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Abstract The exponent of periodicity is an important
factor in estimates of complexity of word-unification
algorithms. We prove that the exponent of periodicity
of a minimal solution of a word equation is at most
22.54n, where n is the length of the equation. Since
the best known lower bound is 20.31n our upper bound
is almost optimal and exponentially better than the
original bound (6n)2

2n4

+ 2. Thus our result implies
exponential improvement of known upper bounds on
complexity of word-unification algorithms. Moreover
we give some evidence that, contrary to the common
belief, the algorithm deciding satisfiability of equations
in free groups, given by Makanin in not primitive re-
cursive.

The proofs are only sketched here. More details will
be given in the full version.

0 Introduction.
In this note we improve the known upper bound on
the exponent of periodicity thus obtaining exponential
speed-up of several word unification algorithms. We
also comment on the complexity of the Makanin’s algo-
rithm deciding satisfiability of equations in free groups.

By N we denote the set of non-negative integers,
N+ is the set of positive integers. Given any non
empty set Σ by Σ∗ we denote the set of all words
in Σ. Σ+ is the set of non-empty words in Σ. If
W is a word, then |W | denotes the length of W . ε
is the empty word. Let Σ, Ξ be two disjoint, non-
empty, finite alphabets. Σ = {a1, . . . , an} is the set
of (constant) letters and Ξ = {x1, . . . , xn} is the set
of variable letters. A word equation in (Σ, Ξ) is a
pair E = (W1,W2) of words in (Σ ∪ Ξ)∗, also de-
noted by W1 = W2. A solution of E is a function
v : Σ → Ξ such that W1(v(x1)/x1, . . . , v(xm)/xm) =
W2(v(x1)/x1, . . . , v(xm)/xm), where W (v(xi)/xi) de-
notes the word obtained from W by replacing each oc-
currence of xi by v(xi) . The length of a solution v is∑m

i=1 v(xi) . A solution is minimal if it has minimal
length.

It was shown by Makanin [MA1], that the problem
if a word equation has a solution is decidable. Later
related variants of word-unification problem, namely
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the problems of finding a solution, finding a minimal
solution and finding all minimal solutions, were studied
by various researchers (see e.g. [APE], [PEC], [JAF]).
Moreover, some variants of Makanin’s algorithm have
been implemented (see [ABD]).

In [JAF] Jaffar gave a procedure generating for a
word equation E the minimal and complete collection
of unifiers. This procedure stops with a positive an-
swer when E is satisfiable. To stop the procedure in
the case when E is not satisfiable a bound B, depend-
ing on the size of E , is placed on the length of each path
of the reduction tree, B being an increasing function
of the exponent of periodicity of a minimal solution of
E . Thus the number of steps of the generation proce-
dure of Jaffar will, in the case of unsatisfiable equation
depend on the known bounds on the periodicity expo-
nent.

In spite of the fact that the algorithm of Makanin and
its variants seem to have important applications and
have been intensively studied, no serious investigations
of their complexity have been undertaken. It seems
that the understanding of the nature of the algorithm
of Makanin is still very low.

This paper contains a report on an attempt to un-
derstand the complexity of the Makanin’s algorithm
for semi-groups and the complexity of the problem of
solvability of word equations. An important factor in
estimates of the complexity of the Makanin’s algorithm
is the periodicity exponent of a minimal solution of a
word equation. A periodicity exponent of a word W
is the maximal integer p such that W = U1U

pU2 for
some non-empty word U . An important fact used in
the Makanin’s algorithm and its variants is that the pe-
riodicity exponent can be bounded by a recursive func-
tion of the length of an equation. In fact V.K.Bulitko
[BUL] proved that if n is the length of an equation,
then the index of periodicity of its minimal solution
does not exceed (6n)2

2n4

+ 2.
In [KPA] we forced this bound down to n2n4

. The
method, we have used, was based on Makanin’s reduc-
tion lemma and consisted of obtaining better bounds
on the size of minimal positive integer solutions of sets
of linear diophantine equations. The bounds we have
obtained are close to the ones obtained recently by
E.Bombieri and J.Vaaler [BVA] for minimal absolute
values of integer solutions (not necessarily positive) of
such equations, and seem to be close to optimal. On
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the other hand we gave a lower bound 20.31n, which we
believe is the best, so it was evident that some further
work was necessary, and that the problem could not
be solved by an analysis of general diophantine linear
equations alone.

Here we give a further improvement of the upper
bound to 22.54n. The paper is divided into four parts.
In the first we study presentations of words in a special
form and prove the uniqueness of such presentations.
In the second we construct a set N of linear diophan-
tine equations whose minimal solutions describe the
periodicity exponent of a minimal solution of a word
equation E . The third part gives an upper bound on
the size of minimal solutions of this set of linear dio-
phantine equations.

The problem of solvability of word equations can, us-
ing a different terminology, be rephrased as a problem
of solvability of equations in a free (finitely generated)
semi-group. In 1983 Makanin ([MA2]) proved that a
similar, but much more difficult, problem of solvability
of an equation in a free group is also solvable. The
problem of generation of all minimal solutions of equa-
tions in a free group was studied by A.A. Razborov
([RAZ]).

In the fourth part we comment on the complexity of
Makanin’s algorithm for free groups. We argue that,
contrary to the common belief, the algorithm given in
[MA2] is not primitive recursive. In fact one can prove
(see [KOS]) that the functions defined in [MA2] de-
scribing the number of iterations of elementary steps of
Makanin’s algorithm are not primitive recursive. How-
ever, it is impossible to give a concise and comprehen-
sive proof of this statement without copying a large
part of Makanin’s paper, since definitions of the actual
functions used in [MA2] are quite complicated and are
mixed with the proof of correctness of algorithm and
with algebraic arguments. Instead, we introduce a no-
tion of an abstract Makanin’s algorithm which, in our
opinion, describes the main algorithmic properties used
to prove the decidability of the satisfiability problem
for equations in free groups. Then we prove the halting
property of abstract Makanin’s algorithms. Moreover,
we prove that there are abstract Makanin’s algorithms
which are not primitive recursive. Since, as we be-
lieve, the notion of an abstract Makanin’s algorithm
describes the properties of the Makanin’s algorithm,
this gives some evidence that the algorithm given in
[MA2] is not primitive recursive.

1 Presentation of words.

Here we prove some facts necessary to obtain a reduc-
tion of a problem concerning word equations to some
problem concerning linear diophantine equations.

Lemma 1.1. For any words W1,W2, if W1W2 =
W2W1, then W1 = Um, and W2 = Un for some word

U and integers m,n.

Definition 1.2. A non-empty word U is simple if
U 6= V n, for every word V and every integer n ≥ 2.

Lemma 1.3. Suppose that U is simple. Then,

(i) if U2 = U1UU2, then either U1 = ε and U2 = U ,
or U1 = U and U2 = ε

(ii) if U3 = U1UU2, then either U1 = U2 and U2 = ε,
or U1 = U2 = U , or U1 = ε and U2 = U2.

Definition 1.4. Let n be a positive integer and let
P be a non-empty word. A sequence (U0, ..., Un) is
P -stable if

(i) for i ≤ n, P 3 is not a subword of Ui,

(ii) for 0 < i < n, Ui 6= P ,

(iii) for i < n, P is a suffix of Ui and P 2 is not a
suffix of Ui,

(iv) for 0 < i ≤ n, P is a prefix of Ui and P 2 is
not a prefix of Ui.

Clearly if a sequence (U0, ..., Un) is stable, then any
subsequence of it is stable. Moreover |Ui| > |P | for
0 < i < n and if n > 0, then |U0| ≥ |P |, and |Un| ≥ |P |.

Definition 1.5. Let n ∈ N, W0, . . . , Wn, P ∈ Σ∗.
Then [W0, . . . ,Wn]P : (N+)n → Σ∗ is the function
such that

[W0, ..., Wn]P (k1, ..., kn) =
= W0P

k1W1P
k2 ...P kn−1Wn−1P

knWn.
Since P is often fixed, we sometimes omitt the subcript
P and write [W0, ...,Wn] instead of [W0, ..., Wn]P

Lemma 1.6. Let P ∈ Σ∗ be a simple word, and
u, v, k1, ..., ku, l1, ..., lv ∈ N. Assume that sequences
~U = (U0, ..., Uu) and ~V = (V0, ..., Vv) are P -stable. If

(1) [U0, ..., Uu]P (k1, ..., ku) = [V0, ...Vv]P (l1, ..., lv),

then u = v, ki = li for each i = 1, 2, ..., u and Ui = Vi

for each i = 0, 1, ..., u.
Proof. It is clear for u = 0, so assume that 0 < u ≤ v
and the conclusion of the Lemma holds for all stable
sequences of length ≤ v. Since (1) holds, there are
words Y, Z such that

(2) U0P
k1Y = V0P

l1Z.

First we are going to prove that |U0| = |V0|, which
clearly implies that U0 = V0. Suppose that |U0| < |V0|.
By the stability of ~U and ~V , U0 = UP and V0 = V P for
some words U, V . Clearly V P 3 has a prefix UP 3 and
|U | < |V |. We also have, |V | < |UP 2|, since otherwise



V0 = V P would contain P 3 . C onsequently V = UV ′,
where |V ′| < |P 2|. But V ′P 3 has a prefix P 3, so P 3 has
a prefix V ′P . Now, by Lemma 1.3.(ii), either V ′ = ε,
or V ′ = P or V ′ = P 2. But it is easy to check that each
of these cases gives a contradiction, so |U0| ≥ |V0|. A
similar argument shows that |U0| ≤ |V0|, so |U0| = |V0|.

Now, we shall prove that k1 = l1. Suppose that
k1 < l1. Since U0 = V0, (1) implies the existence of
words X ′, Z ′ such that

(3) U1Y
′ = P rV1Z

′ for some positive integer r.

Now, |U1Y
′| ≥ |P 2| and P 2 is not a prefix of U1. Con-

sequently |U1| < |P2| and Y ′ is not the empty word.
Therefore U1 is not the last element of the stable se-
quence ~U , so U1 has a suffix P . But by (3) U1 is a prefix
of P 2 so by Lemma 1.3.(i) either U1 = ε or U1 = P .
It is clear that none of these cases hold, so we get a
contradiction. In a similar way we prove that the as-
sumption k1 > l1 also leads to a contradiction, which
finishes the proof that k1 = l1. Now, using the induc-
tive hypothesis and the fact that subsequences of stable
sequences are stable, the conclusion of the lemma can
easily be obtained.

Definition 1.7.

(i) A P -presentation of a word is a P -stable sequence
(U0, ..., Uu) such that

X = [U0, ...Uu]P (l1, ..., lu) for some l1, ..., lu ∈ N.

(ii) The length of the P -presentation (U1, ...Uu) is u.
A word X is of P -order u if it has a presentation
of length u.

Lemma 1.8. For each simple word P each word W
has a unique P -presentation.
Proof. Given any word a presentation is easily con-
structed. The uniquennes follows from Lemma 1.6.

Definition 1.9. If (U0, ..., Uu) is a P -presentation of
X then we write (U0, ..., Uu) = [X]−1

P .

From now on we fix a simple word P ∈ Σ+. We write
order and presentation for P -order and P -presentation
respectively. By ord(X) we denote the P -order of X.

Lemma 1.10. If X,Y are of order 0 and XY has order
> 0, then either

(i) XY has order 1 and XY = [[XY ]−1](c) for some c
such that 1 ≤ c ≤ 3 or

(ii) XY has order 2 and XY = [[XY ]−1](1, 1).

An easy proof is omitted.

Recall that Σ is a set of constant letters and Ξ =
{x0, ..., xn} is a set of variables. Assume that a function

v : Ξ → Σ+ is given. For i ≤ n let Xi = v(xi). Let
j−1 = 0 and for k = 0, 1, ..., n let jk =

∑k
l=0 ord(Xl).

Definition 1.11. Let t = jn. For every word W ∈
(Σ ∪ Ξ)+ we define a function {W} : (N+)t → Σ∗ as
follows:

(i) for xi ∈ Ξ,

{xi}(l1, ..., lt) = [[Xi]−1](lji−1+1, ..., lji
)

(ii) for a ∈ Σ, {a}(l1, ..., lt) = a

(iii) for W ∈ (Σ ∪ Ξ)+ and b ∈ (Σ ∪ Ξ),

{Wb}(l1, ..., lt) = {W}(l1, ..., lt){b}(l1, ..., lt).

Lemma 1.12.

(i) If W = W1W2, then

{W}(l1, ..., lt) = {W1}(l1, ..., lt){W2}(l1, ..., lt).
(ii) If xi ∈ Ξ and a ∈ Σ then{xia}(l1, ..., lt)

can be expressed as

[[Xia]−1](lji−1+1, ..., lji) or

[[Xia]−1](lji−1+1, ..., lji + 1) or

[[Xia]−1](lji−1+1, ..., lji , 1).

Proof. Part (i) follows by a straightforward induction,
part (ii) is easy.

Lemma 1.13. Let xe, xf ∈ Ξ, (g1, ..., gu) =
(lje−1+1, ..., lje),
(h1, ..., hv) = (ljf−1+1, ..., ljf

). Then
{xexf}(l1, ..., lt) can be expressed in one of the fol-

lowing forms:
[[XeXf ]−1](g1, ..., gu, h1, ..., hv),
[[XeXf ]−1](g1, ..., gu + c, h1, ..., hv),
[[XeXf ]−1](g1, ..., gu, h1 + c, ..., hv),
[[XeXf ]−1](g1, ..., gu + h1 + c, ..., hv),
[[XeXf ]−1](g1, ..., gu, c, h1, ..., hv),
[[XeXf ]−1](g1, ..., gu + 1, h1 + 1, ..., hv),
[[XeXf ]−1](g1, ..., gu + 1, 1, h1, ..., hv),
[[XeXf ]−1](g1, ..., gu, 1, h1 + 1, ..., hv),
[[XeXf ]−1](g1, ..., gu, 1, 1, h1, ..., hv).

where c, c′ ∈ N+, c ≤ 3 and 0 < c′ < 3.
Proof. The proof consists of a routine consideration
of several possible forms of the last term of the presen-
tation of Xe and of the first of the presentation of Xf .

Definition 1.14.

(i) If ord(v(x)) = m, then x is called a variable of
order m.



(ii) For a fixed word W ∈ (Σ ∪ Ξ)∗, a function v :
Ξ → Σ∗ and i = 0, 1, di is the number of variable
letters of order i in W , d2 is the number of variable
letters of order > 1 in W and dc is the number of
constant letters in W .

Clearly |W | = d0 + d1 + d2 + dc;
In the lemma below variables wj correspond to word

variables of order 1, and variables xj , yj to word vari-
ables of order > 1. If U = U0P

k1U1P
k2 ...P kuUu, with

(U0, ...Uu) P -stable, then we say that P k1 and P ku are
in boundary nesting and P k2 , ..., P ku−1 are in inter-
nal nesting. The variables xj correspond to boundary
nesting of P and the variables yj correspond to internal
nesting of P .

Lemma 1.15. For every W ∈ (Σ ∪ Ξ)∗, every simple
P ∈ Σ∗, and every function v : Ξ → Σ∗, there exists
a sequence L = (L1, ..., Ll) of linear functions Li =∑

ci,jwj +
∑

c′i,jxj +
∑

c′′i,jyj + ci with non-negative
integer coefficients such that

(i) {W}(~w, ~x, ~y) =

= [[v(W )]−1](L1(~w, ~x, ~y), ..., Ll(~w, ~x, ~y))

(ii)
∑

i,j ci,j = d1,
∑

i,j c′i,j = 2d2, c′i,j ≤ 1, c′′i,j ≤ 1.

(iii) ∀i card{j : c′i,j > 0} ≤ 2

(iv) if for some i, j, c′′i,j > 0, then Li = c′′i,jyj .

(v)
∑

i ci < 3(d0 + d1 + d2) + dc.

Proof. The sequence L such that (i) holds is con-
structed by induction on the length of W using Lem-
mas 1.12 and 1.13. Properties (ii) - (v) easily follow
from the construction.

2 Main reduction.
Assume we are given an equa-
tion E = (W,W ′) in (Σ, Ξ) and a fixed simple word
P ∈ Σ∗. Let d0, d1, d2, dc denote the parameters fixed
for W at the end of the last section, let d′0, d

′
1, d

′
2, d

′
c de-

note the corresponding parameters for W ′ and finally
let d+

0 = d0 + d′0, d+
1 = d1 + d′1, and so on. Assume

that v is a solution of E and V = v(W ), V ′ = v(W ′).
Then clearly V = {W}(~z) = [[V ]−1

P ]P (L1(~z), ..., Ll(~z))
and V ′ = {W ′}(~z) = [[V ]−1

P ]P (L′1(~z), ..., L′l(~z)). Since
V = V ′ and the function [[ ]−1] is one to one, we get
l = l′ and Li = L′i, for 0 < i ≤ l.

All linear expressions except the ones of the form
yi and ci for ci ≤ 3 are called proper. An equation
Li = L′i is proper if either Li or L′i is proper.

Lemma 2.1. There is at most d0 + d1 + 2d2 + 1
2dc

proper expressions in the set {L1, ..., Ll} and at most
d′0 + d′1 + 2d′2 + 1

2d′c in {L′1, ..., L′l}.

Proof. It follows by calculation from the fact that
variables in internal nesting can not appear in proper
expressions.

Lemma 2.2. There is at most d+
0 + d+

1 + 2d+
2 + 1

2d+
c

proper equations in the set
L = {L1 = L′1, ..., Ll = L′l} of equations.
Proof. Immediate from Lemma 2.1.

Lemma 2.3. The system L can be transformed into
a system
M = {M1(~u) = M ′

1(~u), ...,Mm(~u) = M ′
m(~u)} of linear

diophantine equations with
M ′

i =
∑

j mi,juj + mi, Mi =
∑

j m′
i,juj + m′

i such
that:

(i) if p is a coordinate of a solution of L and p > 3,
then p is a coordinate of a solution of M,

(ii) m ≤ d+
0 + d+

1 + 2d+
2 + 1

2d+
c ,

(iii)
∑

i,j mi,j +
∑

i,j m′
i,j ≤ d+

0 + 2d+
1 + 4d+

2 + 1
2d+

c ,
∑

i mi +
∑

i m′ − i ≤ 3d+
0 + 6d+

1 + 9d+
2 + dc − 1.

Proof. Let ≡L be the equivalence relation in the set
of variables of order > 1 in internal nesting such that
yi ≡L yj iff (yi = yj) ∈ L. If [y] is an ≡L-equivalence
class and for some yi ∈ [y], (yi = c) ∈ L then all non-
proper equations are deleted from L and all occurences
of variables in [y] are replaced by c. Otherwise, if for
every yi ∈ [y] and each constant c, (yi = c) /∈ L, then
an element yi ∈ [y] is choosen, non-proper equations
are deleted from L and all occurences in L of variales
in [y] are replaced by yi.

Theorem 2.4. (Reduction Lemma). If p > 6 is
an exponent of periodicity of a minimal solution of a
word equation E of length d and such that d+

c ≥ 2,
then p−3 is a coordinate of a minimal solution of a set
N = {N1(~q) = 0, ..., Ns(~q) = 0} of linear diophantine
equations Ni =

∑
j ni,jqj + ni, with ~q = (q1, ..., qr),

such that

(i) s ≤ 2d− 3 and r ≤ 4d− 7

(ii)
∑

i,j |ni,j | ≤ 4d− 7,
∑

i |ni| ≤ 13d− 24.

Proof. It follows by an easy calculation from Lemma
2.3 and the fact that d = d+

0 + d+
1 + d+

2 + d+
c .

3 The bounds.

Lemma 3.1. Assume (ai,j) is a square matrix and∑
i,j |ai,j | = A. Then

|det(ai,j)| ≤ (e
1
e )A.

Proof. Let r be the dimension of (ai,j), an easy induc-
tion gives that det(ai,j) ≤

∏
i ai, where ai =

∑
j |ai,j |.

Clearly
∏

i<r+1 ai ≤
(

A
r

)r ≤ (e
1
e )A.



Definition 3.2. We say that a sequence ~q = (q1, ..., qr)
is positive if for each
0 < i ≤ r, qi ≥ 0 and for some 0 < i ≤ r qi > 0.
We write ~q > 0 to denote that ~q is positive.

Theorem 3.3. If ~q0 = (q0,1, ..., q0,r is a minimal posi-
tive integer solution of a system

L =

{
r∑

i=1

ni,jqi + nj = 0 : j = 1, ..., s

}

of linear diophantine equations, then for each 0 < i ≤ r
we have q0,i ≤ (w + r)(e

1
e )c, where w =

∑s
j=1 |nj | and

c =
∑s

j=1

∑r
i=1 |ni,j |.

The proof of this theorem will be divided into lem-
mas. First we decompose a minimal solution into a
sum of two vectors whose size will then be estimated.

Definition 3.4. Let L be the set of linear diophantine
equations as in Theorem 3.3. We put,
W = {~q ∈ Rr : ~ni~q+ni = 0 for i = 1, 2, ..., s, ~q ≥ 0},
V = {~q ∈ Rr : ~ni~q = 0 for i = 1, 2, ..., s, ~q ≥ 0},
A = {~q ∈ Rr : q satisfies an independent set of r
equations of the form ~ni~q + ni = 0, qi = 0}.
Theorem 3.5. (see [VZGS]) W = H(A) + V where
H(A) is the convex hull of A and + denotes the com-
plex sum.

Lemma 3.6. If ~h = (h1, ..., hr) ∈ H(A), then for each
0 < i ≤ r we have hi ≤ w(e

1
e )c.

Proof. We can assume that ~h ∈ A. For each 0 <
i ≤ r, we have |hi| = |det(Ai)

det(A) | for some matrices Ai, A,
so |hi| ≤ |det(Ai)|. To avoid double indexing assume
that ~h is a solution of the set {~ni~q + ni = 0 : i =
1, ..., k} ∪ {qi = 0 : i = k + 1, ..., r} and estimate h1.
Then clearly

A1 =




n1 n12 . . . . . . . . . n1r

n2 n22 . . . . . . . . . n2r
...

...
. . .

...
...

...
nk nk2 . . . . . . . . . nkr

0 0 . . . 1 . . . 0
...

...
...

...
. . .

...
0 0 . . . 0 . . . 1




.

Consequently det(A1) =
∑k

l=1±nldet(Cl) where for
0 < l ≤ k, Cl is a submatrix of (ni,j). Since∑s

j=1

∑r
i=1 |ni,j | = c, by Lemma 3.1 we get |h1| ≤

|det(A1)| ≤
∑k

l=1 |nl||det(Cl|) ≤ ∑k
l=1 |nl|(e 1

e )c ≤
w(e

1
e )c.

Lemma 3.7. There exists a set G ⊂ Nr∩V such that

(i) V is a positive closure of G i.e. for every ~v ∈ V
there exists ~q1, ..., ~qr ∈ G and α1, ..., αr ≥ 0 such
that ~v =

∑r
i=1 αigi.

(ii) If ~g ∈ G, ~g = (g1, ..., gr) then gi ≤ (e
1
e )c.

Proof. Let

Qk = (−1)k+1det((ai,j)i=1,...,k−1,k+1,...,r;j=1,...,r−1).

Clearly we have

r∑

i=1

ai,jQi = det




a1,j a1,1 a1,2 . . . a1,r−1

a2,j a2,1 a2,2 . . . a2,r−1

...
...

...
. . .

...
ar,j ar,1 ar,2 . . . ar,r−1


 = 0

The vectors (Q1, ..., Qr) and (−Q1, ...,−Qr) are called
the standard solutions of the set
U = {∑r

i=1 ai,jqi = 0 : j = 1, ..., r − 1}.
We put

G = {~g ∈ Nr∩V : ~g is the standard positive solution
of a set of r − 1 independent equations of the form
~nj~q = 0, or qi = 0}.
Proof of Theorem 3.3. Let ~h ∈ H(A), ~g1, ..., ~gr ∈ G,

and αi ≥ 0 for 0 < i ≤ r. Clearly if ~q = ~h+
∑r

i=1 αi~gi is
a minimal element of W∩N−{(0, 0, ..., 0)}, then αi < 1
for each 0 < i ≤ r. But then for each 0 < j ≤ r we have
qj ≤ hj+

∑r
i=1 αigi,j ≤ w(e

1
e )c+r(e

1
e )c = (w+r)(e

1
e )c.

Theorem 3.8. If E is a word equation of length d and
p is the exponent of periodicity of a minimal solution
of E , then p ≤ e1.81d ≈ 22.54d. Moreover, if d is large,
then p ≤ e1.49d ≈ 22.14d.
Proof. By a combination of Theorem 3.3 and Theorem
2.4 we get that, if p ≥ 6 and d+

c ≥ 2, then (17d −
31)(e

1
e )4d−7, which immediately gives the second part

of the thesis. To obtain the first part notice that for
each d, (17d − 30) ≤ (e

1
e )cd+7 where c ≈ 0.78 is the

solution of the equation elog 17
c − 7 = 30c

17 .q

Example 3.9. (The lower bound) Consider the
equation

x1bx2b...bxn = x2x2x2bx3x3x3b...bxnxnxnbaaa

Clearly the length of this equation is d = 6n − 2 and
it has the unique solution with x1 = a3n

, so, as it
can easily be computed, the exponent of periodicity is
> 20.316n.

4 Equations in free groups.
In this chapter we comment on the complexity of
Makanins’s algorithm for groups.

Definition 4.1.

(i) Let O be an infinite set of ”objects”, P a set of
”parameters”, r : O → O a ”reduction function”,
p : O → P a parameter function, s : O → N a
”size function” and Q ⊂ O a halting set.



(ii) Given X ∈ O we put X0 = X, Xn+1 = Xi if
Xi ∈ Q else r(Xi). For k ∈ N ∪ {∞} we put
Ak(X) = {p(Xi) : i < k} and A(X) = A∞(X).

(iii) For O, P, Q, r, p, s as above, by
MA(O, P, Q, r, p, s) we denote the algorithm

repeat

r(X)

until X ∈ Q.

Definition 4.2. MA(O, P,Q, r, p, s) is an abstract
Makanin’s algorithm (AMA) if the following hold:

.1 for each X ∈ O, A(X) is finite,

.2 for each X ∈ O, p(r(X)) 6= p(X),

.3 there are two increasing functions e, f : N → N
such that

[.3.1] for each X ∈ O and each k ∈ N ∪ ∞
there exists an a ∈ Ak(X) such that card{i :
p(Xi) = a, and i ≤ k} ≤ e(s(X))

[.3.2] f(0) > 0 and s(r(X)) ≤ f(s(X)).

e and f are called the complexity parameters of
AM(O, P, Q, r, p, s).

Theorem 4.3. If AM = MA(O, P,Q, r, p, s) is an
AMA, then AM terminates for each input X ∈ O.
In fact there exists a recursive function g : N2 → N
such that for every X ∈ O, g(card(A(X)), s(X)) is the
upper bound on the number of iterations of r in AM
on the input X.
Proof. Recursively we define g : N2 → N and h :
N3 → N as follows

(i) g(0, k) = 1,

(ii) h(0, t, k) = g(t, k),

(iii) h(j + 1, t, k) = h(j, t, k) + 1 + g(t, fh(j,t,k)+1(k)),

(iv) g(t + 1, k) = h(e(k), t, k),

where fx denotes f iterated x-times. It is not
difficult to show by induction on t that

(v) h(j, t, k) ≥ the number of executions of the reduc-
tion function r if the set A(X) has cardinality t+2
and for some a ∈ A(X), card{i : p(Xi) = a} = j
and k = s(X).

(vi) g(t, k) ≥ the number of executions of the reduc-
tion function r for an input X if the set A(X) has
cardinality t + 1 and k = s(X).

Definition 4.4. The function g defined in Theorem
4.3 is called the time complexity of AM .

Theorem 4.5. For every increasing e, f : N → N
with f(0) > 0 there exists an AMA with complexity
parameters e, f whose time complexity is not primitive
recursive.
Proof. Let Ack be the Ackermann function and let
g, h be the functions defined in the proof of Theorem
4.5. It is easy to prove by induction on n, that if
Ack(m,n) < g(m + 1, n + 1), then Ack(m + 1, n) <
h(n + 1,m + 1, n), which implies that Ack(m,n) <
g(m + 1, n + 1) for all m,n ∈ N. Now, an AMA with
complexity parameters e, f can be constructed which
stops exactly after g steps.
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