Propositional Resolution

Hans de Nivelle
Abstract

The goal of this set of slides is to fairly quickly introduce the fundamental concepts of saturation-based theorem proving, using propositional resolution as a base.

We first introduce propositional clauses. After that, we introduce propositional resolution and a simple saturation procedure.

Then, we immediately proceed to introduce ordered resolution with selection, a weak form of redundancy, and simplification. Using those, we give a realistic saturation procedure.

We introduce the notions of fairness, persistent clause, saturated set, and prove the completeness of the saturation procedure.

We end with a discussion of full redundancy.
In our view, most introductions to automated reasoning spend too much time introducing resolution as a calculus, or as a proof system. We want to stress that deletion and simplification are at least as important as deduction, and give them a prominent place from the beginning.

DISCLAIMER: The goal of these slides is to prepare the reader for understanding saturation-based theorem proving for full first-order logic. The methods introduced are not intended for competitive, propositional theorem proving.
Definition: We assume a set of propositional symbols \(\mathcal{P} \). We call the elements of \(\mathcal{P} \) atoms.

A literal is an atom \(A \) or a negated atom \(\neg A \). We will assume that \(\neg \neg A = A \).

Definition: A clause is a finite multiset of literals

\[[A_1, \ldots, A_p] \]
The meaning of a clause $[A_1, \ldots, A_n]$ is the disjunction $A_1 \lor \cdots \lor A_n$.

The meaning of $[]$ is \bot.

An interpretation I is a set of positive atoms.

An interpretation I is a model of a clause C if either

1. C contains a positive literal that occurs in I, or
2. C contains a negative literal $\neg A$, for which A does not occur in I.

It is a model of set of clauses S if it is a model of every $C \in S$.
Propositional Resolution

Resolution: Let \([A] \cup R_1\) and \([\neg A] \cup R_2\) be clauses. The clause \(R_1 \cup R_2\) is a resolvent of \([A] \cup R_1\) and \([\neg A] \cup R_2\).

Factoring: Let \([A, A] \cup R\) be a clause. The clause \([A] \cup R\) is a factor of \([A, A] \cup R\).
theorem:

Resolution is a sound and complete calculus. Let C_1, \ldots, C_n be a sequence of clauses: $C_1, \ldots, C_n \vdash_{\text{RES+FACT}} \star$ iff C_1, \ldots, C_n is unsatisfiable.

The implication \Rightarrow is called soundness.

The implication \Leftarrow is called completeness.
A first Algorithm

Resolution can be used as algorithm for propositional theorem proving in the following way.

Start with initial set of clauses C.

As long as there exists a resolvent or factor C that is derivable from clauses in S, but not present in S, add C to S.

If S contains \bot, then return unsatisfiable else return satisfiable.

Definition: The final set S, to which no more clauses can be added, is called a saturated set.
Examples:

Try \([A, B], [A, \neg B], [\neg A, B], [\neg A, \neg B]\).

Or \([A, B, C], [A, B, \neg C], [A, \neg B, C], [A, \neg B, \neg C], [\neg A, B, C], [\neg A, B, \neg C], [\neg A, \neg B, C], [\neg A, \neg B, \neg C]\).
Improvements

On the implementation level, the resolution algorithm can be improved:

1. It is not a good idea to wait until the end with checking for presence of [].
2. Short clauses should be preferred over long clauses.

On the level of the calculus, even bigger improvements are possible:

1. Resolution and factoring can be restricted (ordering refinements, selection)
2. Often clauses can be deleted. (subsumption, redundancy).
Ordering Refinements

An order is a binary relation \succ that meets the following requirements:

O1: Never $x \succ x$.

O2: $x \succ y$ and $y \succ z$ imply $x \succ z$.

\succ is called a total order if its also fulfills:

O3: Always $x \succ y$ or $x = y$ or $y \succ x$.
Ordering Refinements (2)

An A-order is a total order on propositional atoms. An A-order \succ is extended to literals as follows:

For two atoms $A \neq B$, $\pm A \succ \pm B$ iff $A \succ B$.

For each atom A, $\neg A \succ A$.
Ordering Refinements (3)

Definition: Let A be a literal, let R be (multi)set of literals. We write $A \succ L$ if for every $B \in L$, $A \succ B$.

We write $A \succeq L$ if for every $B \in L$, $A \succ B$ or $A = B$.

A-ordered resolution is defined as follows:

Resolution: Let $[A] \cup R_1$ and $[\neg A] \cup R_2$ be clauses, s.t. $A \succ R_1$ and $\neg A \succ R_2$. The clause $R_1 \cup R_2$ is an ordered resolvent of $[A] \cup R_1$ and $[\neg A] \cup R_2$.

Factoring: Let $[A, A] \cup R$ be a clause, s.t. $A \succeq R$. The clause $[A] \cup R$ is an an ordered factor of $[A, A] \cup R$.

Ordering/Selection Refinements

A selection function Σ is a function that assigns to clause R a subset (not multiset!), s.t. $\Sigma(R) \subseteq R$ and $\Sigma(R)$ contains only negative literals.

Let $[L] \cup R$ be a clause. Let Σ be a selection function, let \succ be an A-order.

L is called *eligible* in $[L] \cup R$ if either

1. $L \in \Sigma([L] \cup R)$, or

2. $\Sigma([L] \cup R)$ is empty, and $L \succeq R$.

Ordering/Selection Refinements (2)

Definition: A-ordered resolution with selection is defined as follows:

Resolution: Let $[A] \cup R_1$ and $[\neg A] \cup R_2$ be clauses, s.t. $A \notin R_1$, $\neg A \notin R_2$, and both A and $\neg A$ are eligible in their clauses.

Then clause $R_1 \cup R_2$ obtained by ordered resolution with selection from $[A] \cup R_1$ and $[\neg A] \cup R_2$.

Factoring: Let $[A, A] \cup R$ be a clause, s.t. A is eligible in $[A, A] \cup R$. Then the clause $[A] \cup R$ is obtained by ordered factoring with selection from $[A, A] \cup R$.
So, a selection function can be seen as a guard, which either accepts the decision of the A-order, (When it returns \emptyset), or rejects the decision of the A-order, and instead decides that only some negative literals can be used for resolution.

In case there are no negative literals in the clause, the selection function has no choice but to accept the decision of the A-order.
Subsumption

Definition: Let C_1 and C_2 be clauses. C_1 subsumes C_2 if $C_1 \subseteq C_2$. We say that C_1 strictly subsumes C_2 if $C_1 \subset C_2$. In case that C_1 subsumes C_2, C_2 can be deleted. (Note that \subset on multisets takes cardinality into account)
Simplification (1)

Simplification means: By deduction trying to obtain new clauses that subsume existing clauses.

Assume that clauses $C_1, \ldots, C_n, D_1, \ldots, D_m$ logically imply E and that E subsumes all of D_1, \ldots, D_m with $m > 0$.

Then, in case the system contains all the clauses $C_1, \ldots, C_n, D_1, \ldots, D_m$, it can delete all of D_1, \ldots, D_m and replace them by E.
Simplification (2)

It is not possible to generate all consequences of the current set of clauses, and check whether they subsume an existing clause. In practice, one can use simple deduction rules for rules for trying to find simplifications.

RESSIMP: Let \([A] \cup R_1\) and \([-A] \cup R_2\) be clauses s.t. \(R_1\) subsumes \(R_2\). Then
\[
[A] \cup R_1, \ [-A] \cup R_2 \vdash R_2.
\]

FACTSIMP: In each case, where \([A] \cup R\) is a factor of \([A, A] \cup R\), we have
\[
[A, A] \cup R \vdash [A] \cup R.
\]
Algorithm with Subsumption and Simplification

We write S for the set of clauses derived so far. We use \vdash for the state transitions of the algorithm:

SUBS If $C_1 \neq C_2$, and C_1 subsumes C_2, then $C_1, C_2, S \vdash C_1, S$.

SIMP If $C_1, \ldots, C_n, D_1, \ldots, D_m$ imply E, and E subsumes all of D_1, \ldots, D_m, then

$$C_1, \ldots, C_n, D_1, \ldots, D_m, S \vdash C_1, \ldots, C_n, E, S.$$

ORDRES If D is an OWS-resolvent of C_1 and C_2, then

$$C_1, C_2, S \vdash C_1, C_2, D, S.$$

ORDFACT If D is an OWS-factor of C, then $C, S \vdash C, D, S.$
Completeness

It is not hard to see that the algorithm is sound.

Is it complete?

⇒ Yes and No.

Yes Whenever S is unsatisfiable, there exists a computation $S \vdash^\ast S'$, s.t. S' contains $[]$.

No But often there also exist cycling computations: A clause is derived, then deleted, then rederived and redleted, etc.

We want strong completeness. Whatever strategy the algorithm chooses, we want to be sure to eventually derive $[]$.
Fairness

Let $S_1 \vdash S_2 \vdash \cdots \vdash S_i \vdash \cdots$ be a run of the algorithm. We call the run fair if:

Whenever there is an i, s.t. for all $j \geq i$, S_j contains two clauses C_1, C_2 that have an OWS-resolvent D, there exists a $k \geq i$, s.t. S_k either contains D itself, or a clause D' that subsumes D.

Whenever there is an i, s.t. for all $j \geq i$, S_j contains a clause C that has an OWS-factor D, there exists a $k \geq i$, s.t. S_k either contains D itself, or a clause D' that subsumes D.
Completeness

Theorem: Let $S_1 \vdash S_2 \vdash S_3 \vdash \cdots$ be a fair run of the algoritm:

If S_1 is unsatisfiable, then there is an S_i that contains $[]$.

Forward Reasoning Rules

Definition: We classify the rules OWS-resolution and OWS-factoring as forward reasoning rules.

So now we have:

1. Two forward reasoning rules: OWS-resolution and OWS-factoring.
2. One deletion rule: Subsumption.
3. Two simplification rules: Factoring and simplifying resolution.
Saturated Sets

Definition: Let S be a set of clauses. We call S a saturated set if

- For every clause D that can be obtained by a forward reasoning rule from clauses C_1, \ldots, C_n with $C_1, \ldots, C_n \in S$,
- there is a clause $D' \in S$, s.t. either $D' = D$ or D' subsumes D.

Let I be some initial set of clauses. We call S a saturation of I if S is saturated, and

- for every clause $C \in I$,
- there is a clause $C' \in S$, s.t. either $C' = C$, or C' subsumes C.
Persistent Clauses

Definition: Let $S_1 \vdash S_2 \vdash S_3 \vdash \cdots$ be a run of the algorithm.

A clause C is persistent if there is an i, s.t. for all $j \geq i$, S_j contains C.

Theorem: Let $S_1 \vdash S_2 \vdash S_3 \vdash \cdots$ be a fair run of the algorithm.

Let S be the set of clauses that are persistent in the run.

Then S is a saturated set of S_1.

proof:

We first prove a lemma:
Lemma: Let C be a clause that occurs in an S_i. If C is not persistent, then there is a persistent clause C', s.t. C' subsumes C.

proof Suppose that C is not persistent. Then it is deleted in an S_j with $j > i$. The deletion must be caused either by SUBS, or by SIMP. In both cases, there is a clause $C^1 \in S_j$, s.t. C^1 subsumes C. For this clause, the same argument can be applied. If it is not persistent, then there is an $k > j$, s.t. S_k contains a clause C^2 that subsumes C^1.

Now consider the sequence C, C^1, C^2, C^3, \ldots It cannot be infinite, because each C^{k+1} subsumes C_k, and $C^{k+1} \neq C^k$. (which implies that at least one element is dropped). Therefore, some C^k must be a persistent clause.

By transitivity of subsumption C^k subsumes C.
We now show that S is a saturated set.

Suppose that S contains clauses C_1, \ldots, C_n, s.t. there is a clause D that can be obtained from C_1, \ldots, C_n by forward reasoning.

Then the clauses C_1, \ldots, C_n are persistent in the run $S_1 \vdash S_1 \vdash S_2 \vdash \cdots$.

Since $n \leq 2$, it is finite. (We have only resolution and factoring)

Therefore, there is an i, s.t. for all $j \geq i$, S_j contains all of C_1, \ldots, C_n.

Then, by fairness, some S_k with $k \geq i$ contains either D itself or a clause D' that subsumes D. Using the previous lemma, in both cases there is a persistent clause that subsumes D.
It remains to show that S is a saturation of S_1. For this we also use the previous lemma. For each $C \in S_1$ there exists a persistent clause C' which subsumes C. This clause has to be present in S.
It remains to show the following:

theorem: Every saturated set \(S \) that does not contain \([]\) has a model.

proof:
Ranking the Clauses

Let S be a set of clauses.

Using the extension of the A-order \triangleright to literals, we can sort the clauses. In each clause, put the maximal elements first, then the second elements, etc.

On these sorted clauses, we can use alphabetic, lexicographic comparison.

As a result, one obtains a complete sorting of the clauses in S, and the clauses can be ranked, using natural numbers, assigning higher numbers to bigger clauses.
Ranking the Clauses (2)

Assume that \(\neg A \succ A \succ \neg B \succ B \).

<table>
<thead>
<tr>
<th>Clause</th>
<th>after sorting</th>
<th>ranking</th>
</tr>
</thead>
<tbody>
<tr>
<td>([B, B]) \Rightarrow [B, B] \Rightarrow 0,</td>
<td></td>
<td></td>
</tr>
<tr>
<td>([A, \neg A]) \Rightarrow [\neg A, A] \Rightarrow 4,</td>
<td></td>
<td></td>
</tr>
<tr>
<td>([\neg B, A]) \Rightarrow [A, \neg B] \Rightarrow 2,</td>
<td></td>
<td></td>
</tr>
<tr>
<td>([B, A]) \Rightarrow [A, B] \Rightarrow 1,</td>
<td></td>
<td></td>
</tr>
<tr>
<td>([\neg A, \neg B]) \Rightarrow [\neg A, \neg B] \Rightarrow 3,</td>
<td></td>
<td></td>
</tr>
<tr>
<td>([\neg A, \neg A]) \Rightarrow [\neg A, \neg A] \Rightarrow 5.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Model Construction

Using the ranking on clauses in S, we construct the following sequence of interpretations $I_0, I_1, I_2, \ldots, I_n$:

$I_0 = \{}$.

For each rank i with $i < n$, let $C_i \in S$ be the clause at rank i.

- If the maximal literal in C_i is positive, occurs only once, then we can write $C_i = [A] \cup R$ with $A \succ R$. If no negative literal in C_i is selected, and R is false in I_i, then put $I_{i+1} = I_i \cup \{A\}$.

- In all other cases, put $I_{i+1} = I_i$.
Lemma A

For every atom $A \in I_n$, there exists a clause of form $[A] \cup R$ in S, s.t. $A \succ R$, $\Sigma([A] \cup R) = \emptyset$ and R is false in I_n.

proof

Let i be the smallest number for which $A \in I_{i+1}$. By the last case of the model construction, there is a clause C_i that can be written as $[A] \cup R_1$ with $A \succ R_1$, s.t. $\Sigma(C_i) = \emptyset$, and R_1 is false in I_i.

We have to show that R_1 is also false in I_n.

Let B be a positive atom in R_1. Suppose that B would occur in I_n. Let j be the smallest number for which $B \in I_{j+1}$. Clearly $j > i$.

Then C_j can be written in form $[B] \cup R_2$ and B is maximal in this clause. Since B occurs in R_1 and $A \succ R_1$, it would follow that $[B] \cup R_2$ comes before $[A] \cup R_1$ in the ranking. This contradicts the fact that $j > i$.

34
Let \(\neg B \) be a negative literal in \(R_1 \), for which \(B \in I_i \). Since \(I_i \subseteq I_n \), \(B \) has to be also present in \(I_n \).
We now have to show that: If S is a saturated set which does not contain $[]$, then I_n is a model of S.

We show by induction on i that every clause C_i is true in I_n.

- Suppose that C_i has form $[-A] \cup R_1$, where $-A$ is either selected or maximal. If C_i were false, then $A \in I_n$ and R_1 is false in I_n. By the previous lemma, there exists a clause of form $[A] \cup R_2$ in S, s.t. $A \succ R_2$, nothing is selected in $A \cup R_2$, and R_2 is false in I_n.

It follows that the resolvent $R_1 \cup R_2$ is either present or subsumed in S. There must exist a clause C' in S that subsumes $R_1 \cup R_2$. This clause C' comes before C_i in the ranking. Therefore, we may assume that C' is true. This contradicts the fact that R_1 and R_2 are false in I_n.
Suppose that C_i has form $[A, A] \cup R_1$, nothing is selected in C_i, and $[A] \geq R_1$.

C_i fulfills the conditions for factoring. Because S is saturated, there exists a clause C' that subsumes $[A] \cup R_1$ in S. Since C' comes before C in the ranking, it must be the case that C' is true in I_n. But then C_i is also true in I_n.
Suppose that C_i has form $[A] \cup R_1$, that nothing is selected in C_i, and $A \succ R_1$.

If R_1 is false in I_i, then I_{i+1} contains A, and therefore C_i is true in I_n.

If R_1 is true in I_i, we have to show that R_1 is true in I_n as well.

If there exists a positive literal B in I_i, s.t. B is in R_1, then clearly R_1 is true in I_n.

If there exists a negative literal $\neg B$ in I_i, s.t. B is not in I_i, then we need to show that B is also not present in I_n.

If B were present in I_n, then there would exist a clause C_j with $j \succ i$, in which B were maximal. But then C_j should have been ranked before C_i.
Full Redundancy

Subsumption is a special instance of a more general notion, which is called redundancy.

Definition: Clauses C_1, \ldots, C_n make clause D redundant if D is a logical consequence of C_1, \ldots, C_n and all of the C_1, \ldots, C_n have a rank lower than D.
Examples:

If $C_1 \subset C_2$ then C_1 makes C_2 redundant.

If C is a tautology (contains a complementary pair $A, \neg A$), then the empty sequence makes C redundant.

If $A \succ B \succ \neg C \succ C$ then $[B, C]$ and $[\neg C]$ make $[A, B]$ redundant.
Using redundancy (instead of subsumption), the notion of saturated set becomes:

- For every clause D that can be obtained by a forward reasoning rule from clauses C_1, \ldots, C_n with $C_1, \ldots, C_n \in S$,
- either $D \in S$ or there are clauses $D_1, \ldots, D_m \in S$ that make D redundant.

S is a saturation of I if S is saturated, and

- for every clause $C \in I$,
- either $C \in S$, or there are clauses $D_1, \ldots, D_m \in S$ that make D redundant.
Arbitrary Selection (1)

We give an example that shows that all this complicated machinery (A-orderings, selection functions) for controlling which literals can be resolved away, is really necessary. We show that if one selects literals for resolution completely arbitrarily, then completeness is lost. Consider the following set S. Selected literals are underlined:

$\begin{align*}
[A, B] & \quad [B, \neg A] \\
[\neg A, \neg B] & \quad [\neg B, A] \\
\end{align*}$

$\begin{align*}
[A, \neg A] & \quad [B, \neg B]
\end{align*}$

You may check that S is unsatisfiable, but that nothing outside of S can be obtained by resolution.
Summary

We have seen that a saturation calculus consists of:

- Forward reasoning rules (resolution, factoring)
- Simplification rules (simplifying resolution)
- Redundancy (subsumption, tautology elimination)

We have introduced an abstract saturation algorithm, and introduced the fundamental notions of fairness, persistent clause, and saturated set.