These are commands that we used frequently during the verification of unification and DPLL.

1 Conversions

Conversions are functions that construct equality theorems from terms. Given a term \(t \), a conversion will try to construct a theorem of form \(\vdash t = u \).

- BETA_CONV

 If \(t \) has form \((\lambda x \ A)u \), then the result has form \(t = A[x := u] \).

Conversionals are functions that modify conversions.

- ONCE_DEPTH_CONV \(c \)

 If \(t \) has a subterm \(u \) on which \(c \) constructs a theorem \(\vdash u = v \), then \((\text{ONCE_DEPTH_CONV} \ c)\) constructs the theorem \(\vdash t[u] = t[v] \). In case, more \(u \) are possible, top-down order decides which one is chosen.

- DEPTH_CONV \(c \) // Use \(c \) for a one time rewriting sweep.

 TOP_DEPTH_CONV \(c \) // Rewrite as long as possible using \(c \).

 REDEPTH_CONV \(c \) // Rewrite as long as possible using \(c \).

2 Rules

Rules are functions that construct theorems. In HOL light, constructing a theorem is the same as proving it.

- ASSUME \(t \)

 Constructs the theorem \(t \vdash t \).
• CONJ thm1 thm2

If \textit{thm1} has form \(\Gamma_1 \vdash A \), and \textit{thm2} has form \(\Gamma_2 \vdash B \), then the result has form \(\Gamma_1, \Gamma_2 \vdash A \land B \).

• CONJUNCT1 thm

If \textit{thm} has form \(\Gamma \vdash A \land B \), then the result is the theorem \(\Gamma \vdash A \).

• CONJUNCT2 thm

If \textit{thm} has form \(\Gamma \vdash A \land B \), then the result is the theorem \(\Gamma \vdash B \).

• MP thm1 thm2

If \textit{thm1} has form \(\Gamma_1 \vdash A \rightarrow B \), and \textit{thm2} has form \(\Gamma_2 \vdash A \), then the result equals \(\Gamma_1, \Gamma_2 \vdash B \).

• CONTR t thm

Prove \(\Gamma \vdash t \) from \(\Gamma \vdash F \). (\(F \) is the false constant)

• DISJ1 thm term

If \textit{thm} has form \(\Gamma \vdash A \) and \textit{term} has form \(B \), then the result is the theorem \(\Gamma \vdash A \lor B \).

• DISJ2 thm term

If \textit{thm} has form \(\Gamma \vdash B \) and \textit{term} has form \(A \), then the result is the theorem \(\Gamma \vdash A \lor B \).

• DISJ_CASES thm1 thm2 thm3

If \textit{thm1} has form \(\Gamma_1 \vdash A \lor B \), \textit{thm2} has form \(\Gamma_2, A \vdash C \) and \textit{thm3} has form \(\Gamma_3, B \vdash C \), then the result has form \(\Gamma_1, \Gamma_2, \Gamma_3 \vdash C \).

• EXISTS t1 t2 thm

Introduces an existential quantifier from a witness. \(t_1 \) must have form \(\exists x \ P(x) \), and \textit{thm} must have form \(\Gamma \vdash P[x := t_2] \).

• CHOOSE x,thm1 thm2

Should be applied on a pair consisting of a term and a theorem, and a second theorem. \textit{thm1} must have form \(\Gamma_1 \vdash \exists x \ P(x) \), \textit{x} must be an
eigenvariable, and \texttt{thm2} must have form $\Gamma_2, P(x) \vdash A$. The result will be the theorem

$$\Gamma_1, \Gamma_2 \vdash A.$$

- **\texttt{GEN x thm}**

If \texttt{thm} has form $\Gamma \vdash A$, and x is a variable that is not free in Γ, then the result equals $\Gamma \vdash \forall x \ A$.

- **\texttt{DISCH term t}**

If \texttt{thm} has form $\Gamma \vdash A$, then the result has form $\Gamma \{\{t\} \vdash t \rightarrow A$.

- **\texttt{INST_TYPE [v1,t1; \ldots, vn,tn] thm}**

Instantiate type variables in \texttt{thm} by the substitution $\{v_1 := t_1, \ldots, v_n := t_n\}$. Type variables are in principle not visible, but you can get them by decomposing the sequent, and use \texttt{typeof}.

- **\texttt{INST [v1,t1, \ldots, vn, tn] thm}**

Instantiate the variables in \texttt{thm} by the substitution $\{v_1 := t_1, \ldots, v_n := t_n\}$.

- **\texttt{ISPEC t thm}**

If \texttt{thm} has form $\Gamma \vdash \forall x A$, then the result has form $\Gamma \vdash A[x := t]$. If necessary, \texttt{ISPEC} also instantiates type variables.

- **\texttt{ITAUT f}**

Try to prove f automatically in propositional logic and construct the theorem $\vdash f$ if it succeeds.

- **\texttt{NOT_ELIM thm}**

Replace $\neg A$ by $A \rightarrow \bot$ in conclusion of theorem.

- **\texttt{NOT_INTRO thm}**

Replace $A \rightarrow \bot$ by $\neg A$ in conclusion of theorem.

- **\texttt{CONV_RULE c thm}**

Remember that a conversion is a function that makes an equality theorem $\vdash t = u$ from a term t. \texttt{CONV_RULE c} applies c on the conclusion A of
and if it succeeds, it uses the equality to replace \(A \) by \(A' \). The result is a new theorem \(\Gamma \vdash A' \).

- **GSYM thm**

If `thm` has form \(\Gamma \vdash \forall t_1 = t_2 \), then the result has form \(\Gamma \vdash \forall t_2 = t_1 \).

3 The Goal Editor

- The proof editor is entered by typing

  ```
g 'formula' ;;
  ```

 Do not forget to use back quotes.

- **b();;**

 Backtrack.

- **e(T);;**

 Expand the goal, using tactic \(T \). A list of useful tactics is given below.

- **p();;**

 Prints the main subgoal.

- **r(I);;**

 Rotates the subgoals by \(I \). This rule proves nothing, but it is useful if you want to see which subgoals there are, or you want to work on another goal. \(I \) can be positive or negative.

- If you managed to prove all subgoals, then the original goal has become a theorem. It is called

  ```
top_thm()
  ```

 You can save it in a variable by typing

  ```
  let v = top_thm();;
  ```
4 Tactics

Tactics are the operations that you can type in the E-command of the proof editor. A tactic consists of two parts: A function f_1 that transforms a goal $\Gamma \vdash A$ into a new set of goals

$$\Gamma_1 \vdash A_1, \ldots, \Gamma_n \vdash A_n,$$

and a function f_2 of type $\text{thm}^i \rightarrow \text{thm}$ that constructs $\Gamma \vdash A$ from $\Gamma_1 \vdash A_1, \ldots, \Gamma_n \vdash A_n$. When you apply the tactic, the editor uses f_1 to construct a list of new subgoals. If you manage to prove all the subgoals, the editor will use f_2 to construct the original goal.

- **STRIP_TAC**

 Simplifies the conclusion and the assumptions of the goal in standard (but somewhat unpredictable) way, looking at its main operator. The rule also splits (for example, when a premise has \lor as main operator) If you want to simplify a goal completely, use (REPEAT STRIP_TAC). This will repeat STRIP_TAC until it fails.

- **REWRITE_TAC [th1 ; th2 ... ; thn]**

 Rewrite goal, using the theorems th1 · · · thn, which must have the forms of rewrite rules. As a general rule, you should direct all equalities in such a way that they can be used as rewrite rules, because rewriting is very useful.

- **ASM_REWRITE_TAC [th1 ; th2 ; ... ; thn]**

 Same as REWRITE_TAC but now also assumptions that look like rewrite rules can be used. Note that an assumption a that does not look like a rewrite rule, is replaced by $a \Rightarrow \top$, so that it can still simply the goal. I think that negative assumptions $\neg a$ are replaced by the rule $a \Rightarrow \bot$.

- **EQ_TAC**

 Replaces a \Leftrightarrow in the goal by two implications.

- **DISCH_TAC**

 If the goal has form $A \rightarrow B$, then A is added to the assumptions and B becomes the new goal. If the goal has form $\neg A$ then A is added to the assumptions, and \bot becomes the new goal.
• **ASM_CASES_TAC** *term*

Do a case split on term. The result consists of two subgoals. In the first, it is assumed that term = true. In the second, it is assumed that term = false.

• **ASSUME_TAC** *thm*

If the goal has form $\Gamma \vdash A$ and *thm* has form $\Gamma' \vdash B$ with $\Gamma' \subseteq \Gamma$, then the new goal will be $\Gamma, B \vdash A$.

• **MP_TAC** *thm*

If the goal has form $\Gamma \vdash A$ and and *thm* has form $\Gamma' \vdash B$ with $\Gamma' \subseteq \Gamma$, then the new goal will be $\Gamma \vdash B \to A$.

• **DISJ_CASES_TAC** *thm*

If the goal has form $\Gamma \vdash C$ and *thm* has form $\Gamma' \vdash A \lor B$, with $\Gamma' \subseteq \Gamma$, then the goal will be split into two goals

$$\Gamma, A \vdash C$$
$$\Gamma, B \vdash C$$

• **EXISTS_TAC** *t*

If the goal has form $\Gamma \vdash \exists x P(x)$, then it becomes $\Gamma \vdash P(t)$. If you see mysterious failures, then the reason could be that you have to provide type information in term *t*.

• **CHOOSE_TAC** *thm*

If the goal has form $\Gamma \vdash A$ and *thm* has form $\Gamma' \vdash \exists x P(x)$, with $\Gamma' \subseteq \Gamma$, then the new goal will be $\Gamma, P(x) \vdash A$, where *x* is an eigenvariable.

• **GEN_TAC**

X_GEN_TAC

GEN_TAC allows to prove a formula of form $\forall x \ P(x)$ by proving $P(y)$ for an eigenvariable *y*. X_GEN_TAC does the same, but it allows you to specify the eigenvariable.

• **DISJ1_TAC**

If the goal has form $\Gamma \vdash A \lor B$, then the new goal will have form $\Gamma \vdash A$.

6
• **DISJ2_TAC**

If the goal has form $\Gamma \vdash A \lor B$, then the new goal will have form $\Gamma \vdash B$.

• **CONJ_TAC**

If the goal has form $\Gamma \vdash A \land B$, then create two new goals

$\Gamma \vdash A$ and $\Gamma \vdash B$.

• **CONTR_TAC**

Replace the goal $\Gamma \vdash A$ by $\Gamma \vdash F$.

• **ANTS_TAC**

Replaces a goal of form $\Gamma \vdash (A \rightarrow B) \rightarrow C$ by two goals

$\Gamma \vdash A$ and $\Gamma \vdash B \rightarrow C$.

• **CONV_TAC** conv

conv is a conversion, i.e. a function, s.t. $\text{conv} t$ returns a theorem $\vdash t = t'$.

When applied on a goal of form $\Gamma \vdash t$, the new goal will be $\Gamma \vdash t'$.

See the section on conversions for a list of conversions.

• **ITAUT_TAC**

Try to prove goal using ITAUT.

• **MATCH_MP_TAC** thm

If the goal has form $\Gamma \vdash B$, and thm has form

$\Gamma' \vdash \forall x_1 \cdots x_n A'[x_1, \ldots, x_n] \rightarrow B'[x_1, \ldots, x_n],$

s.t. $\Gamma' \subseteq \Gamma$ and $B'[x_1, \ldots, x_n]$ can be matched into B with substitution $\{x_1 := t_1, \ldots, x_n := t_n\}$, then the new goal will be $\Gamma \vdash A'[t_1, \ldots, t_n]$.

• **ASM_MESON_TAC** [$\text{thm}_1, \ldots, \text{thm}_n$]

Try to prove the goal automatically using a built-in theorem prover MESON, using the theorems $\text{thm}_1, \ldots, \text{thm}_n$ as premisses. If you type MESON_TAC without ASM, the assumptions of the goal will not be used.
5 Other Useful Functions

- **type_of t**

 Returns the type of t.

- **concl thm**

 Returns the conclusion of a theorem as term.

Looking into the structure of a term:

It is sometimes necessary to look at the type variables, and it can make your scripts more robust if you can reuse parts of the formulas.

- **lhs t**

 If t is an equality $t_1 = t_2$, then the result is t_1.

- **rhs t**

 If t is an equality $t_1 = t_2$, then the result is t_2.

- **rator t**

 If t is an application term $a \cdot b$, then the result equals a.

- **ASM_REWRITE_TAC [thm1, ..., thmn]**

 Rewrite conclusion of goal using equalities in the assumptions, the equalities $\text{thm}1, \ldots, \text{thm}n$, and some additional set of equalities called basic_rewrites.

- **SPEC_TAC t,v**

 Replaces in the conclusion of the goal, every occurrence of t by variable v and universally quantifies by $\forall v$.

- **(REPEAT t)**

 Repeats tactic t until it fails.

- **t1 THEN t2**

 First apply t_1, and after that t_2 on all subgoals generated by t_2.

• rand t

If \(t \) is an application term \(a \cdot b \), then the result equals \(b \).

• bndvar t

If \(t \) is an abstraction term \(\lambda x \ u \), then the result equals \(x \).

• body t

If \(t \) is an abstraction term \(\lambda x \ u \), then the result equals \(u \).

• top_goal().

Returns a pair containing the list of premisses and the conclusion of the current goal.

• thm_frees.

Returns a list of all free variables in a theorem. If you want to see their types, you can type

\[
\text{map dest_var (thm_frees thm) };;
\]

Building Terms

• mk_comb t1,t2 // Note that this is a pair, not two arguments!

 \text{mk_icomb t1, t2}

Builds the application \((t_1 \ t_2) \). \text{mk_icomb} instantiates type variables in \(t_1 \), so it is a bit stronger.

• mk_abs v,t // This is a pair.

Builds \(\lambda v \ t \).

• mk_binder s v,t

Builds the term \((s \ (\lambda v \ t)) \). \(s \) must be a string (with double quotes). You probably think that the same term can also be built using \text{mkabs} and \text{mk_comb}, but problems with type variables seem to make it impossible to do this.
• `mk_pair t1,t2`

 Makes a pair from a pair. This may seem useless, but the argument is an OCAML pair, and the result is a HOL pair.

• `mk_eq t1,t2`

 Makes equality $t_1 = t_2$. If you try to use `mk_comb`, you will run into type problems, but you can use `mk_comb`.

Definitions: