
Querying Data Graphs with Arithmetical Regular Expressions

Maciej Graboń and Jakub Michaliszyn and Jan Otop and Piotr Wieczorek
Institute of Computer Science, University of Wrocław

Abstract

We propose a query language LARE for graphs
whose edges are labelled by a finite alphabet and
nodes store unbounded data values. LARE is based
on a variant of regular expressions with memory.
Queries of LARE can compare quantities of memo-
rised graph nodes and their neighbourhoods. These
features allow us to express a number of natu-
ral properties, while keeping the data complexity
(with a query fixed) in non-deterministic logarith-
mic space. We establish an algorithm that works ef-
ficiently not only with LARE, but also with a wider
language defined using effective relational condi-
tions, another formalism we propose.

1 Introduction
Recently, there has been a growing interest in graphs as
means of representing data (see surveys [Barceló, 2013;
Angles and Gutierrez, 2008]), where besides querying the
stored data, one can reason about the links among the data.

In these applications, the graph databases tend to be too
big to fit in the modern computers’ memory. Therefore, a
typical criterion of feasibility of a query language is hav-
ing data complexity in NL, the class of problems solvable in
non-deterministic logarithmic space [Calvanese et al., 2006;
Artale et al., 2007; Barceló et al., 2012]. Checking whether
there is a path between two given nodes is already NL-
complete, so NL is the best complexity we can obtain for
any reasonable language.
Our contribution. We propose a query language, called
LARE, which subsumes several previous formalisms, allows
to express new interesting properties and at the same time
keeps data complexity of query answering in NL.

LARE allows for writing queries against both nodes and
paths given as input. A query can existentially quantify nodes
and paths and check relationship between many paths us-
ing relational conditions defined by arithmetic regular expres-
sions (ARE), which are regular expressions with registers that
allow for various arithmetic comparisons between registers as
well as for nesting. The main innovation of the LARE queries
lays in the ability to express various arithmetic and aggrega-
tive properties of nodes and paths, hence we assume natural

numbers as the data values. Nevertheless, our approach can
be adjusted to different data domains.

LARE is powerful enough to find, for example, nodes s, t
such that there is a path p from s to t such that p visits a node
with the maximal value in the graph and the total sum of all
the elements of p is in a given interval. LARE allows for using
nested queries and their negation. This facilitates formulation
of properties such as there is a one-way path from s to t, i.e.
a path in which for any two consecutive nodes v, v′, there is
no path from v′ to v. Properties like these occur naturally in
reasoning about multi-agent systems. Agents are often rep-
resented by a Kripke structure, which is basically a labelled
graph with distinguished initial states. The considered Kripke
structures are typically very large due to the state explosion
problem. The query answering algorithm we propose works
in (non-deterministic) logarithmic space in size of the gen-
erated Kripke structure, but can be easily adjusted to reason
in polynomial space in size of a succinct representation of a
multiagent system, i.e., without generating the exponentially
large Kripke structure. Further examples are in Section 5.

We associate with each graph a separate finite automa-
ton, which recognizes the paths of this graph satisfying the
query. Based on this idea, we introduce effective relational
conditions, a succinct formalism for representing a family of
such automata, containing one automata for each graph. The
query answering problem for effective relational conditions is
NL-complete. We provide a translation from LARE queries
into effective relational conditions, which proves that the data
complexity of the query answering problem for LARE queries
is in NL. The combined complexity is PSPACE-complete.
Query languages for graphs and LARE. Many of the query
languages for graphs are extensions of Regular Path Queries
(RPQ) [Cruz et al., 1987]. RPQs can be written in the form
x →π y ∧ π ∈ L(e) where e is a (standard) regular ex-
pression. Such queries return pairs of nodes (v, v′) con-
nected by a path π such that the labelling of π form a word
in L(e). Conjunctive Regular Path Queries (CRPQs) (see
QCRPQ on Fig. 1) are closure of RPQs under conjunction
and existential quantification [Consens and Mendelzon, 1990;
Mendelzon and Wood, 1995], CRPQs with inverse [Cal-
vanese et al., 2000] allow traversing graph edges back.

Barcelo et al., [2012] considered extended CRPQs (ECR-
PQs) that have the ability to output and compare not only tu-
ples of nodes, but also tuples of paths (see rECRPQ on Fig. 1).

Tuples of paths can be compared by regular relations [Elgot
and Mezei, 1965; Frougny and Sakarovitch, 1993]. Examples
of such relations are path equality, length comparisons, pre-
fix (i.e., a path is a prefix of another path), fixed edit distance
etc. Regular relations on n-tuples of paths can be defined by
the standard regular expressions over alphabet of n-tuples of
edge symbols. Such regular expressions are the basic building
block of LARE, in particular LARE queries without register
assignment and constraints can be seen as unions of ECR-
PQs. Query answering for ECRPQs is computationally fea-
sible: its combined complexity is PSPACE-complete and data
complexity is NL.

The formalisms mentioned above assume that graph edges
are labelled by a finite alphabet. In practice, graph nodes
often store data values from infinite alphabet and there is
a strong need for query formalisms that can combine graph
topology and data values tests. In such graphs, paths are in-
terleaved sequences of data values and edge labels. This is
closely related to data words [Neven et al., 2004; Demri et
al., 2007; Segoufin, 2006; Bojańczyk et al., 2011]. Data com-
plexity of query answering for most of the formalisms for data
words is NP-hard [Libkin et al., 2016].

Regular Queries with Memory (RQMs) [Libkin and Vrgoč,
2012; Libkin et al., 2016] are again of the form x→π y ∧ π ∈
L(e), however e is now Regular Expression with Memory
(REM). Such queries return pairs of nodes connected by a
path in L(e). REMs resemble standard regular expressions
but they can store in a register the data value at the current
position and test its equality with other values stored already
in registers (see rRQM on Fig. 1). Data complexity of RQMs
is NL. Arithmetical regular expressions of LARE, called ARE,
have been inspired by REM—essentially ARE over single
path and with constraints having only (dis)equality tests on
data values are equivalent to REMs. However, in contrast to
REM, ARE work over tuples of paths, which can be compared
by regular relations (as in ECRPQs), registers of ARE store
nodes of the graph rather than data values and ARE incorpo-
rate arithmetical functions and arbitrary comparisons in reg-
ister constraints. REMs together with their weaker versions
(REWB and REWE) have been further studied in [Libkin et
al., 2015].

Walk Logic [Hellings et al., 2013] is a powerful extension
of FO with path quantification, and tests of equality of data
values on paths. Query answering for WL is decidable but its
data complexity is not elementary [Barceló et al., 2015].

Finally, Register Logic [Barceló et al., 2015], is essentially,
the language of REMs closed under Boolean combinations,
node, path and register assignment quantification. Interest-
ingly, it allows for comparing data values in different paths.
Its query answering is costly but for the positive fragment
RL+ data complexity drops to NL. A particularly interest-
ing fragment is nested RL+ where nested REMs (NREMs) can
be used instead of REMs. Nested REMs extend REMs with
a branching operator that can filter those nodes in a graph
that are the starting point of a path that can be parsed by a
nested query which can be NREM again. Data complexity
for NRL+ stays in NL. Constraints of ARE allow for nested
queries which capture this kind of branching.

Our language LARE can express all the ECRPQ and NRL+

”x and y have a common descendant”:
QCRPQ(x, y) = x→π z ∧ y →π

′

z ∧ π,π′ ∈ L(desc∗)
”x and y are connected to some node by paths having the same la-
belling from the alphabet Σ”:

QECRPQ(x, y) = x→π z ∧ y →π
′

z ∧ (Σ
Σ
)
∗

(π,π′)
”x and y are connected by a path in which a data value is repeated”:
QRQM = x→π y ∧ π ∈ L(Σ∗⋅ ↓ r ⋅Σ+ ⋅ [r=] ⋅Σ∗).

Figure 1: Basic features of formalisms that LARE builds over.
↓ r stores the current data value in a register r and [r=] tests
whether the data value stored in r equals the current one.

properties and more, as LARE can test various arithmetical
conditions rather than just the equality and refer to nodes’
neighbourhood. We provide some concrete examples in the
paper, e.g. in Example 1 we show a query αfad that looks for
paths that always choose the next node with the most occur-
ring value in a set of candidates. This query is not expressible
in NRL+ or ECRPQ.

Figueira and Libkin [2015] proposed a language to express
properties of edge labels of paths, such as the number of a-
edges following b-edges is the same as the number of b-edges
following a-edges. Data complexity of its query answering
problem is in NL, and the proof relies on a tailored version
of Parikh automata. We note that it is possible to combine the
result with ours, i.e., to have a query language able to express
both kind of properties with NL complexity.

2 Graphs and queries
Graphs. We fix a finite set of edge labelsΣ. AΣ,N-labelled
graph, or simply a graph, is a tuple G = ⟨V,E,λ⟩ where V is
a finite set of nodes, E ⊆ V ×Σ × V is a set of edges labelled
by Σ, and λ ∶ V → N is a labelling of nodes.

The size of a graph G is defined as ∣G∣ = ∣V ∣ + ∣E∣ +
∑v∈V λ(v), i.e., the labels of nodes are represented in the
unary notation, which means that their binary representation
is logarithmic in the size of the graph. This allows us to
compute arithmetical relations on these labels in logarithmic
space. The question, which arithmetical relations can be com-
puted in logarithmic space w.r.t. input number given in bi-
nary, is related to long-standing open problems, e.g., whether
linear programming admits strongly-polynomial algorithm.

A word is an element of the language defined by V (ΣV)∗.
A node v′ is an e-successor of v if E(v, e, v′). A path is a

word p = v0e1v1 . . . vk such that vi is an ei-successor of vi−1
for every i ∈ {1, . . . , k}.

An n-ary relational condition is a graph indexed family of
relations R = {RG ∶ G is a graph} such that each RG is an
n-ary relation on the paths from G. This may be seen as an
n-ary relation on paths, which depends on a graph.
Syntax of queries. Queries Q are defined by the BNF ex-
pression Q ∶∶= Q ∨Q ∣ Q ∧Q ∣ xi →xk xj ∣ R(xi1 , . . . , xin),
where n, i, j, k, i1, . . . , in ∈ N ∖ {0}, R ranges over n-ary re-
lational conditions and x1, x2, . . . are variables.

Variables are intended to range over paths; nodes are con-
sidered as special cases of paths. Free variables of a query can
be distinguished by listing them after the query name, e.g.,

Q(x1, . . . , xk) denotes a query whose variables x1, . . . , xk
are free; the remaining variables are existentially quantified.
Semantics of queries. The satisfaction relation ⊧G, which
takes a vector of paths p⃗ = (p1, p2, . . .). and a query Q, is
recursively defined as follows. We assume that for each i, the
path pi is the value of the query variable xi.

• p⃗ ⊧G Q1 ∨Q2 if p⃗ ⊧G Q1 or p⃗ ⊧G Q2,

• p⃗ ⊧G Q1 ∧Q2 if p⃗ ⊧G Q1 and p⃗ ⊧G Q2,

• p⃗ ⊧G xi →xk xj if pi, pj are single-node paths and pk is
a path from pi to pj ,

• p⃗ ⊧G R(xi1 , . . . , xin) if RG(pi1 , . . . , pin).

A query Q(x1, . . . , xl) holds for paths p1, . . . , pl of a
graph G, denoted as QG(p1, . . . , pl), if there are paths
pl+1, pl+2, . . . such that (p1, p2, . . .) ⊧G Q. For example,
Q(x1) = x1 →x2 x3∧x4 →x5 x1∧R(x2, x5) states that there
are two paths, one starting and one ending in x1 satisfying R.

The query-answering problem is formalised as follows:
given a graph G, a query Q(x1, . . . , xl) and (input) paths
p1, . . . , pl, does QG(p1, . . . , pl) hold? We are interested in
the data complexity of the problem, where the size of a query
and its input paths is treated as constant, and combined com-
plexity, where there is no such restriction.

3 Arithmetical regular expressions
Different relational conditions lead to different expressive
power and complexity of queries. As we are interested in
queries regarding large systems, representing, for example,
Web topology, social networks or Kripke structures, we re-
strict our attention to relational conditions defining queries
whose data complexity is in NL. In this section, we propose
n-ary arithmetical regular expressions (ARE), which define
relational conditions satisfying this complexity requirement.
ARE are regular expressions with arithmetical functions and
memory. The memory is formalized as an infinite set of reg-
isters R = {ri ∣ i ∈ N}, storing nodes.

It is convenient to reason about paths of the same length.
To cope with paths of different lengths, we use ◻ as a spe-
cial blank (padding) symbol for nodes and edges and assume
E(v,◻,◻) for any v ∈ V◻ and λ(◻) = ◻. One may think that
G has an additional dummy node ◻, which is a ◻-successor
of all nodes. By X◻ we denote the set X extended with ◻.

We assume a finite set F of functions f ∶ (N◻ ∪ {∞})∗ →
N ∪ {∞} computable by a non-deterministic Turing machine
whose size of working tape and output tape while computing
f(x1, . . . , xk) is O(log k + max(∣x1∣, . . . , ∣xk ∣)), assuming
binary representation and ∣∞∣ = ∣◻ ∣ = 1. These conditions are
satisfied by aggregative functions such as summation, maxi-
mum, minimum (∞ is included for empty set), counting and
conditional functions like if x1 is odd then x2 else x3.
Syntax of ARE. We define register constraints C and n-ary
arithmetical regular expressions α as follows

C ∶∶=C ∨C ∣ ¬C ∣ ∃r.C ∣ f(P, . . . , P) ≤ f(P, . . . , P)
∣ r = r ∣ E(r, e, r) ∣ ⟦Q⟧(r, . . . , r)

α ∶∶=ε ∣ ⟪C⟫ ∣ [r← j] ∣ e⃗ ∣ α + α ∣ α.α ∣ α+

where r ranges over R, f ranges over F , P ranges over ex-
pressions of the form λ(r) or f[r ∶ C], e ∈ Σ, e⃗ ∈ Σn

◻ ,
j ∈ {1, . . . , n,◻} and Q is a (nested) query.

By AREn we denote the class of all n-ary arithmetical reg-
ular expressions. We allow standard logical abbreviations,
such as ∧,∀,⇒, defined as usual. We put E(r, , r′) =
⋁a∈Σ E(r, a, r′) to express there is a (Σ-labelled) edge be-
tween r and r′. Notice that our constraints are standalone
entities rather than evaluations applied to subexpressions.

To simplify presentation we require that the register con-
straints and arithmetical functions only express properties of
nodes stored in registers. Hence, all the nodes of the paths
have to be stored in registers using the [r← i] syntax prior to
their access. However, it is easy to circumvent this by assum-
ing n distinguished registers storing the values of the current
nodes.

Register constraints allow for Boolean operators (includ-
ing negation), comparing arithmetical formulas, quantifica-
tion, checking equality and connectedness of nodes stored in
registers and checking nested queries. Note that we allow
for negation in front of nested queries, and that the param-
eters of nested queries are only (nodes stored in) registers.
The arithmetical formulas are the way of expressing proper-
ties of values of the nodes stored in registers. The construc-
tion f[r ∶ C], that can be read as the function f applied to
the values of all r satisfying a given condition. For exam-
ple, max[r1 ∶ E(r2, e, r1)] stands for the maximum value of
e-successors of the node stored in r2.

A valuation σ ∶ R → V◻ is a function that assigns nodes to
the registers. For a valuation σ, we define σ[r ← vi] as the
valuation such that σ[r← vi](r) = vi and σ[r← vi] coincides
with σ on all inputs except r.

Let f⟨X⟩ denote the result of function f ∈ F whose argu-
ments are elements of X given in a non-decreasing order.
Semantics of register constraints. A graph G = (V,E,λ)
and a valuation σ satisfy a constraintC, denoted byG,σ ⊧ C,
if one of the following holds:

• C ≡ C1 ∨C2 and G,σ ⊧ C1 or G,σ ⊧ C2,
• C ≡ ¬C ′ and G,σ /⊧ C ′,
• C ≡ ∃r.C ′ and there is v ∈ V s.t. G,σ[r← v] ⊧ C ′,
• C ≡ f(P 1

1 . . . P
1
k) ≤ g(P 2

1 . . . P
2
l) and f(v11 . . . v1k) ≤

g(v21 . . . v2l), where vji = λ(σ(r)) if P ji ≡ λ(r) and vji =
f⟨{λ(v) ∣ G,σ[r← v] ⊧ C}⟩ if P ji ≡ f[r ∶ C].

• C ≡ r = r′ and σ(r) = σ(r′),
• C ≡ E(r, e, r′) and E(σ(r), e, σ(r′)),

• C ≡ ⟦Q⟧(ri1 , . . . , rik) and QG(σ(ri1), . . . , σ(rik)).
The convolution of sequences s1, . . . , sn, denoted by s1 ⊗

. . . ⊗ sn, is the sequence s of the length k of the longest se-
quence among s1, . . . , sn, such that for every i ∈ {1, . . . , k},
the ith element of s is the vector (a1, . . . , an), where aj is
the ith element of sj if it exists and ◻ otherwise. In plain
English, convolution joins n sequences into one sequence of
the length of the longest sequence and fills the missing places
with ◻.

An n-path of G is the convolution of n paths of G. We de-
fine a concatenation . of two n-paths p1 = v0e1 . . . vk and p2 =

v′0e
′
1 . . . v

′
k such that vk = v′0 as p1.p2 = v0e1 . . . vke′1 . . . v′k

(i.e., the common node is not repeated). A splitting of an
n-path p is a sequence of n-paths p1, . . . , pl such that p =
p1.p2.pl.
Language of ARE. We define the relation ⊢ with the follow-
ing meaning: (α, p, σ) ⊢G σ′ if evaluating an expression α
over a n-path p of a graph G with a valuation σ results in
valuation σ′, i.e., if one of the following holds.

• α ≡ ε, p is a single element and σ = σ′,
• α ≡ ⟪C⟫, p is a single element, G,σ ⊧ C and σ = σ′,
• α ≡ [r← j], p is a single element (a1, . . . , an) and σ′ =
σ[r ← aj] if j ≠ ◻ and ◻ otherwise,

• α ≡ e⃗, p = v1e⃗v2 where v1, v2 are single elements and
σ = σ′,

• α ≡ α1.α2 and there is a splitting p = p1.p2 and a valua-
tion σ′′ s.t. (α1, p1, σ) ⊢G σ′′ and (α2, p2, σ

′′) ⊢G σ′,
• α ≡ α1 + α2 and (α1, p, σ) ⊢G σ′ or (α2, p, σ) ⊢G σ′,
• α ≡ α+1 and there are a splitting p = p1.pk and

valuations σ = σ0, σ1, . . . , σk = σ′ such that for each
i ∈ {1, . . . , k} we have (α1, pi, σi−1) ⊢G σi,

Then, the language of an ARE α is defined as LG(α) = {p ∣
∃σ,σ′.(α, p, σ) ⊢G σ′}. We define αG(p1, . . . , pn) iff p⃗1 ⊗
⋅ ⋅ ⋅ ⊗ p⃗n ∈ LG(α); therefore, each ARE can be treated as a
relational condition.
Example 1. Consider the following ARE.
αgrd = ([r1←1]Σ[r2←1]⟪Cgrd⟫)∗, where

Cgrd = ∀r3.(E(r1, , r3)⇒ λ(r3) ≤ λ(r2)).
αfad = ([r1←1]Σ[r2←1]⟪∀r3. P (r3) ≤ P (r2)⟫)∗, where

P (z) = count[r4 ∶ E(r1, , r4) ∧ λ(r4) = λ(z)].
αcom = [r1←1] . . . [rn←n]αgss⟪r1 = r2 . . . = rn⟫, where

αgss = ([r1←1] + . . . + [rn←n] +Σn
◻)∗

The language of αgrd consists of all greedy paths, i.e.,
paths in which, at every position, the following node on the
path has maximal value among all successors of the current
node. To see that, observe that while traversing path αgrd
keeps the next-to-latest (on the path) node in register r1 and
the latest node in r2. After each edge move, denoted by Σ, a
greedy condition Cgrd is checked, whether it holds that r2 is
a maximal neighbour of r1. The language of αGfad consists of
paths in which, at every position, the following node on the
path has the value that has the most number of occurrences
among the successors of the current node. To express that,
αfad uses arithmetic formula P (z) counting number of oc-
currences of value λ(z) in the neighbourhood of r1. count is
a function (fromF) that returns the number of elements given
on input. The last example demonstrates processing multiple
paths. We have αGcom(x1, . . . , xn) iff paths x1, . . . , xn have
a common node. The idea is to guess (αgss) a common node
for each path separately, and verify the equality at the end.

The query language LARE is the language containing
queries whose all relational conditions are ARE. We conclude
this section with a Theorem whose proof will follow from
more general theorems provided later on.
Theorem 1. The query answering problem for LARE queries
with bounded nesting depth is in PSPACE and its data com-
plexity is NL.

4 Effective relational conditions
We introduce the notion of effective relational conditions,
which facilitates the proof of Theorem 1, and show that ARE
are effective relational conditions (Theorem 4). The name
effective is justified by the fact that answering queries with
effective relational conditions can be done within the de-
sired complexity bounds (Theorem 3). We assume that the
reader is familiar with finite automata and Turing machines
(see [Hopcroft and Ullman, 1979]).

An Automata Giving Turing Machine (AGTM) is a non-
deterministic Turing Machine which works in logarithmic
space and only accepts inputs of the form i?w, where i ∈
{0,1}∗, ? ∈ {?Γ , ?S , ?I , ?F , ?δ}, and w ∈ {0,1, ;}∗ is such
that ∣w∣ = O(log(∣i∣)). An AGTMM gives (on-the-fly) a set
of (nondeterministic) automata {Ai}i∈{0,1}∗ such that each
Ai is of the form (Γi, Si, Ii, δi, Fi), where

• Γi ⊂ {0,1}∗ consists of labels e s.t.M accepts on i?Γ e,
• Si ⊂ {0,1}∗ consists of states q s.t.M accepts on i?Sq.
• Ii consists of initial states q ∈ Si s.t.M accepts on i?Iq.
• Fi consists of final states q ∈ Si s.t.M accepts on i?F q.
• δi consists of transitions (q, e, q′) ∈ Si × Γi × Si s.t. M

accepts on i?δq; e; q′.
An AGTM M represents a n-ary relational condition R if

M gives a set of automata {Ai}i∈{0,1}∗ s.t. for all graphs G
and words w1, . . . ,wn, the automatonAG accepts w1 ⊗ . . .⊗
wn iff (w1, . . . ,wn) ∈ RG (we assume an encoding of graphs
as binary sequences). A relational condition R is effective if
there is an AGTM M that represents R. A query is effective
if its all relational conditions are given as AGTMs.

Lemma 2. Let R→ be a relational condition such that
RG→(x,x1, x′) holds iff x→x1 x′. Then R→ is effective.

Proof. We define an AGTM M that gives automata
{Ai}i∈{0,1}∗ such that for a given graphG, the automatonAG
recognizes words over the alphabet V 3

◻ ∪Σ3
◻, which encode

convolutions w1 ⊗w2 ⊗w3 such that w1,w3 are single-node
paths and w2 is a path in G from the node w1 to w3. AG
reads letters corresponding to nodes v and labels e and stores
last read letters in its state. Next, while it reads a letter corre-
sponding to a node v′, it checks whether G has an edge from
v to v′ labeled with e. Moreover, the automaton AG stores
in its state the node vf , which is supposed to be the last node
and accepts only if the last read letter is vf .

The machine M answers questions i?Xx regarding com-
ponents (the alphabet, the set of states, etc.) of AG, where G
is the graph encoded by i. All components are sets of tuples
of nodes and labels ofG extended with the padding symbol ◻.
All these sets of tuples are defined using the edge relation in
G, equality among components of the tuples and equality to
◻. In any reasonable representation of G; e.g., a list of nodes
followed by an adjacency list, ∣G∣ is proportional to i, length
of description of labels and nodes ofG is logarithmic in i, and
the machineM can compute in log i space (hence in log ∣G∣
space) whether a given word encodes a label (resp., a node
or an edge) of G. Since the length of elements of tuples, i.e.,
labels and nodes of G is logarithmic in i, the equality among
components of tuples (and equality to ◻) can be checked in

log log i space. Therefore, the machine M on inputs i?Xx
requires log(i) space, i.e.,M is an AGTM.

Theorem 3. Answering effective queries withm conditions is
in NSPACE(m+c log(n)), where c log(n) is the space bound
on AGTMs representing the conditions.

Proof sketch. Consider a query Q(x1, . . . , xk) whose rela-
tional conditions are effective. For any paths p1, . . . , pk, we
define in the straightforward way an effective relational con-
dition Rp1,...,pk such that RGp1,...,pk(π1, . . . , πk) iff p1 = π1,
. . . , pk = πk. This and Lemma 2 imply that we can assume
that our query has no free variables and is built of conjunc-
tion, disjunction and effective relational conditions. One can
observe that effective relational conditions are closed under
shuffling, joining and adding spurious arguments, and there-
fore we can assume that all of them have the same arguments.
By employing an argument similar to the standard powerset
construction for finite automata, we can reduce in polyno-
mial time a query to a single effective relational condition
RQ,p1,...,pk .

Given a graph G, answering QG(p1, . . . , pk) amounts to
checking emptiness of RGQ,p1,...,pk , which amounts to check-
ing whether a corresponding automaton AG is empty. This
can be done by employing the standard graph reachability al-
gorithm, which checks reachability of an accepting state from
initial states by guessing the consecutive states. Since states
are logarithmic in i, the problem is in NL.

The AGTM for the relational condition RQ works in space
proportional to the number of atomic formulas of the query
(m) plus the maximum of the space usage of AGTMs repre-
senting relational conditions in Q (c log(n)). Therefore, the
combined complexity is as required.

Let 0-ARE be the empty set and (d + 1)-ARE be the subset
of ARE containing expressions whose all nested queries are
built of relational conditions from d-ARE.

Theorem 4. Every ARE relational condition R is effective
and ifR is d-ARE, then an AGTM working in space ∣R∣⋅log(n)
representing R is computable in polynomial time.

Proof sketch. We prove Theorem 4 by induction w.r.t. d . The
basis of induction is trivial as the set 0-ARE is empty. Assume
that for any R ∈ d-ARE one can compute in polynomial time
in ∣R∣ an AGTM computing R that works in space ∣R∣ log(n).
Evaluating register constraints. We first show that for a
given register constraint C whose nested queries are built
of d-ARE, one can compute in polynomial time in ∣C ∣ a
non-deterministic Turing machine MC that works in space
∣C ∣ log ∣G∣ and decides, for a graph G and a registers valua-
tion σ, whether G,σ ⊧ C. The construction ofMC is a top-
down recursion on C and can be done in polynomial time.
The space used byMC is bounded by O(∣C ∣ log ∣G∣), which,
using tape compression [Hopcroft and Ullman, 1979], can be
replaced by ∣C ∣ log ∣G∣. Below we discuss the most interesting
recursive cases.

To compute f[r ∶ C], observe that using additional space
log ∣G∣, we can implement a virtual tape storing λ(v1) ≤
. . . ≤ λ(vl), where v1, . . . , vl are all nodes of G satisfying

C, i.e., we can implement a subroutine that for a given i re-
turns λ(vi). Such a subroutine iterates over all nodes v of G.
For each v, it computes iv1 (resp., iv2) defined as the num-
ber of nodes u, which satisfy C and λ(u) < λ(v) (resp.,
λ(u) ≤ λ(v)), and checks whether iv1 < i ≤ iv2 . In such a
case we know that all elements between iv1 + 1 and iv2 have
the same value λ(v). Next, with such a virtual input tape we
execute a non-deterministic Turing machineMf computing
f ∈ F . All such Turing machines work in space O(log ∣G∣).

Consider a nested query ⟦Q⟧(ri1 , . . . , rik). All the rela-
tional conditions of Q are d-ARE, therefore by Theorem 3
and the inductive assumption, we can compute (in polyno-
mial time) a non-deterministic machine MQ that computes
⟦Q⟧(ri1 , . . . , rik) in space ∣Q∣ log ∣G∣. We also compute a
non-deterministic machineM¬Q that in space cIS ⋅ ∣Q∣ log ∣G∣
computes ¬⟦Q⟧(ri1 , . . . , rik), where cIS is the constant from
Immerman-Szelepcsényi theorem [Immerman, 1988] show-
ing NL = CONL. We executeMQ andM¬Q in parallel.
Evaluating (d + 1)-ARE . Now we prove the inductive the-
sis. Let R be a (d + 1)-ARE relational condition defined by
(d + 1)-ARE α. For a graph G, we define three automata
AG1 ,AG2 and AG3 over an alphabet Γ consisting of tuples of
edge labels Σn

◻ , nodes V n◻ , symbols {aC ∶ C from R} re-
ferring to register constraints and {br,j ∶ [r ← j] from R}
referring to register assignments. We substitute in α subex-
pressions ⟪C⟫ (resp., [r← j]) by letter aC (resp., br,j). The
resulting αreg is a regular expression and AG1 recognizes the
language of αreg , i.e., AG1 accepts words over Γ that satisfy
Rwhile neglecting the graph structureG and the register con-
straints checks in R. For the register constraints checks, this
automaton verifies only that the letters aC (resp., br,j) oc-
cur at positions that correspond to register constraints checks
⟪C⟫ (resp., assignments [r ← j]) in R. The automaton AG2
checks consistency of register constraints checks marked by
aC provided that register assignments are executed done ac-
cording to markings br,j , employing the machine MC de-
fined above. The automaton AG3 recognizes words that, with
letters aC and br,j deleted, are n-paths of G. Finally, we con-
structAGR , which is the product of automataAG1 ,AG2 andA3

projected on the alphabet Σn ∪ V n. Observe that AGR rec-
ognizes the languages of all n-paths satisfying R. It can be
shown that the construction of automataAG1 ,AG2 andAG3 can
be performed in a way that ensures that the sets containing all
such automata can be given on-the-fly.

Finally, we show how Theorems 3 and 4 imply Theo-
rem 1. Let d > 0 and consider LARE queries of nesting depth
bounded by d, i.e., queries whose relational conditions are
(d + 1)-ARE. For every such query Q, Theorem 4 states that
for every relational condition R from Q, one can construct
in polynomial time an AGTM working in ∣R∣ log(n) space,
which represents R. Next, observe that the sum of the num-
ber and the sizes of relational conditions from Q is bounded
by Q. Therefore, by Theorem 3, space required to answer Q
is bounded by ∣Q∣ log(n). Consequently, the query answering
problem is in PSPACE and its data complexity is in NL.
Remark. We have shown that for a given query Q and
a graph G we can obtain a single relational condition R

and then an automaton AGR accepting all n-paths w over
V n(ΣnV n)∗ such thatw is a convolution of paths that satisfy
Q. Note that we can modify AGR to be able to process paths
that remember also the values of the nodes, i.e., the paths over
(V ×N)n(Σn(V ×N)n)∗. Therefore, we can state our result
in the following alternative version:

Corollary 5. For each Σ,N-labelled graph G and a LARE
queryQ with k variables, there is aΣk,Nk-labelled graphG′

of size polynomial in ∣G∣ and sets of nodes I , F such that a
word w is a path from I to F in G′ iff w is a convolution of
paths that satisfy Q.

5 Examples
We show how ARE power the LARE queries, and combine
nicely with language features like nested queries, condition
negation, or aggregative functions. For convenience, we de-
fine a macro [n←Ð] = [r1 ← 1] . . . [rn ← n] that stores nodes
from first n paths into registers 1, . . . , n. We allow to use dif-
ferent variables than xi and assume variables x, y, xi, yi to be
nodes, this can be enforced by appending the atom x→π x to
query body; we treat it as implicitly written.
Basic techniques. Consider the queries
Q≠(x,π1, π2) = α∈(x,π1) ∧ α∉(x,π2), where
α∈ = [r1←1](Σ2

◻)∗[r2←2]⟪r1 = r2⟫(Σ2
◻)∗

α∉ = [2←Ð](⟪r2 ≠ r1⟫Σ2
◻[r2←2])∗⟪r2 ≠ r1⟫.

Q2(π) = ([r2←1]Σ[r1←1]⟪C2⟫)∗(π),
C2 = count[z ∶ r2 →π z] > count[z ∶ r1 →π z].

Q3() = ⟪∀z∀z′. ¬⟦x→π1 y ∧ y →π2 x⟧(z, z′)⟫().
Q4(x, y) = x→π y ∧ α(x, y),

α = [2←Ð]⟪∀z. ¬⟦Q4.1⟧(r1, r2, z)⟫,
Q4.1(x, y, z) = x→π1 y ∧ x→π2 y ∧Q≠(x,π1, π2).

The query Q≠ checks whether a node x appears in path
π1 but not π2. The query Q2 checks whether a given path has
unique nodes with respect to strongly connected components.
The query Q3 that check whether a given graph is a directed
acyclic graph. The query has no parameters, so it is consid-
ered over the 0-path consisting of one node which is an empty
tuple, (). We use negation on query saying π has return edge.
No return edges means that G is acyclic.

The query Q4(x, y) asks whether there is only one path
between x and y, up to nodes rearrangement. Q4.1(x, y, z)
says that one can find two paths between x and y that differ
on whether they contain node z. Expression α recognizes
pairs of nodes x1, y1 for whom it is impossible to show two
paths, that would differ on some node. So, in other words,
all paths between x and y take usage of same set of nodes.
Q4(x, y) additionally checks that there is at least one path
from x to y.
Aggregative properties. We show that LARE is capable of
recognizing some basic aggregative properties of paths. We
demonstrate this on the ARE sum≤c, stating that the sum of
weights on a path do not exceed the constant c.
sum≤c = αinit.αstore.(Σ.αstore)∗.⟪∑(r2, . . . , rc+1) ≤ c⟫,
αinit = [r2←◻] . . . [rc+2←◻],
αstore = [r1←1](⟪λ(r1) = 0⟫ + α1 + ⋅ ⋅ ⋅ + αc),
αk = ⟪λ(r1) > 0 ∧ rk+1 = rc+2⟫[rk+1←1].

The register r1 is used to store the current node, registers
r2, . . . , rc+1 contain the previous nodes whose data value was
positive, and rc+2 contains ◻ (for comparing). At every node,
the regular expression evaluates αstore. If the value of the node
is 0, then nothing happens. If the value is positive, then the
node is stored in one of registers among r2, . . . , rc+1 con-
taining ◻. If there is no such register, it means that there are
already c nodes with positive value on the paths, meaning that
sum of weights on the path exceeds c, in which case the path
will not be matched. At the end, it is checked whether the
sum of nodes in the registers do not exceed c.

The concept of checking lower and upper bound on the sum
of path weight can be extended in natural way to n-paths.
Kripke structures and multiagent systems. LARE may be
seen as a handful tool to verify properties of Kripke struc-
tures, which are essentially graphs with distinguished ini-
tial states. Finite Kripke structures are often obtained from
programs with unbounded numbers by means of abstrac-
tion [Clarke et al., 2000], and therefore the obtained labels
may be treated as data values. We are especially interested
in the multiagents setting, where edge labels correspond to
agents’ actions. LARE is expressive enough to express prop-
erties such as there is a path from an initial state q0 to a final
state qf such that no action of one of the agents at any single
state will result in reaching an undesirable state qB . For epis-
temic logics [Ågotnes et al., 2015], node labels may be seen
as a representation of a local state of an agent. The technique
presented in this paper can be straightforwardly generalised
to graphs with more than one node-labelling function in or-
der to deal with more agents.

Our query language then is powerful enough to formulate
indistinguishability in the epistemic interval-temporal logic
EHS [Lomuscio and Michaliszyn, 2013], where two paths are
indistinguishable for an agent i if they are of the same length
and the corresponding states of both paths are indistinguish-
able/have the same label for i. In particular, QK1 (below)
expresses that there is a path indistinguishable but different
from π. QK2 expresses that there is a path from x to y indis-
tinguishable from π1 that visits z while π1 does not. In other
words, an agent, who can observe only their local state (node
labelling), does not know whether a given path avoids z.
QK1(π) = αi(π,π1) ∧ α≠(π,π1)
αi = ([2←Ð]⟪λ(r1) = λ(r2)⟫Σ2)∗[2←Ð]⟪λ(r1) = λ(r2)⟫
α≠ = (Σ2)∗[2←Ð]⟪r1 ≠ r2⟫(Σ2)∗

QK2(x, y, z, π1)=x→π2 y ∧ αi(π1, π2) ∧Q≠(z, π2, π1)

6 Conclusion and future work
We introduced the query language LARE for data graphs,
suited for expressing arithmetical properties of nodes, paths
between nodes and their neighbourhoods. We showed that the
query answering problem for LARE can be solved in logarith-
mic space in size of the graph by employing a new formalism
called effective relational conditions.

LARE expresses some aggregative properties of paths, as
exemplified in Section 5. In our future work we plan to in-
corporate more properties of this type. In particular, are in-
terested in formalisms that can compare sums of values on
different paths while keeping the complexity low.

Acknowledgement We would like to thank Leonid Libkin
who has introduced the subject to us. This paper has been
supported by Polish National Science Center grant UMO-
2014/15/D/ST6/00719.

References
[Ågotnes et al., 2015] T. Ågotnes, V. Goranko, W. Jamroga,

and M. Wooldridge. Knowledge and ability. In Handbook
of Logics for Knowledge and Belief. College Publications,
2015.

[Angles and Gutierrez, 2008] Renzo Angles and Claudio
Gutierrez. Survey of graph database models. ACM Com-
puting Surveys (CSUR), 40(1):1, 2008.

[Artale et al., 2007] Alessandro Artale, Diego Calvanese,
Roman Kontchakov, and Michael Zakharyaschev. DL-lite
in the light of first-order logic. In Proc. of the national
conference on artificial intelligence, volume 22, page 361.
AAAI Press; MIT Press, 2007.

[Barceló et al., 2012] Pablo Barceló, Leonid Libkin, An-
thony W. Lin, and Peter T. Wood. Expressive languages
for path queries over graph-structured data. ACM Trans-
actions on Database Systems, 37:31:1–31:46, 2012.

[Barceló et al., 2015] Pablo Barceló, Gaëlle Fontaine, and
Anthony Widjaja Lin. Expressive path queries on graph
with data. Logical Methods in Computer Science, 11(4),
2015.

[Barceló, 2013] Pablo Barceló. Querying graph databases.
In Proc. of the 32nd Symposium on Principles of Database
Systems (PODS13), pages 175–188, 2013.

[Bojańczyk et al., 2011] Mikołaj Bojańczyk, Claire David,
Anca Muscholl, Thomas Schwentick, and Luc Segoufin.
Two-variable logic on data words. ACM Trans. Comput.
Log., 12(4):27, 2011.

[Calvanese et al., 2000] Diego Calvanese, Giuseppe De Gia-
como, Maurizio Lenzerini, and Moshe Y. Vardi. Contain-
ment of conjunctive regular path queries with inverse. In
Proc. of the 7th Int. Conf. Principles of Knowledge Repre-
sentation and Reasoning (KR00), pages 176–185, 2000.

[Calvanese et al., 2006] Diego Calvanese, Giuseppe De Gi-
acomo, Domenico Lembo, Maurizio Lenzerini, and Ric-
cardo Rosati. Data complexity of query answering in de-
scription logics. In Proc. 10th Int. Conf. on Principles
of Knowledge Representation and Reasoning (KR06), vol-
ume 6, pages 260–270, 2006.

[Clarke et al., 2000] E. M. Clarke, O. Grumberg, S. Jha,
Y. Lu, and H. Veith. Counterexample-guided abstraction
refinement. In Proc. of the 12th Int. Conf. on Computer
Aided Verification (CAV00), volume 1855 of LNCS, pages
154–169. Springer, 2000.

[Consens and Mendelzon, 1990] Mariano P. Consens and
Alberto O. Mendelzon. GraphLog: a visual formalism for
real life recursion. In Proc. of the 9th Sympo. n Principles
of Database Systems (PODS90), pages 404–416, 1990.

[Cruz et al., 1987] Isabel F. Cruz, Alberto O. Mendelzon,
and Peter T. Wood. A graphical query language supporting

recursion. In Proc. of the ACM Special Interest Group on
Management of Data (SIGMOD87), pages 323–330, 1987.

[Demri et al., 2007] Stéphane Demri, Ranko Lazic, and
David Nowak. On the freeze quantifier in constraint LTL:
decidability and complexity. Inf. Comput., 205(1):2–24,
2007.

[Elgot and Mezei, 1965] C. C. Elgot and J. E. Mezei. On
relations defined by generalized finite automata. IBM J.
Res. Dev., 9(1):47–68, January 1965.

[Figueira and Libkin, 2015] Diego Figueira and Leonid
Libkin. Path logics for querying graphs: Combining
expressiveness and efficiency. In Proc. of the 30th Annual
Symposium on Logic in Computer Science (LICS15),
pages 329–340, 2015.

[Frougny and Sakarovitch, 1993] Christiane Frougny and
Jacques Sakarovitch. Synchronized rational relations of
finite and infinite words. Theor. Comput. Sci., 108(1):45–
82, 1993.

[Hellings et al., 2013] Jelle Hellings, Bart Kuijpers, Jan Van
den Bussche, and Xiaowang Zhang. Walk logic as a frame-
work for path query languages on graph databases. In
Proc. of the 16th Int. Conf. on Database Theory (ICDT13),
pages 117–128, 2013.

[Hopcroft and Ullman, 1979] J. Hopcroft and J. D. Ullman.
Introduction to Automata Theory, Languages, and Compu-
tation. Adison-Wesley Publishing Company, 1979.

[Immerman, 1988] Neil Immerman. Nondeterministic space
is closed under complementation. SIAM Journal on Com-
puting, 17(5):935–938, 1988.

[Libkin and Vrgoč, 2012] Leonid Libkin and Domagoj
Vrgoč. Regular path queries on graphs with data. In Proc.
of the 15th Int. Conf. on Database Theory (ICDT12),
pages 74–85. ACM, 2012.

[Libkin et al., 2015] Leonid Libkin, Tony Tan, and Domagoj
Vrgoč. Regular expressions for data words. Journal of
Computer and System Sciences, 81(7):1278 – 1297, 2015.

[Libkin et al., 2016] Leonid Libkin, Wim Martens, and Do-
magoj Vrgoč. Querying graphs with data. J. ACM,
63(2):14:1–14:53, March 2016.

[Lomuscio and Michaliszyn, 2013] A. Lomuscio and
J. Michaliszyn. An epistemic Halpern-Shoham logic.
In Proc. of the 23rd International Joint Conference on
Artificial Intelligence (IJCAI13), pages 1010–1016. AAAI
Press, 2013.

[Mendelzon and Wood, 1995] Alberto O. Mendelzon and
Peter T. Wood. Finding regular simple paths in graph
databases. SIAM Journal on Computation, 24(6):1235–
1258, 1995.

[Neven et al., 2004] Frank Neven, Thomas Schwentick, and
Victor Vianu. Finite state machines for strings over infinite
alphabets. ACM Trans. Comput. Log., 5(3):403–435, 2004.

[Segoufin, 2006] Luc Segoufin. Automata and logics for
words and trees over an infinite alphabet. In Proc. of the
20th Int. Workshop on Computer Science Logic (CSL06),
pages 41–57, 2006.

