa wyjatku

protected:
slowo *tab;
int d1;

private:
void _TabBit (const TabBit &tb);

public:

explicit TabBit (int rozm);



TabBit (const TabBit &tb);

“TabBit ();
public:

TabBit & operator = (const TabBit &tb);
private:

bool czytaj (int i) const;
bool pisz (int i, bool b);
public:
bool operator[] (int i) const; // operator indeksowania dla czytania
Ref operator[] (int i); // operator indeksowania dla pisania
int rozmiar () const { return dl; } // rozmiar tablicy

};

Klasa Ref jest klasg pomocniczg, ktéra umozliwia zaimplementowanie operatora indeksowania
rozrézniajacego czytanie i pisanie w klasie TabBit— zastanéw sie jak powinna ona by¢ zaimple-
mentowana.

Do kompletu podefiniuj operatory koniunkcji, alternatywy i alternatywy wykluczajacej (opera-
tory zaprzyjaznione) operujace na tablicach bitéw, oraz operatory przypisania polaczone z wy-
mienionymi operatorami bitowymi. Nie zapomnij tez o operatorach czytania ze strumienia wej-
Sciowego i pisania do strumienia wyjéciowego.

Caly definicje klasy TabBit podziel na cze$¢ nagltéwkowa i zrédtows. Nastepnie w osobnym
pliku umie$¢ program testowy, ktory sprawdzi poprawno$¢ zdefiniowanych przez Ciebie operacji
na tablicach bitowych i operacji na poszczegélnych bitach tych tablic.

Uwaga! Klasa TabBit bedzie wykorzystywana w nastepnych zadaniach, a zatem warto napisac
ja bardzo starannie.

Uniwersytet Wroctawski Pawet Rzechonek
Instytut Informatyki

ul. Przesmyckiego 20

PL-51-151 Wroctaw



