1. Transform the following sequents into clauses: After that, show that the resulting clause sets are unsatisfiable.

(a) \(A, \neg A \vdash B \).

(b) \(\vdash A \lor \neg A \). (This is the famous tertium non datur principle, a third is not given.)

(c) \(\neg \neg A \vdash A \). (Double negation law.)

(d) \(\vdash (A \rightarrow B) \lor (B \rightarrow A) \).

(e) \(A \rightarrow B, \neg C \rightarrow \neg B \vdash A \rightarrow C \).

(f) \(\vdash (\neg A \lor B) \leftrightarrow (A \rightarrow B) \).

(g) \(\vdash (\neg A \land \neg B) \leftrightarrow (A \lor B) \). (De Morgan law.)

(h) \(\vdash (\neg A \lor \neg B) \leftrightarrow (A \land B) \). (De Morgan law.)

(i) \(\neg A \lor \neg B, \neg \neg A, \neg A \land B \vdash \bot \).

2. A few questions about resolution:

Which of the following clause sets are satisfiable? If the clause set is satisfiable, then find a model. If the clause is not satisfiable, then find a resolution refutation.

(a) \(\{A, B\}, \{\neg A, B\}, \{\neg B\} \).

(b) \(\{A, B\}, \{\neg A, B\}, \{A, \neg B\}, \{\neg A, \neg B\} \).

(c) \(\{\neg A, B\}, \{A, C, B\}, \{B, C\}, \{B, \neg C\} \).

(d) \(\{A, B, E\}, \{\neg A, C\}, \{\neg B, D, E\}, \{\neg A, \neg C\}, \{\neg B, \neg D\}, \{\neg E\} \).

3. Resolution remains complete, when it is controlled by priorities. Assume that we have the following priorities on atoms. (1) \(A \), (2) \(B \), (3) \(C \), (4) \(D \), and (5) \(E \).

Resolution must always use the literal with the highest priority. That means that constructing \((C_1\setminus\{B\}) \cup (C_2\setminus\{\neg B\}) \) is only possible when \(C_1, C_2 \) do not contain \(C, D \) or \(E \).

Using resolution with priorities, find a resolution refutation of the clause set of task 2.d.