I illustrate the reductions from PCP to unsatisfiability and to existence of a finite model using an example instance of PCP. It should be not difficult to derive the general construction from that.

Consider the following PCP-instance

\[V = (a, bc, ba), \quad W = (ab, bc, a). \]

It has a single solution \((1, 3)\), which results in the word \((aba)\).

Reduction to Unsatisfiability

If you know Prolog, or resolution, the construction is very easy to understand.

We use the following symbols:

- A constant \(\lambda\), denoting the empty word.
- For each letter \(x\) in the alphabet, a unary function symbol \(x\).
- A constant 0, and a unary function \(s\).
- A ternary predicate symbol \(p\).

Then we translate the problem into:

\[
p(\lambda, \lambda, 0),
\]

\[
\forall xyn p(x, y) \rightarrow p(a(x), b(a(y)), s(n)),
\]

\[
\forall xyn p(x, y) \rightarrow p(c(b(x)), c(b(y)), s(n)),
\]

\[
\forall xyn p(x, y) \rightarrow p(a(b(x)), a(y), s(n)),
\]

\[
\forall xn \neg p(x, x, s(n)).
\]

First prove \(p(\lambda, \lambda, 0)\), then \(p(\lambda, a(\lambda), s(0))\), then \(p(a(b(\lambda))), a(b(\lambda))), s(s(0))\), and after that \(\bot\).

Reduction to Existence of Finite Model

We use the following symbols:

- A unary predicate \(\lambda\), denoting the empty word.
- For each letter \(x\) in the alphabet, a binary function symbol \(x\).
In this case, there is a finite model, which can be described as follows:

• A binary predicate symbol p.

• We first set a starting point:

 $$\exists x \ p(x, x) \land \lambda(x).$$

• Then comes the main translation:

 Let $\Phi(x, y) := p(x, y) \land (x \neq y \lor \lambda(x))$.
 Let $C_1(x, y) := \exists x_1 y_1 y_2 a(x, x_1) \land a(y, y_1) \land b(y_1, y_2) \land p(y_1, y_2)$
 Let $C_2(x, y) := \exists x_1 x_2 y_1 y_2 b(x, x_1) \land c(x_1, x_2) \land b(y_1, y_2) \land c(y_1, y_2) \land p(y_1, y_2)$.
 Let $C_3(x, y) := \exists x_1 x_2 y_1 b(x, x_1) \land a(x_1, x_2) \land a(y, y_1) \land p(x_2, y_1)$.

 The main translation is:

 $$\forall xy \ \Phi(x, y) \rightarrow C_1(x, y) \lor C_2(x, y) \lor C_3(x, y)$$

 The idea of the construction is that, when $(c, d) \in [p]$, and $c \neq p$, we are forced to select one of the C_1, C_2, C_3 which will create two new points $(c', d') \in [p]$, s.t. c' is reachable through a chain from c, and d' is reachable through a chain from d. The chains correspond to a pair (v_i, w_i) from the original PCP problem. The only way to stop extending forever, is to reach a point $(c'', d'') \in [p]$ with $c'' = d''$.

• And we ensure that every point that is reachable from a point x on which $\lambda(x)$ holds, is reachable in only one way:

 (Otherwise, we could for example start in a point (x, y) with $x = y$, make the chain $b(x, x_1), \ a(x_1, x_2)$ end in the same point as the chain $a(x, y_1)$, have $p(x_2, y_1)$, and stop by cheating)

There is no way back to λ:

$$\forall x_1 x_2 \ a(x_1, x_2) \land \lambda(x_2) \rightarrow \bot,$$
$$\forall x_1 x_2 \ b(x_1, x_2) \land \lambda(x_2) \rightarrow \bot,$$
$$\forall x_1 x_2 \ c(x_1, x_2) \land \lambda(x_2) \rightarrow \bot.$$

Through different predicates a, b, c one cannot reach the same point:

$$\forall xyz \ a(x, z) \land b(y, z) \rightarrow \bot,$$
$$\forall xyz \ a(x, z) \land c(y, z) \rightarrow \bot,$$
$$\forall xyz \ b(x, z) \land c(y, z) \rightarrow \bot.$$

Through each of a, b, c one cannot arrive at the same point from different start positions:

$$\forall x_1 x_2 y_1 y_2 \ a(x_1, x_2) \land a(y_1, y_2) \land x_2 = y_2 \rightarrow x_1 = y_1,$$
$$\forall x_1 x_2 y_1 y_2 \ b(x_1, x_2) \land b(y_1, y_2) \land x_2 = y_2 \rightarrow x_1 = y_1,$$
$$\forall x_1 x_2 y_1 y_2 \ c(x_1, x_2) \land c(y_1, y_2) \land x_2 = y_2 \rightarrow x_1 = y_1.$$

In this case, there is a finite model, which can be described as follows:

$$D = \{d_0, d_1, d_2, d_3\},$$
\[\lambda = \{d_0\}, \]
\[A = \{(d_0, d_1), (d_2, d_3)\}, \]
\[B = \{(d_1, d_2)\}, \]
\[C = \{\}, \]
\[p = \{(d_0, d_0), (d_1, d_2), (d_3, d_3)\}. \]