1. (a) Using the translation scheme on the slides, translate the following regular expression into an NDFA

\[(a|b)^*abbc.\]

(b) Using the subset construction in the slides, transform the NDFA into a DFA.

(c) Apply the minimization operation of the slides on the DFA that was you obtained in the previous exercise.

(d) Same procedure on

\[(\epsilon|aa|bb)^*c.\]

2. (a) Consider the regular expression \(\Sigma^*(ananas|apple)\).

(b) Transform the regular expression into an NDFA.

(c) Transform the NDFA into a DFA, using the algorithm on the slides.

(d) Simplify the DFA from the previous task, using the minimization procedure on the slides.

3. Let \(\Sigma = \{a, b\}\). Let \(L_n\) be the language of words over \(\Sigma\) that can be written in the form \(w_1.a.w_2\), where \(w_1, w_2 \in \Sigma^*\), and in addition, \(w_2\) has length \(n\).

- Show that every DFA recognizing \(L_n\) has at least \(2^{n+1}\) states.
- Show that there exists a DFA with \(2^{n+1}\) states that recognizes \(L_n\).
- Show that there exists an NDFA recognizing \(L_n\) with \(n + 2\) states.

(The idea of this exercise comes from Aho/Ullman, Principles of Compiler Design.)

4. Consider the following language:

\[L = \{a^ib^i | i > 0\}\]

Is it regular? If yes, give an (automaton/regular expression). If not, give a proof that shows that \(L\) is not regular.
5. Consider the language

$$L = \{a^n | n \text{ is prime}\}.$$

Is it regular? Give either an automaton, or a proof that it is not regular.