Verifying the Unification Algorithm in HOL
Our goal is to verify the standard algorithm for unification before the semester is out (and actually before it is halfway, because we want to take a look at Mizar as well)
Description of the Unification Algorithm

Definition: We assume an infinite set of variables \mathcal{V}.

We also assume a set of functions \mathcal{F}. Each function $f \in \mathcal{F}$ has an arity $\#f$ attached to it, for which $\#f \geq 0$. A function c with $\#c = 0$ is called **constant**.

Definition: The set of terms is recursively defined as follows:

- A variable $V \in \mathcal{V}$ is a term.
- If t_1, \ldots, t_n are terms, $f \in \mathcal{F}$ has arity n, then $f(t_1, \ldots, t_n)$ is a term.

Definition: A term is **ground** if it contains no variables.
Substitutions/Unification

Definition: A substitution is a finite set of assignments of form
\(\{ V_1 := t_1, \ldots, V_n := t_n \} \). The \(V_i \) are variables, the \(t_i \) are terms. It
must be the case that \(V_i = V_j \) implies \(t_i = t_j \).

The application of a substitution \(\Theta \) on a term \(t \), \(t \cdot \Theta \) is recursively defined as follows:

- If \(V \) equals one of the \(V_i \) then \(V \cdot \Theta = t_i \).
- If \(V \) does not equal any of the \(V_i \), then \(V \cdot \Theta = V \).
- \(f(t_1, \ldots, t_n) \cdot \Theta = f(t_1 \cdot \Theta, \ldots, t_n \cdot \Theta) \).

(We usually will not write the \(\cdot \) in applications)
Composition

Definition: Let Θ_1 and Θ_2 be substitutions. The *composition* $\Theta_1 \cdot \Theta_2$ of Θ_1 and Θ_2 is defined as

$$\{ V := t \mid t = (V \cdot \Theta_1) \cdot \Theta_2 \text{ and } V \neq t \}.$$

Theorem: For each term t, and substitutions Θ_1, Θ_2,

$$t \cdot (\Theta_1 \cdot \Theta_2) = (t \cdot \Theta_1) \cdot \Theta_2.$$

proof: We first prove the theorem for variables. Let V be a variable. If $(V \cdot \Theta_1) \cdot \Theta_2 \neq V$, then $\Theta_1 \cdot \Theta_2$ contains the assignment $V := (V \cdot \Theta_1) \cdot \Theta_2$, so that $V \cdot (\Theta_1 \cdot \Theta_2) = (V \cdot \Theta_1) \cdot \Theta_2$.

If $(V \cdot \Theta_1) \cdot \Theta_2 = V$, then there is no assignment $V := t$ in $\Theta_1 \cdot \Theta_2$. Hence $V \cdot (\Theta_1 \cdot \Theta_2) = V$.

In both cases, $V \cdot (\Theta_1 \cdot \Theta_2) = (V \cdot \Theta_1) \cdot \Theta_2$.
Composition (2)

For non-variable terms, we apply induction. Assume the theorem holds for all subterms of $f(t_1, \ldots, t_n)$. Then

$$f(t_1, \ldots, t_n) \cdot (\Theta_1 \cdot \Theta_2) = f(t_1 \cdot (\Theta_1 \cdot \Theta_2), \ldots, t_n \cdot (\Theta_1 \cdot \Theta_2)).$$

By induction, this is equal to $f((t_1 \cdot \Theta_1) \cdot \Theta_2, \ldots, (t_n \cdot \Theta_1) \cdot \Theta_2) = f((t_1 \cdot \Theta_1), \ldots, (t_n \cdot \Theta_1)) \cdot \Theta_2 = (f(t_1, \ldots, t_n) \cdot \Theta_1) \cdot \Theta_2.$
Unification

Definition: Let $\mathcal{E} = [t_1 \equiv u_1, \ldots, t_n \equiv u_n]$ be a system of equations between terms.

A unifier of \mathcal{E} is a substitution Θ s.t. $t_1 \Theta = u_1 \Theta, \ldots, t_n \Theta = u_n \Theta$.

A most general unifier is a unifier Θ, such that for every unifier Θ', there exists a substitution Σ, s.t. $\Theta' = \Theta \cdot \Sigma$.

A unifier of two terms t_1, t_2 is a unifier of the system of equation $[t_1 \equiv t_2]$. Similarly, a most general unifier of t_1, t_2 is a most general unifier of $[t_1 \equiv t_2]$.
Unification (2)

The terms \(f(X, 1) \) and \(f(0, Y) \) have unifier \(\{X := 0, \ Y := 0\} \). This is also the most general unifier.

The terms \(f(X, s(X)) \) and \(f(Y, Z) \) have unifier \(\{X := 0, \ Y := 0, \ Z := s(0)\} \). Is this a most general unifier?

Do \(f(X, Y) \) and \(f(a, Z) \) have a unifier?

And \(f(X, Y) \) and \(g(X, Y) \)?

What about \(f(X, Y) \) and \(f(a, X) \)?

And \(f(X, s(X)) \) and \(f(s(Y), Y) \)?
Most General Unifiers

G.A. Robinson showed the following (1965)

• If a system of equations has a unifier, then it has a most general unifier.

• There exists an algorithm that decides if a system of equations has a most general unifier. It also computes the most general unifier.
Algorithm for computing the MGU

The algorithm is called with a system of equations \mathcal{E}. It returns either a most general unifier of \mathcal{E}, or an error, in case no unifier exists. We represent the error by \bot.
Description of the Unification Algorithm

•

\[\text{mgu}(\mathcal{E} \cup [f(t_1, \ldots, t_n) \equiv f(u_1, \ldots, u_n)]) \]

returns

\[\text{mgu}(\mathcal{E} \cup [t_1 \equiv u_1, \ldots, t_n \equiv u_n]) \).

• If \(f \neq g \), then

\[\text{mgu}(\mathcal{E} \cup [f(t_1, \ldots, t_n) \equiv g(u_1, \ldots, u_m)]) \]

returns \(\bot \).

•

\[\text{mgu}(\mathcal{E} \cup [t \equiv t]) \]

returns

\[\text{mgu}(\mathcal{E}) \).
• When x is a variable that does not occur in t, then

$$
\text{mgu}(\mathcal{E} \cup [x \equiv t])
$$

returns

$$\{ x := t \} \cdot \text{mgu}(\mathcal{E}).$$

• When x is a variable that does occur in t, but is not equal to t, then

$$\text{mgu}(\mathcal{E} \cup [x \equiv t]) = \bot.$$

• $\text{mgu}([]) = \{ \}$.
Datatypes in HOL

We first need to decide about the representation of terms. We have to make the following choices:

- Do we want full terms (like \(f(t_1, \ldots, t_n) \)) or will we use Currying? Currying is certainly easier, but there exist Curried terms that do not correspond to a usual term (for example \(x \cdot t \))

- Do we want a fixed arity attached to each symbol, or do we allow the same symbol to occur with different arities. The latter is easier, because then we don’t need to check when building a term. Fixed arities, would make the constructors partial, which is extremely unpleasant.
Datatypes in HOL (2)

I propose: No Currying, no fixed arities.

That would give rise to the following coinductive definition:

\[
\text{term} = \text{Variable \ num} \mid \text{Application \ num \ term\!list};
\]

\[
\text{term\!list} = \text{Empty} \mid \text{Cons \ term \ term\!list};
\]

(Type this in into HOL, and see what a beast of an induction/recursion principle you get)
Datatypes in HOL (3)

As for substitutions, there are quite some choices to make:

- Is it essential that they are finite? If yes, then some inductive data type is appropriate. If not, a substitution can be just a function from variables to terms.

- If we choose functions, we should consider making variables a separate type. We should worry about how we will construct the substitutions that we need. We will have problems stating the theorem about composition of substitutions.

- If we choose a finite representation, we should invent some inductive type. (or simply use HOL lists of HOL pairs) There is a problem that not every list will represent a substitution. (Due to conflicting assignments) and that different lists will represent the same substitution.
Datatypes in HOL (4)

I propose: An inductive representation, based on HOL lists. In case there are conflicting assignments, the first assignment counts.

I think we don’t care that the same substitution has many representations. We don’t need uniqueness of representation.

If we think that unique representation is important, we can use define_quotient_type.
Datatypes in HOL (5)

I think that the system of equations can be represented by a list of pairs of terms.
Dealing with \(\bot \)

When the \(\text{mgu} \) function does not construct a unifier, it returns \(\bot \).

I propose to introduce a new inductive type for partial substitutions as follows:

\[
\text{partialsubst} = \text{Ok subst} \mid \text{Error}.
\]
Non-determinism

- When $|\mathcal{E}| \geq 2$, the specification does not specify which equation should be expanded.

- If the expanded equation has form $f(t_1, \ldots, t_n) \equiv f(t_1, \ldots, t_n)$, we can either drop the equation completely, or replace it by $t_1 \equiv t_1, \ldots, t_n \equiv t_n$.
Non-determinism (2)

We can either

1. Make the algorithm deterministic in some way. (Always expand first/smallest equation, or order the rules)

2. Cope with the non-determinism in our verification.

As for (1), we have to make choices. Whatever choice we make, it is unlikely that we will make the implementer happy.

(He may want to make the choices different. He may even be unable to make all choices, because it can be the compiler/run time environment that eventually decides)

We conclude that:

All serious specifications are non-deterministic, and we have to deal with it.
Non-determinism (3)

I propose to

1. Leave the non-determinism in the choice of the equation.

2. Restrict the removal of trivial equations $t \equiv t$ to the case where t is a variable.
Specification of the Unification Algorithm

We define a choice function $S(\mathcal{E})$ that decides which equation will be expanded.

$$\text{nonempty}(\mathcal{E}) \rightarrow S(\mathcal{E}) \in \mathcal{E}.$$

For each choice function S, $\text{mgu}(S)$ is the smallest relation (over (Type of sets of equations) \times (Type of partial substitutions)) that satisfies the following axioms:
• if \mathcal{E} is nonempty, $S(\mathcal{E})$ has form $f(t_1, \ldots, t_n) \equiv f(u_1, \ldots, u_n)$, and $\text{mgu}(S, [t_1 \equiv u_1, \ldots, t_n \equiv u_n] \cup (\mathcal{E} \setminus S(\mathcal{E})), r)$, then $\text{mgu}(S, \mathcal{E}, r)$.

• if \mathcal{E} is nonempty, $S(\mathcal{E})$ has form $f(t_1, \ldots, t_n) \equiv g(u_1, \ldots, u_m)$, with $f \neq g$, then $\text{mgu}(S, \mathcal{E}, \bot)$.

• if \mathcal{E} is nonempty, $S(\mathcal{E})$ has form $x \equiv x$, with x a variable, and $\text{mgu}(S, (\mathcal{E} \setminus S(\mathcal{E})), r)$, then $\text{mgu}(S, \mathcal{E}, r)$.
• if \mathcal{E} is nonempty, $S(\mathcal{E})$ has form $x \equiv t$, where x is a variable that does not occur in t, and $\text{mgu}(S, (\mathcal{E}/S(\mathcal{E}))\{x := t\}, r)$, then $\text{mgu}(S, \mathcal{E}, \{x := t\} \cdot r)$.

• if \mathcal{E} is nonempty, $S(\mathcal{E})$ has form $x \equiv t$, x occurs in t, and $x \neq t$, then $\text{mgu}(S, \mathcal{E}, \bot)$.

• $\text{mgu}(S, [\], \{\})$.

Transfinite Induction/Recursion

We have seen data type induction. Every recursive data type comes with an induction and a recursion axiom which follow the tree structure of the data type.

The unification algorithm does not fit into this pattern.

Its termination is based on the fact that it either deletes a variable, or decreases the total weight of its equations while not introducing a new variable.
Transfinite Induction/Recursion (2)

Definition: Let $<$ be a relation on some type S.

$<$ is called well-founded if for all predicates P on S:

$$\forall s \, (\forall s' \, s' < s \rightarrow P(s')) \rightarrow P(s)$$

implies

$$\forall s \, P(s).$$

$<$ on the natural numbers is such a relation.

1. Is $<$ on \mathbb{Z} WF?

2. Is the dictionary ordering on all strings WF?
Transfinite Induction/Recursion (3)

We will need to prove the following theorems (or maybe they are already proven in HOL)

Theorem WF1: Let S be a set. Let f be a function from S to N. Define $s_1 \prec s_2$ iff $f(s_1) < f(s_2)$. Then \prec is WF on S.

Theorem WF2: Let S_1, S_2 be sets. Let \prec_1 be WF on S_1, let \prec_2 be WF on S_2.

Define \prec from $(s_1, s_2) \prec (t_1, t_2)$ iff $s_1 \prec_1 t_1$, or $s_1 = t_1$ and $s_2 \prec_2 t_2$.

Then \prec is WF on $S_1 \times S_2$.

Question: For which f do we need theorem WF1? Where will WF2 be used?
More about the Termination Proof

Reasoning with WF relations can be almost completely avoided.

Let $P : \text{Nat} \to \text{Bool}$ be a predicate, let $n : \text{Nat}$. Let $\Pi(P, n)$ denote the following property:

$$
\Pi(P, n) : \forall m : \text{Nat} \ m < n \rightarrow P(m).
$$

Then transfinite induction for $<$ is the following formula:

$$
\forall P : \text{Nat} \to \text{Bool} \ (\forall n : \text{Nat} \ \Pi(P, n) \rightarrow P(n)) \rightarrow \forall n : \text{Nat} \ P(n).
$$

It can be proven from usual induction by taking $\Pi(P, n)$ as induction hypothesis. In the proof, one needs (the second part) of LT:

$$
\forall m \ (\neg m < 0) \land \forall m, n \ m < \text{succ}(n) \iff m = n \lor m < n.
$$

But the theorem is already present in HOL, with name num_WF.
In addition, one transfinite induction for pairs of numbers. Let \(P : \text{Nat} \rightarrow \text{Nat} \rightarrow \text{Bool} \) be a property. Let \(\Sigma_1(P, m_1) \) denote

\[
\forall m_2, n_2 : \text{Nat} \quad m_2 < m_1 \rightarrow P(m_2, n_2).
\]

Similarly, let \(\Sigma_2(P, m_1, n_1) \) denote

\[
\forall n_2 : \text{Nat} \quad n_2 < n_1 \rightarrow P(m_1, n_2).
\]

Then induction for pairs is the following property:

\[
\forall P : \text{Nat} \rightarrow \text{Nat} \rightarrow \text{Bool}
\]

\[
(\forall m_1, n_1 : \text{Nat} \quad \Sigma_1(P, m_1) \land \Sigma_2(P, m_1, n_1) \rightarrow P(m_1, n_1))
\]

\[
\rightarrow \forall m, n : \text{Nat} \quad P(m, n).
\]

It can proven from num_WF by using \(Q(m) := \forall n : \text{Nat} \quad P(m, n) \).
The proof is tricky. First assume

\[(\forall m_1, n_1 : \text{Nat} \ \Sigma_1(P, m_1) \land \Sigma_2(P, m_1, n_1) \rightarrow P(m_1, n_1)) \]

Then use num_WF with induction hypothesis \(Q(m) := \forall n \ P(m, n) \).

In order to do this, one has to prove

\[\forall m : \text{Nat} \ (\forall x : \text{Nat} \ x < m \rightarrow Q(x)) \rightarrow Q(m). \]

Assume everything to the left, remember that \(Q(m) \) means \(\forall n \ P(m, n) \), and use num_WF another time.
Verification Statements

It seems that we need proofs of the following lemmas:

- If \(x \) occurs in \(t \), but \(x \neq t \), then \(\{x \equiv t\} \) has no unifier.

- The empty substitution \(\{\} \) is the most general unifier of the system of equations \(\{t \equiv t\} \).

- If \(x \) does not occur in \(t \), then the substitution \(\{x := t\} \) is a most general unifier of \(\{x \equiv t\} \).

- If \(f \neq g \), then \(\{f(t_1, \ldots, t_n) \equiv g(u_1, \ldots, u_m)\} \) has no unifier.

- The sets of equations

\[
\{f(t_1, \ldots, t_n) \equiv f(u_1, \ldots, u_n)\} \cup \mathcal{E}
\]

and

\[
\{t_1 \equiv u_1, \ldots, t_n \equiv u_n\} \cup \mathcal{E}
\]

have exactly the same set of unifiers.
Verification Statements (2)

Let S be a choice function, let \mathcal{E} be a set of equations. The final goal is to prove the following three statements:

1. If $\text{mgu}(S, \mathcal{E}, \bot)$, then \mathcal{E} has no unifier.
2. If $\text{mgu}(S, \mathcal{E}, (\text{Ok } \Theta))$, then Θ is a most general unifier of \mathcal{E}.
3. $\forall S \, \forall \mathcal{E} \, \exists r \, \text{mgu}(S, \mathcal{E}, r)$.