Theorem Proving: Exercises on Sequent Calculus
for Higher-Order Logic

13.03.2013

1. Prove the following formulas using the one-sided sequent calculus, that was
discussed today in class. First a proper context has to be constructed.
This context has to be typechecked. After that, the formulas can be
proven.
(a) \(\forall x \approx x \),
(b) \(\forall x s(x) \approx x \vdash \forall x s(s(x)) \approx x \).
(c) \(\forall x (P \rightarrow Q(x)) \vdash P \rightarrow \forall x Q(x) \).
(d) \(\forall x (P(x) \land Q) \vdash (\forall x P(x)) \land Q \).
(e) \((\neg \forall x P(x)) \leftrightarrow \exists x \neg P(x) \).
(f) \(\exists x (D(x) \rightarrow \forall y D(y)) \), (the famous Drinker paradox.)
(g) \(\forall x f(x) \approx x, \forall x \exists y p(f(x), y) \vdash \forall x \exists y p(x, f(y)) \).

2. Consider the context

\[D: \text{Set} \]
\[R: \text{D} \rightarrow \text{D} \rightarrow \text{Prop} \]

Define the transitive, reflexive and symmetric closure of \(R \) as
(a) The smallest binary relation that is transitive, symmetric, reflexive,
and which includes \(R \).
(b) The smallest binary relation that is reflexive, and that is preserved
under chaining to the right with \(R \) or \(R^{-1} \).
(c) The smallest binary relation that is reflexive, and that is preserved
under chaining to the left with \(R \) or \(R^{-1} \).

3. Prove that the three definitions of the previous task are equivalent. The
proofs are essentially induction proofs.
An inductive set \(S \) is a set that is defined as the \(\subseteq \)-smallest set that satisfies
some set of rules.
If one wants to show that the elements in \(S \) have some property \(P \), it is
sufficient to show that \(P \) satisfies the same set of rules. By minimality of
\(S \), it follows that \(S \subseteq P \).
4. A relation \prec is a well-order if it is an order (irreflexive and transitive), and in addition, it has the property that every non-empty set has minimal elements.

Well-orders can be used in transfinite induction.

If \prec is a well-order, and P is a property, s.t.

- for $d \in D$, whenever all $d' \prec d$ have property P, then also d has property P,

then all $d \in D$ have property P.

(a) Formalize the well-order property.
(b) Formalize the transfinite induction principle.
(c) Prove correctness of the transfinite induction principle.