1. Write a function

\[
\text{bool subset(std::vector< unsigned int > s1,}
\text{ std::vector< unsigned int > s2);}
\]

that returns true if \(s_1 \subseteq s_2 \).

2. Write a function

\[
\text{std::vector< unsigned int >}
\text{ intersection(std::vector< unsigned int > s1,}
\text{ std::vector< unsigned int > s2);}
\]

that computes the intersection \(v_1 \cap v_2 \) of \(v_1 \) and \(v_2 \).

3. Write a function

\[
\text{std::vector< unsigned int >}
\text{ union(std::vector< unsigned int > s1,}
\text{ std::vector< unsigned int > s2);}
\]

that computes the union \(s_1 \cup s_2 \) of \(s_1 \) and \(s_2 \).

4. Write a function

\[
\text{std::vector< unsigned int >}
\text{ difference(std::vector< unsigned int > s1,}
\text{ std::vector< unsigned int > s2);}
\]

that computes the difference \(s_1 \setminus s_2 \) of \(s_1 \) and \(s_2 \).

In case you forgot:
v. size() : Length of vector.
v. push_back(i) : Append i at the end of v.
v. pop_back() : Remove last element from vector.
v[i] : i-th element of vector.