Theorem Proving (8): Well-Orders, Reduction Orders, Knuth-Bendix Completion

08.05.2013

1. Use Knuth-Bendix completion to show that
 (a) \(a \approx b, b \approx c, c \approx d \models a \approx d \),
 (b) \(x+y \approx y+x, x+s(y) \approx s(x+y), s(y)+x \models x+s(y) \approx s(y)+x \),
 (c) \(a \approx s(s(a)), s(s(a)) \approx s(t(a)), t(a) \approx b, t(s(b)) \models c \models s(c) \approx a \).

2. Do the previous task another time, but use a different order on the signature to start with.

3. Let \(\succ \) be the following order: (The real Knuth-Bendix order)
 (a) If \(\#t_1 > \#t_2 \), then \(t_1 \succ t_2 \).
 (b) If \(\#t_1 = \#t_2 \), then write \(t_1 \) in the form \(t_1 = f(\alpha_1, \ldots, \alpha_n) \), and write \(t_2 \) in the form \(t_2 = g(\beta_1, \ldots, \beta_m) \).
 i. If \(f \succ g \), then \(t_1 \succ t_2 \).
 ii. If \(f = g \), then let \(i \) be the smallest index for which \(\alpha_i \not\approx \beta_i \). If \(\alpha_i \succ \beta_i \), then \(t_1 \succ t_2 \).
 Show that \(\succ \) from the previous question is a reduction order.

4. Define \(+ \) on ordinals by transfinite recursion. Define \(\times \) on ordinals by transfinite recursion.

5. Show that \(\beta \)-reduction is confluent.

6. Let the axiom of choice be the following: For every set \(S \) of sets there exists a function \(f \), s.t. for \(s \in S \) \(f(s) \in s \).
 Using axiom of choice, prove that every set \(S \) can be well-ordered. (There exists a wellfounded total order \(< \) on \(S \).