Solving Differential Equations Numerically
Solving DE’s

We have seen in earlier slides, that the only type of differential equations that we need to consider, are differential equations of form:

\[y'(t) = F(y(t)) \]

(First-order, autonomous differential equations.)
Euler’s Method

```c
vector y = y0; // Initial value.
double step = ( t1 - t0 ) / 1000;

double t = t0;
while( t < t1 )
{
    double h = step;
    if( t + h > t1 ) h = t1 - t;
    // Because of rounding problems!
y += h * F( y );
t += h;
}
// Now y is the (approximated) solution y1.
```

What is the accuracy of this method?
Heun’s method

```cpp
vector y = y0;    // Initial value.
double step = ( t1 - t0 ) / 1000;
double t = t0;
while( t < t1 )
{
    double h = step;
    if( t + h > t1 ) h = t1 - t;
    vector y_star = y + h * F( y );
    y += (h/2) * ( F(y) + F( y_star ) );
    // Use average of F(y) and F(y_star).

    t += h;
}
// Now y is the (approximated) solution y1.
```

What is the accuracy of this method?
Runge-Kutta Methods

The general form of a Runge-Kutta method is as follows: Assume that we already know $\bar{y}(t)$ and that we want to compute an approximation for $\bar{y}(t + h)$.

We first compute a sequence of values $\bar{k}_1, \ldots, \bar{k}_n$, where each \bar{k}_i is an approximation for $\bar{y}(t + c_i h)$, for some $c_i \in \mathbb{R}$.

At each level $(i + 1)$, the previous estimations $\bar{k}_1, \ldots, \bar{k}_i$ are used for computing the next estimation \bar{k}_{i+1}.

The sequence starts with

$$\bar{k}_1 = \bar{F}(\bar{y}(t)).$$

Then, for each i ($1 \leq i < n$), we compute

$$\bar{k}_{i+1} = \bar{F}(\bar{y}(t) + h (A_{i+1,1} \bar{k}_1 + A_{i+1,2} \bar{k}_2 + \cdots + A_{i+1,i} \bar{k}_i)).$$
Runge-Kutta Methods (2)

At the end, we compute:

$$\bar{y}(t + h) = \bar{y}(t) + h.(b_1k_1 + b_2k_2 + \cdots + b_nk_n).$$

It is easily seen that $c_1 = 0$, and

$$c_{i+1} = A_{i+1,1} + \cdots A_{i+1,i}.$$

Also,

$$b_1 + b_2 + \cdots + b_n = 1.$$

(In order to see this, replace k_i by $F(\bar{y}(t)) = \bar{y}'(t)$.)
Butcher Tableaux

A Runge-Kutta method with \(n \) stages is determined by the coefficients \(A_{i,j} \), the positions \(c_i \), and the final weights \(b_1, \ldots, b_n \).

The coefficients are usually written in a tableau as follows, which is called Butcher Tableau (after J.C. Butcher).

\[
\begin{array}{c|cccc}
 c_1 & \multicolumn{4}{c}{A_{2,1}} \\
 c_2 & A_{3,1} & A_{3,2} & \multicolumn{2}{c}{\ldots} \\
 c_3 & \multicolumn{3}{c}{\ldots} & \multicolumn{1}{c}{\ldots} \\
 \vdots & \multicolumn{3}{c}{\ldots} & \multicolumn{1}{c}{\ldots} \\
 c_n & A_{n,1} & A_{n,2} & \cdots & A_{n-1} \\
\end{array}
\]

\[
\begin{array}{cccc}
 & b_1 & b_2 & \cdots & b_{n-1} & b_n
\end{array}
\]
Order 1

The simplest Runge-Kutta method (the Euler Method) is defined by the following tableau:

\[
\begin{array}{c|c}
0 & 1 \\
\hline
1 & \\
\end{array}
\]

It corresponds to the computation:

\[
\overline{k}_1 := \overline{F}(\overline{y}(t)),
\]

\[
\overline{y}(t + h) = \overline{y}(t) + h \overline{k}_1.
\]
RK21 (Heun’s Method)

Heun’s method is defined by the following tableau:

\[
\begin{array}{c|cc}
0 & & \\
1 & 1 & \\
1 & 1 & \\
\frac{1}{2} & \frac{1}{2} & \\
\end{array}
\]

It corresponds to the computation:

\[
\overline{k}_1 := F(\overline{y}(t)),
\]

\[
\overline{k}_2 := F(\overline{y}(t) + h.\overline{k}_1),
\]

\[
\overline{y}(t + h) = \overline{y}(t) + h.(\frac{1}{2}\overline{k}_1 + \frac{1}{2}\overline{k}_2).
\]

The order (for a single step) is 3.
RK41

The best-known method, which is usually called the Runge-Kutta method, is defined by the following tableau:

\[
\begin{array}{c|cccc}
0 & & & & \\
\frac{1}{2} & \frac{1}{2} & & & \\
\frac{1}{2} & 0 & \frac{1}{2} & & \\
1 & 0 & 0 & 1 & \\
\hline & 0 & 0 & 0 & 1 \\
& \frac{1}{6} & \frac{1}{3} & \frac{1}{3} & \frac{1}{6}
\end{array}
\]

Its order (for a single step) is 5.

Above order 5, the number of stages grows quicker than the order.
RK5

The following method has order (in a single step) 6. It has 6 stages, two more than RK41.

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1/4</th>
<th>1/4</th>
<th>1/4</th>
<th>1/4</th>
<th>1/2</th>
<th>3/4</th>
<th>3/4</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1/2</td>
<td>3/8</td>
<td>3/8</td>
<td>3/16</td>
<td>9/16</td>
<td>-12/7</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>3/7</td>
<td>8/7</td>
<td>6/7</td>
<td>-12/7</td>
<td>8/7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>-3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>32</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>12</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>32</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>90</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>90</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>90</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Proving Order Properties of Runge-Kutta Methods

Proving the order properties of RK methods is rather hard. (In the course of 2010-2011, I presented a wrong proof.)

The idea of the proof is not hard:

1. Approximate \overline{F} in $\overline{y}(t)$ by a Taylor polynomial. This Taylor polynomial has to take into account that F is vector valued, so it has to be based on the partial derivatives.

2. Using the Taylor polynomial for \overline{F}, also express $\overline{y}(t + h)$ as Taylor polynomial.

3. Using an abstract Butcher tableau, give a Taylor polynomial for the estimation $\overline{y}^*(t + h)$.

4. Try to make as many coefficients of $\overline{y}(t + h)$ and $\overline{y}^*(t + h)$ equal, by finding proper values in the Butcher tableau. The more coefficients become equal, the better the order.
Proving Order Properties of Runge-Kutta Methods

The previous plan works fine for orders 1,2,3. For higher orders, it results in serious disaster.

The polynomials get so big that no computer algebra system can handle them.

Martin Kutta (1867-1944, born in Pitschen, now Byczyna) and John.C. Butcher (1933-) used symmetries (and combinatorics) to derive the order conditions. They checked in how many ways each chain of partial derivatives can be realized in the expressions. Even then, the order conditions become too big to solve.

For higher-orders, no optimal (stage as low as possible) methods are known.
Examples

I give an example, using the catenary: We have

\[y''(x) = \lambda \sqrt{1 + (y'(x))^2}. \]

Its exact solution is defined by

\[y(x) = \frac{1}{\lambda} \cosh(\lambda x) = \frac{e^{\lambda x} + e^{-\lambda x}}{2\lambda}. \]

It can easily shown that

\[\cosh^2(x) - \sinh^2(x) = 1, \]

and that

\[\sinh'(x) = \cosh(x), \quad \cosh'(x) = \sinh(x). \]
We first have to make the equation first order. Define
\((v(x), w(x)) = (y(x), y'(x))\). Then

\[
\begin{align*}
v'(x) &= w(x) \\
w'(x) &= \lambda \sqrt{1 + (w(x))^2}.
\end{align*}
\]
If you want to use Runge-Kutta methods, you have to implement

 class pair
 {
 double v;
 double w;
 }

and the operators

 pair operator + (pair&, pair&);
 void operator += (pair&);
 // You need only one of those.
 pair operator * (pair, double);
 void operator *= (double d);
 // You need only one of those.

(It depends only your implementation of RK, which operators you need.)