1 Conversions

Conversions are functions that construct equality theorems from terms. Given a term \(t \), a conversion will try to construct a theorem of form \(\vdash t = u \).

- **BETA_CONV**

 If \(t \) has form (\(\lambda x \ A \)u), then the result has form \(t = A[x := u] \).

Conversionals are functions that modify conversions.

- **ONCE_DEPTH_CONV c**

 If \(t \) has a subterm \(u \) on which \(c \) constructs a theorem \(\vdash u = v \), then (ONCE_DEPTH_CONV \(c \)) constructs the theorem \(\vdash t[u] = t[v] \). In case, more \(u \) are possible, top-down order decides which one is chosen.

- **DEPTH_CONV c** // Use \(c \) for a one time rewriting sweep.
- **TOP_DEPTH_CONV c** // Rewrite as long as possible using \(c \).
- **REDEPTH_CONV c** // Rewrite as long as possible using \(c \).

2 Rules

Rules are functions that construct theorems. In HOL light, constructing a theorem is the same as proving it.

- **ASSUME \(t \)**

 Constructs the theorem \(t \vdash t \).

- **CONJ \(\text{thm1} \ \text{thm2} \)**

 If \(\text{thm1} \) has form \(\Gamma_1 \vdash A \), and \(\text{thm2} \) has form \(\Gamma_2 \vdash B \), then the result has form \(\Gamma_1, \Gamma_2 \vdash A \land B \).

- **CONJUNCT1 \(\text{thm} \)**

 If \(\text{thm} \) has form \(\Gamma \vdash A \land B \), then the result is the theorem \(\Gamma \vdash A \).

- **CONJUNCT2 \(\text{thm} \)**

 If \(\text{thm} \) has form \(\Gamma \vdash A \land B \), then the result is the theorem \(\Gamma \vdash B \).
• MP thm1 thm2

If thm1 has form $\Gamma_1 \vdash A \rightarrow B$, and thm2 has form $\Gamma_2 \vdash A$, then the result equals $\Gamma_1, \Gamma_2 \vdash B$.

• CONTR t thm

Prove $\Gamma \vdash t$ from $\Gamma \vdash F$. (F is the false constant)

• DISJ1 thm term

If thm has form $\Gamma \vdash A$ and term has form B, then the result is the theorem $\Gamma \vdash A \lor B$.

• DISJ2 thm term

If thm has form $\Gamma \vdash B$ and term has form A, then the result is the theorem $\Gamma \vdash A \lor B$.

• DISJ_CASES thm1 thm2 thm2

If thm1 has form $\Gamma_1 \vdash A \lor B$, thm2 has form $\Gamma_2, A \vdash C$ and thm3 has form $\Gamma_3, B \vdash C$, then the result has form $\Gamma_1, \Gamma_2, \Gamma_3 \vdash C$.

• EXISTS t1 t2 thm

Introduces an existential quantifier from a witness. t_1 must have form $\exists x \, P(x)$, and thm must have form $\Gamma \vdash P[x := t_2]$.

• CHOOSE x, thm1 thm2

Should be applied on a pair consisting of a term and a theorem, and a second theorem. thm1 must have form $\Gamma_1 \vdash \exists x \, P(x)$, x must be an eigenvariable, and thm2 must have form $\Gamma_2, P(x) \vdash A$. The result will be the theorem $\Gamma_1, \Gamma_2 \vdash A$.

• GEN x thm

If thm has form $\Gamma \vdash A$, and x is a variable that is not free in Γ, then the result equals $\Gamma \vdash \forall x \, A$.

• DISCH term t

If thm has form $\Gamma \vdash A$, then the result has form $\Gamma \setminus \{t\} \vdash t \rightarrow A$.

2
• INST_TYPE [v1,t1; ..., vn,tn] thm

Instantiate type variables in thm by the substitution \(\{ v_1 := t_1, \ldots, v_n := t_n \} \). Type variables are in principle not visible, but you can get them by decomposing the sequent, and use type_of.

• INST [v1,t1, . . ., vn, tn] thm

Instantiate the variables in thm by the substitution \(\{ v_1 := t_1, \ldots, v_n := t_n \} \).

• ISPEC t thm

If thm has form \(\Gamma \vdash \forall x A \), then the result has form \(\Gamma \vdash A[x := t] \). If necessary, ISPEC also instantiates type variables.

• ITAUT f

Try to prove \(f \) automatically in propositional logic and construct the theorem \(\vdash f \) it is succeeds.

• NOT_ELIM thm

Replace \(\neg A \) by \(A \rightarrow \bot \) in conclusion of theorem.

• NOT_INTRO thm

Replace \(A \rightarrow \bot \) by \(\neg A \) in conclusion of theorem.

• CONV_RULE c thm

Remember that a conversion is a function that makes an equality theorem \(\vdash t = u \) from a term \(t \). CONV_RULE c applies c on the conclusion \(A \) of thm and if it succeeds, it uses the equality to replace \(A \) by \(A' \). The result is a new theorem \(\Gamma \vdash A' \).

• GSYM thm

If thm has form \(\Gamma \vdash \forall \bar{x} t_1 = t_2 \), then the result has form \(\Gamma \vdash \forall \bar{x} t_2 = t_1 \).

3 The Goal Editor

• The proof editor is entered by typing

\[g \text{ 'formula' } ;; \]
Do not forget to use back quotes.

- \texttt{b();;}

 Backtrack.

- \texttt{e(T);;}

 Expand the goal, using tactic \texttt{T}. A list of useful tactics is given below.

- \texttt{p();;}

 Prints the main subgoal.

- \texttt{r(I);;}

 Rotates the subgoals by \texttt{I}. This rule proves nothing, but it is useful if you want to see which subgoals there are, or you want to work on another goal. \texttt{I} can be positive or negative.

- If you managed to prove all subgoals, then the original goal has become a theorem. It is called

 \texttt{top_thm()}

You can save it in a variable by typing

\texttt{let v = top_thm();;}

4 Tactics

Tactics are the operations that you can type in the \texttt{E-command} of the proof editor. A tactic consists of two parts: A function \(f_1 \) that transforms a goal \(\Gamma \vdash A \) into a new set of goals

\[
\Gamma_1 \vdash A_1, \ldots, \Gamma_n \vdash A_n,
\]

and a function \(f_2 \) of type \(\text{thm}^i \rightarrow \text{thm} \) that constructs \(\Gamma \vdash A \) from \(\Gamma_1 \vdash A_1, \ldots, \Gamma_n \vdash A_n \). When you apply the tactic, the editor uses \(f_1 \) to construct a list of new subgoals. If you manage to prove all the subgoals, the editor will use \(f_2 \) to construct the original goal.
• **STRIP_TAC**

Simplifies the conclusion and the assumptions of the goal in standard (but somewhat unpredictable) way, looking at its main operator. The rule also splits (for example, when a premise has \lor as main operator) if you want to simplify a goal completely, use (**REPEAT STRIP_TAC**). This will repeat **STRIP_TAC** until it fails.

• **REWRITE_TAC [th1 ; th2 ... ; thn]**

Rewrite goal, using the theorems th1 · · · thn, which must have the forms of rewrite rules. As a general rule, you should direct all equalities in such a way that they can be used as rewrite rules, because rewriting is very useful.

• **ASM_REWRITE_TAC [th1 ; th2; ...; thn]**

Same as **REWRITE_TAC** but now also assumptions that look like rewrite rules can be used. Note that an assumption a that does not look like a rewrite rule, is replaced by $a \Rightarrow \top$, so that it can still simply the goal. I think that negative assumptions $\neg a$ are replaced by the rule $a \Rightarrow \bot$.

• **EQ_TAC**

Replaces a \iff in the goal by two implications.

• **DISCH_TAC**

If the goal has form $A \rightarrow B$, then A is added to the assumptions and B becomes the new goal. If the goal has form $\neg A$ then A is added to the assumptions, and \bot becomes the new goal.

• **ASM_CASES_TAC term**

Do a case split on term. The result consists of two subgoals. In the first, it is assumed that term = true. In the second, it is assumed that term = false.

• **ASSUME_TAC thm**

If the goal has form $\Gamma \vdash A$ and thm has form $\Gamma' \vdash B$ with $\Gamma' \subseteq \Gamma$, then the new goal will be $\Gamma, B \vdash A$.

• **MP_TAC thm**

If the goal has form $\Gamma \vdash A$ and thm has form $\Gamma' \vdash B$ with $\Gamma' \subseteq \Gamma$, then the new goal will be $\Gamma \vdash B \rightarrow A$.
• **DISJ_CASES_TAC thm**

If the goal has form $\Gamma \vdash C$ and `thm` has form $\Gamma' \vdash A \lor B$, with $\Gamma' \subseteq \Gamma$, then the goal will be split into two goals

$\Gamma, A \vdash C$ and $\Gamma, B \vdash C$.

• **EXISTS_TAC t**

If the goal has form $\Gamma \vdash \exists x \ P(x)$, then it becomes $\Gamma \vdash P(t)$. If you see mysterious failures, then the reason could be that you have to provide type information in term `t`.

• **CHOOSE_TAC thm**

If the goal has form $\Gamma \vdash A$ and `thm` has form $\Gamma' \vdash \exists x \ P(x)$, with $\Gamma' \subseteq \Gamma$, then the new goal will be $\Gamma, P(x) \vdash A$, where `x` is an eigenvariable.

• **GEN_TAC**

`X_GEN_TAC` allows to prove a formula of form $\forall x \ P(x)$ by proving $P(y)$ for an eigenvariable `y`. `X_GEN_TAC` does the same, but it allows you to specify the eigenvariable.

• **DISJ1_TAC**

If the goal has form $\Gamma \vdash A \lor B$, then the new goal will have form $\Gamma \vdash A$.

• **DISJ2_TAC**

If the goal has form $\Gamma \vdash A \lor B$, then the new goal will have form $\Gamma \vdash B$.

• **CONJ_TAC**

If the goal has form $\Gamma \vdash A \land B$, then create two new goals

$\Gamma \vdash A$ and $\Gamma \vdash B$.

• **CONTR_TAC**

Replace the goal $\Gamma \vdash A$ by $\Gamma \vdash \neg A$.

• **ANTS_TAC**

Replaces a goal of form $\Gamma \vdash (A \rightarrow B) \rightarrow C$ by two goals

$\Gamma \vdash A$ and $\Gamma \vdash B \rightarrow C$.
• **CONV_TAC** \texttt{conv}

\texttt{conv} is a conversion, i.e. a function, s.t. \texttt{conv} \textit{t} returns a theorem \(\vdash t = t' \).
When applied on a goal of form \(\Gamma \vdash t \), the new goal will be \(\Gamma \vdash t' \).
See the section on conversions for a list of conversions.

• **ITAUT_TAC**

Try to prove goal using ITAUT.

• **MATCH_MP_TAC** \texttt{thm}

If the goal has form \(\Gamma \vdash B \), and \texttt{thm} has form
\[
\Gamma' \vdash \forall x_1 \cdots x_n \ A'[x_1, \ldots, x_n] \rightarrow B'[x_1, \ldots, x_n],
\]
s.t. \(\Gamma' \subseteq \Gamma \) and \(B'[x_1, \ldots, x_n] \) can be matched into \(B \) with substitution \(\{ x_1 := t_1, \ldots, x_n := t_n \} \), then the new goal will be \(\Gamma \vdash A'[t_1, \ldots, t_n] \).

• **ASM_MESON_TAC** \([\texttt{thm1, ..., thmn}]\)

Try to prove the goal automatically using a built-in theorem prover MESON, using the theorems \texttt{thm1, ..., thmn} as premisses. If you type \texttt{MESON_TAC} without \texttt{ASM}, the assumptions of the goal will not be used.

• **ASM_REWRITE_TAC** \([\texttt{thm1, ..., thmn}]\)

Rewrite conclusion of goal using equalities in the assumptions, the equalities \texttt{thm1, ..., thmn}, and some additional set of equalities called \texttt{basic_rewrites}.

• **SPEC_TAC** \texttt{t,v}

Replaces in the conclusion of the goal, every occurrence of \texttt{t} by variable \texttt{v} and universally quantifies by \(\forall v \).

• \(\text{(REPEAT } t \text{)} \)

Repeats tactic \texttt{t} until it fails.

• **t1 THEN t2**

First apply \texttt{t1}, and after that \texttt{t2} on all subgoals generated by \texttt{t2}.
5 Other Useful Functions

- **type_of t**

 Returns the type of t.

- **concl thm**

 Returns the conclusion of a theorem as term.

Looking into the structure of a term:

It is sometimes necessary to look at the type variables, and it can make your scripts more robust if you can reuse parts of the formulas.

- **lhs t**

 If t is an equality \(t_1 = t_2 \), then the result is \(t_1 \).

- **rhs t**

 If t is an equality \(t_1 = t_2 \), then the result is \(t_2 \).

- **rator t**

 If t is an application term \(a \cdot b \), then the result equals \(a \).

- **rand t**

 If t is an application term \(a \cdot b \), then the result equals \(b \).

- **bndvar t**

 If t is an abstraction term \(\lambda x\ u \), then the result equals \(x \).

- **body t**

 If t is an abstraction term \(\lambda x\ u \), then the result equals \(u \).

- **top_goal()**.

 Returns a pair containing of the list of premisses and the conclusion of the current goal.

Building Terms
• mk_comb t1,t2 // Note that this is a pair, not two arguments!
 mk_icomb t1, t2

Builds the application (t1 t2). mk_icomb instantiates type variables in t1, so it is a bit stronger.

• mk_abs v,t // This is a pair.

Builds λv t.

• mk_binder s v,t

Builds the term (s (λv t)). s must be a string (with double quotes). You probably think that the same term can also be built using mk_abs and mk_comb, but problems with type variables seem to make it impossible to do this.

• mk_pair t1,t2

Makes a pair from a pair. This may seem useless, but the argument is an OCAML pair, and the result is a HOL pair.

• mk_eq t1,t2

Makes equality t1 = t2. If you try to use mk_comb, you will run into type problems, but you can use mk_icomb.

Definitions: