
Lambda Terms

C
++ -11 has lambda expressions:

auto square = [] (double x) { return x * x; };

std::cout << square(2.0) << "\n";

std::cout << square(3.0) << "\n";

1

Lambda expressions are not as special as you think.

They are syntactic variation of something that you know already:

class T1234

{

double operator() const (double x) { return x * x; }

};

So we have

T1234 square;

std::cout << square(2.0) << "\n";

std::cout << square(3.0) << "\n";

2

Type of Lambda

Every lambda expression has its unique type:

auto square = [] (double d) { return d * d; };

// T1234

auto square2 = [] (double d) { return d * d; };

// T1235

auto square3 = [] (double d) { return d * d; };

// T1236

square = square2; // Won’t go.

3

Using std::function< > (2)

If you want a type that you can assign to, use

std::function< F(A_1, ..., An) >, where F is the return

type, and A1, ..., An are the argument types.

You have to #include <functional>

using T = std::function< double(double) > ;

// Use T as abbreviation.

T square = [] (double d) { return d * d; };

T square2 [] (double d) { return d * d; };

square = square2;

square = [] (double d) { return d * d; };

4

Replacing the lambdas by explicit class definition will also work:

struct sq

{

double operator() (double d) const

{

return d*d;

}

};

square = sq(); // Will compile.

5

std::function< F(A_1, ..., An) > is a kind of smart pointer.

It can be nullptr.

6

Plotting a Function

One can define a function:

void plot(double x0, double x1, double h,

const std::function< double(double) > & f)

{

for(double x = x0; x <= x1; x += h)

{

std::cout << x << " " << f(x) << "\n";

}

}

plot(0, 10, 1, [] (double x) { return x * x; });

plot(0, 10, 1, sq());

plot(0, 10, 1, square);

7

Capture

struct pow

{

unsigned int n;

pow(unsigned int n) : n{n} { }

double operator() (double d) const

{

double res = 1;

for(unsigned int i = 0; i < n; ++ i)

res *= d;

return res;

}

};

plot(0, 10, 1, pow(4));

8

How to make a λ from this?

unsigned int n = 5;

plot(0, 10, 1, [n] (double d)

{ double res = 1;

for(unsigned int i = 0; i < n; ++ i)

res *= d;

return res;

});

9

Capture (2)

Between [], one can write variables that the body of the lambda

can use.

The variables listed between the [] become fields of the implicit

object, and parameters of the constructor of the implicit object.

The fields are initialized with the values of the parameters.

10

Capture by Value

The safest way of giving access to local variables, is to pass them by

value. Write [v1, ... vn]. The constructor copies the values.

You can also write [=] . Then the compiler figures out which

variables should be passed. This is easy, but not nice, because it

better to make the data that are used, visible.

11

Capture by Reference

Parameters can also be passed by reference.

1. Copying may be inefficient for large objects. Some objects may

not have a copy constructor.

2. It allows to pass information to the function object, after it has

been constructed. Is this good or bad?

In the capture list, preceed reference variables with a &.

Sometimes, the λ may live longer than the function that

constructed it. In such case, reference parameters may cause

disaster!

12

Example of Capture by Reference

unsigned int n = 1;

auto func = [&n] (double d)

{ double res = 1;

for(unsigned int i = 0; i < n; ++ i)

res *= d;

return res;

};

n = 5; // Secretly modifies the meaning of func.

// There is an invisible information flow.

// Don’t use C++ like Java! Stay with value semantics!

plot(0, 10, 1, func);

13

A Lambda can surive its Reference Captures

std::func< double(double) > f;

{

unsigned int n = 1;

f = ... // as on previous page.

};

// Now f has survived n. Disaster!

The example is artificial, but this can happen in real with

callbacks, or with containers.

14

Conclusion

Lambdas are nice, but dangerous. Use them for short-lived, local

objects only.

Use capture by reference with care.

15

