
Manual of Maphoon

Hans de Nivelle

May 11, 2010

Abstract

Maphoon is a tool that automatically generates a parser from a description

of an LALR language. The resulting parser is in C
++

. In its functionality,

Maphoon is similar to Yacc or Bison. The main difference is that it

allows the user to make better use of the advantages of C
++

. It allows

to define a clean token-class, which has object semantics. It can create a

parser with multiple entry points, and it can assist the user when checking

wellformedness of attributes.

1 Introduction

In the design of Maphoon, we tried to meet the following requirements:

1. The resulting parser should use good style C++, and the user should be
able to write the semantic actions in good style C++. One of the nice
features of C++ is that classes can completely hide their memory manage-
ment (using copy constructors, copying assignment and destructors) The
parser should support this for the semantic attributes.

2. Movement of heavy attributes should be avoided. Suppose one has a gram-
mar rule of form List -> Exp | List with attached semantic action
List := cons(Exp1, List3). When this rule is repeatedly applied,

the list can become arbitrarily big. Each time the rule is reduced, the ex-
pression is inserted into List3, after which List3 is moved to the position
of Exp1 on the parse stack. Since the list grows linearly, this has the po-
tential of making a linear procedure quadratic. The problem is solved by
using an std::list for the parse stack. Lists support insertion and dele-
tion in the middle without moving other objects in the list. Objects can
be moved from one list to another list by pointer manipulations without
need to move the real object.

3. Dynamic extension of the syntax should be possible. Concretely, we want
to support the possiblity of defining Prolog-style operators. In Prolog,
it is possible to define op(’+’, ’yfx’, 200), after which + is a left
associative infix operator that can be used in expressions of form E +E. If

1

one wants to allow such dynamic syntax extensions, parse conflicts cannot
be resolved earlier than at run time.

Maphoon solves the problem as follows: The general form of a conflict is
(Shift)m (Reduce)n, where m ∈ {0, 1}, n ≥ 0, and m+n > 1. The conflict
is between possibly one shift, and an unbounded number of reductions.
At parser generation time, Maphoon stores all possibilities in the parse
table. At parse time, Maphoon will first attempt the reductions, in the
order specified by the order in the grammar. The associated semantic
actions can either terminate succesfully, or they can throw an exception
indicating that the action refused to reduce. Maphoon commits to the
first reduction that does not refuse. If all reductions refuse, and there is
a shift, Maphoon will perform the shift. Otherwise, it generates an error.

When deciding whether or not to reduce, a semantic action can see the
lookahead. Consider the following example where the parser sees an iden-
tifier (for example ’+’) and it has to decide whether it wants make an
expression out of it, or an operator.

% Operator : Identifier

if(identifier occurs in table of defined operators)

accept the reduction, and return index in table

else

refuse;

% ;

% Expression : Identifier

if(identifier has a value)

accept the reduction and return the value

else

refuse;

% ;

When the parser encounters an identifier in appropriate context, it is first
pushed on the parse stack as usual. After that the parser sees that two
reductions are possible. We assume that the first rule occurs first in the
grammar, so that the parser first tries to reduce the Identifier into an
Operator. If the symbol does not occur in the operator table, the reduction
will refuse and the parser tries to reduce the Identifier into an Expression.
If that also fails, and there are no other possibilities, the parser generates
an error message.

In the next example, the parser encounters input of the form Exp1 Op1
Exp2 Op2 Exp3 and it has to decide which of the two operators gets the
priority.

2

% Exp : Exp Op Exp

if(lookahead is non-empty and

lookahead is an operator, which

has higher priority than Op)

refuse;

else

return Op(Exp1, Exp3).

% ;

2 Overview

Maphoon reads the description of a grammar, with associated actions, and it
constructs a C++ implementation of a grammar for this language. It is possible
to read the grammar from stdin, but it is better to prepare the input in a file
of form grammar.m.

In order to work properly, Maphoon needs access to a file idee.x. This
file is included in the main directory of Maphoon. It has to be copied to the
current directory, so that Maphoon can find it. If everything goes well, Maphoon
produces the files listed below. In addition, it prints a readable description of
the parser to the standard output.

token.h/token.cpp: Contains a definition of struct token. token contains
an enum which determines the type of the token. Optionally, it can have
different fields containing lists of attributes. Which attribute lists can be
present, is determined by the attribute declarations in the grammar.

token has a method iswellformed() const that checks if the token is
well-formed, (which means that it has the right attributes). In addition,
maphoon constructs an <<-operator for token.

It is not possible to have maphoon write the definition of token into a
different file, but it is possible to tell maphoon to create the definition of
struct token in a namespace of choice.

parser.h/parser.cpp: The declaration and definition of the parser. The out-
put files parser.h and parser.cpp cannot be changed, but it is possible
to tell maphoon to put the definition of the parser in any namespace of
choice.

Once the parser and token are generated, one can try to compile the result. In
order to get a working parser, a couple of more things are required.

• File parser.h includes a file tokenizer.h, in the assumption that this
file contains the declaration of a tokenizer. The exact requirements of the
tokenizer are given in Section 6. Since the tokenizer must be declared in
tokenizer.h, it is natural (but not obligatory) to implement the token
tokenizer in file tokenizer.cpp.

3

The tokenizer must have a field std::list< token > lookahead and a
method scan() that produces a token and appends it to the lookahead.
In addition, the tokenizer must have a function for processing error mes-
sages.

It is possible to tell maphoon to assume that the tokenizer is defined in
any namespace of choice.

• A definition of ASSERT. The following will do:

#define ASSERT(X) { assert((X)); }

The definition can be placed in the input file.

• A main program. It is possible, but not recommended, to define the main
program in the input file. It is better to put it in (yet) another file.

The distribution contains a couple of complete examples. If you preparing a
project, then this is the recommended order:

1. Prepare a file grammar.m, and make sure that Maphoon accepts it. (Do
not forget to include idee.x in the current directory.) Do not worry too
much about semantic actions at this point.

2. Write the tokenizer, based on struct token that was produced by Maphoon.

3. When the tokenizer is complete, you can run the parser and debug it.
When the parser runs correctly, you can start adding semantic actions.

3 Tokens

The declaration of struct token has the form below: The implementation of
token is not written by the user!. It is generated automatically and written into
the files token.h and token.cpp.

enum tokentype

{

tkn_X1, tkn_X2, ..., tkn_Xn

};

struct token

{

tokentype type;

std::list< T1 > attr1;

std::list< T2 > attr2;

4

...

std::list< Tn > attrn;

token(tokentype t)

: type(t)

{

}

token(); // has no definition.

bool iswellformed() const;

};

std::ostream& operator << (std::ostream& , const token&);

As can be seen from the code, a token contains an attribute list for each of the
types T1, . . . , Tn. As a consequence, it can contain an unbounded number of
attributes of each type Ti. The types T1, . . . , Tn must have object semantics,
because the elements are stored in lists. In order to tell maphoon, which lists
of attributes must be included in the definition of token, attributes must be
declared as follows:

%attribute attr T // Declares an attribute with name attr

// and type T.

// It will result in a field

// std::list<T> attr;

Examples are:

%attribute name std::string // Declares attribute name of

// type std::string.

%attribute value double // Declares attribute value of

// type double.

When the type of an attribute is a defined class or an STL class, its header file
must be included in the header file of token. In order to allow this, maphoon has
the %intokenheader command. The string that follows after %intokenheader
is copied to the file token.h without changes. Here are few examples:

%intokenheader #include <string>

%intokenheader #include "../mysubdir/myclass.h"

It is possible to declare tokens, but it is not necessary. Tokens are implicitly
declared when they are used in the grammar, so that only tokens that do not
occur in the grammar need to be declared.

5

When constructing the parser, Maphoon lists the undeclared tokens that
occur in the grammar. It also lists the declared tokens that do not occur in the
grammar. The name of a token T must be chosen in such a way that the string
attr T is a valid C++ identifier. The general form of a token declaration is:

%token T1 T2 ... Tn // Declares tokens T1, T2, ..., Tn.

It follows from the definition of struct token above, that attributes are stored
in lists that can have unbounded size, but in order to avoid complete chaos, the
user has to declare in advance which sizes are possible. This can be done by
declaring constraints. Maphoon accepts two types of contraints. The first type
gives a lower bound on how many occurrences of a certain attribute a certain
token can have. The second type gives both a lower bound and an upper bound.

%constraint T attr n // Declares that a token of type T has at

// least n elements in field attr. (attr. size() >= n).

%constraint T attr n1 n2 // Declares that token T has at least

// n1 elements in the field attr, but

// strictly less than n2 elements.

// (attr. size() >= n1 && attr. size() < n2)

Examples are:

%constraint DOUBLE value 1 2 // A DOUBLE has exactly one

// element in value.

%attribute form formula

%constraint FORMULALIST form 0 // A FORMULALIST has an unbounded

// number of formulas

If, for a given combination of a token and a field, no constraint declaration
is present, then for the given token, the given field must be empty. Put dif-
ferently, not declaring anything for the combination %constraint T field is
equivalent to declaring %constraint T field 0 1.
The method bool token::iswellformed() const checks that the attribute
lists of a token satisfy the constraints. Maphoon uses ASSERT to check that
every token that is returned by a semantic action, is wellformed.

4 Semantic Actions

Semantic actions specify what has to be done when a rule is reduced. Ideally,
actions are of functional nature, which means that they specify how to compute
the attribute value of the left hand side from the attribute values of the right
hand side, and nothing else. In practice, actions often have side effects. (For
example, store some value, or print some value.) In order to facilitate side effects,
Maphoon allows the creation of global variables, that are passed as reference to

6

every semantic action. An example of a rule with a (purely functional) semantic
action is:

E : E PLUS E / E1 -> value. front() += E3 -> value. front();

return E1;

This action tells that when the rule E : E PLUS E is reduced, first the value
of the second E is added to the value of the first E. After that, the first E is
returned. In the code of the action, the following variables are available:

• If the rule has form A : B C D E, then the tokens corresponding to B,C,D,E
are available as variables B1,C2,D3,E4. The variables have type
std::list< token > :: iterator

As an example, consider a rule of form:

E : LPAR E RPAR

The available parameters are LPAR1, E2, LPAR3. The expression *E2 refers
to the token of E2. If E2 has a field with name value, it can be accessed
with E2 -> value. If E2 -> value is non-empty, its first element can
be accessed with E2 -> value. front(). It is the responsibility of the
user to ensure that accessed list elements exist.

• In addition to the parameters originating from the right hand side of the
rule, a semantic action can also make use of global variables. If the user
declares a global variable, then it is passed as a C++-reference to every
semantic action, so that it can be used for example for storing declared
variables, defined operators, etc. We explain in Section 5 how global
variables are declared.

• Semantic actions have access to the lookahead, which has type
const std::list< token > &. Note that there is no guarantee that
lookahead. size() != 0, so that this has to be checked before the
lookahead is accessed. The lookahead can be used for deciding whether
the reduction should be accepted.

• In addition to the parameters and global variables, there are a few iden-
tifiers that the user should avoid. These are stack, position.

The left hand side of the rule being reduced is not available as variable. (This
is different from Yacc, where the lhs is represented by variable $$.) The lhs
is returned by a return-statement. The return-statement must return the
complete token of the lhs. It can either return one of the tokens from the right
hand side of the rule, or construct a completely new token. In the latter case,
the argument of return must be a local variable. It is not possible to construct
the token in the return-statement. It must be constructed before in a local
variable, which is then returned. We list the possibilities:

7

1. A semantic action can refuse to reduce. This is done by executing the
statement refuse; When deciding to refuse or not, the action can make
use of the lookahead. See for example:

% E : E PLUS E

if(!lookahead. size() ||

shouldreduce(*PLUS2, lookahead. front()))

{

E1 -> val. front() += E3 -> val. front();

return E1;

}

else

refuse;

It is assumed that the user implemented a function shouldreduce()

that compares the priority of the token in the lookahead to the priority
of PLUS. If the lookahead is empty, does not contain an operator, or an
operator with lower priority, then the rule reduces and returns a token of
type E. Otherwise it refuses.

2. It can return a token of the type of the left hand side of the rule. In the
example above, when the semantic action accepts the reduction, it returns
a token of type E. Returning a token can be done in different ways. The
easiest way is by reaching the end of the semantic action. This is possible
when the token on the left hand side has no attributes. The parser will
automatically generate a token of the right type.

Alternatively, the user can explicitly return a token through a statement
of form return p; p must be an identifier. It can be a variable from the
right hand side if this variable has the right token type. (This was done in
the example above.) If the token does not have the right type, it is possible
to change its type before returning it, as in the following example:

% E : DOUBLE

DOUBLE1 -> type = tkn_E;

return DOUBLE1;

// We change the type of the token from DOUBLE

// to E, but do not modify the attribute.

It is the responsibility of the user to ensure that the token that is returned
satisfies the attribute constraints. Inside the actions, the user can do what-
ever he likes with the attributes, but when a token is returned, the parser
checks the attribute contraints by calling ASSERT(iswellformed());

Instead of returning an existing token (after possibly changing its type),
it is also possible to construct a completely new token, as in the following
example:

8

% E : IDENTIFIER

token t = tkn_E; // implicit call of token constructor.

t. val. push_back(memory [IDENTIFIER1 -> id. front()]);

// Look up value of identifier in memory.

return t;

If attributes are big, one should avoid moving tokens, and as much as
possible try to return an existing token. It was one of the design goals of
the attribute mechanism to allow this as much as possible.

When a semantic action returns a token, Maphoon checks that its type corre-
sponds to the left hand side of the rule. After that, it checks that the attributes
satisfy the constraint declarations by calling method iswellformed() const.
If all tests are passed, the parser cleans up the elements from the parse stack
that are no longer needed. If the returned element is a parameter from the right
hand side, it will not be moved. If the returned element originates from a local
variable, all elements from the rhs are cleaned up, and the new element is copied
onto the parse stack.

In the rest of this section, we explain how actions are copied into the code
of the parser. Every action is translated into a function of form

void reduction_X(

stack, position, // should not be touched by user.

G1& g1, ... Gn& gn, // global variables, will be

// explained later.

std::list< token > :: iterator T1, ...,

std::list< token > :: iterator Tn, // one parameter for each

// token in the right

// hand side.

const std::list< token > & lookahead)

throw(refused)

The names of the parameters T1,..., Tn are derived from the types of the tokens
on the right hand side of the rule. If the right hand side has form E PLUS E
MINUS F, then the parameters will be E1, PLUS2, E3, MINUS4, F5. They have
type std::list< token > :: iterator . In order to acces the token, the *

operator has to be used. The attributes of the token can be accessed through
the -> operator. It is the responsibility of the user to ensure that accessed list
elements exist. (But in the future, we may decide to use a checked list instead
of std::list)

5 Global Variables

Global variables are variables that are passed as reference to every semantic
action. They can be used for example for storing operator priorities, for decla-
rations of variables, or for storing values of variables. Such parameters cannot

9

be stored in attributes because attributes are passed only bottom up. Global
variables enable information flow from left to right through the parse tree. A
global variable is declared by a statement of form

%global name Type

A global variable will become a parameter of the parser (See Section 10 below),
and it will be passed to every action (See Section 4 above). Global variables
have to be declared and initialized by the function that calls the parser. As an
example of a global variable declaration, consider

%global memory std::map< std::string, double >

memory is a data structure that stores values (of type double) of identifiers. An
example of its use is shown in the semantic action of the rule E : IDENTIFIER above.

6 The Tokenizer

The tokenizer is an object that is passed as a parameter to the parser. Its main
task is read input from the input source, and to group it into tokens. When
the tokenizer reads a token, it places the token on a list called lookahead. In
addition, the tokenizer must also have a method syntaxerror() that processes
syntax errors. One might argue that processing of syntax errors has nothing to
do with reading input, but in our view it makes sense to place the processing
of errors in the tokenizer because of the following reasons: In some way, the
errors are a property of the input, so that it is reasonable to collect them in
the device that reads the input. Also, when a syntax error is reported to the
user, one usually wants to say something like: ’syntax error in line L of file F ’
The tokenizer knows best about L and F. The tokenizer must have the following
interface:

struct tokenizer

{

std::list< token > lookahead;

void scan();

// Get a token from somewhere and push it to the back

// of lookahead.

void syntaxerror();

// Prints or counts (or whatever) syntax errors.

};

When the tokenizer is unable to read input, because for example end-of-file is
encountered, it should still append a token to lookahead. It is recommended
to define a designated token ENDOFFILE this, and possibly also a designated
token READERROR.

10

7 Errors

When it encounters an error, the parser first calls method tokenizer::syntaxerror().
After that, it will try to resynchronize by throwing away tokens until the parser
is either resynchronized or it has thrown away more than recoverlength tokens.
Resynchronization points are set by rules of the form

% E | _recover DOT

This means that if somewhere, while attempting to parse a E, something goes
wrong, the parser will resynchronize when it sees a DOT. If token E has at-
tributes, the recovery rule needs to find reasonable values for the attributes.

8 Description of the Grammar and Start Sym-

bols

Maphoon can construct a parser for more than one grammar at the same time.
The different grammars share their set of tokens and rewrite rules, but they have
different start symbols. Together which each start symbol, one has to specify
the possible tokens that can follow a correct input defined by the start symbol.
We will call these tokens the lookaheads of the start symbol.
The following defines a start symbol S with lookaheads L1, . . . , Ln:

%startsymbol S L1 L2 ... Ln

The following defines a start symbol S with lookahead EOF, and a start symbol
EXP with lookahead DOT.

%startsymbol S EOF

%startsymbol EXP DOT

If a start symbol is defined more than once, the lookahead sets are simply
merged. The following group of startsymbol declarations is equivalent to the
single declaration above:

%startsymbol S L1 L2

%startsymbol S L3

...

%startsymbol S Ln

When a symbol L is declared as a lookahead symbol of a start symbol S, the
symbol L must be not reachable from S. More precisely, it is not allowed that
it is possible to rewrite S into a word W that contains L. Otherwise, the parser
would not know when to stop during error recovery. Maphoon checks that no
lookahead symbol is reachable from its start symbol.
Grammar rules have form

11

% Leftsymbol : A1 A2 ... Am / possible actions

more actions

% | B1 B2 ... Bn / actions

actions actions actions

% | C1 C2 ... Ck / actions

even more actions

% ;

The actions are optional.

9 Namespaces

The definition of token and the parser are by default put in the top level names-
pace. In big projects, it may be useful to have the definition of token and the
parser in dedicated namespaces. This can be obtained by adding the following
directives to the input:

%parsernamespace N1

// Define the parser in namespace N1.

%parsernamespace N1 :: N2 :: ... :: Nn

// Define the parser in namespace N1 :: N2 :: ... :: Nn.

%tokennamespace N1

// Define struct token in namespace N1.

%tokennamespace N1 :: N2 :: ... :: Nn

// Define struct token in namespace N1 :: N2 :: ... :: Nn.

In a similar way, it is possible to tell the parser that the tokenizer is defined
in a separate namespace. This is done by the directive:

%tokenizernamespace N1

// Assume that the tokenizer is defined in namespace N1.

%tokenizernamespace N1 :: N2 :: ... :: Nn

// Assume that the tokenizer is defined in namespace

// N1 :: N2 :: ... :: Nn.

Using different namespaces, it is possible to generate different types of tokens,
and different parsers in the same project, but one must be careful that the
generated files do not overwrite each other. This can be obtained by putting the
different versions of token.h, token.cpp, parser.h, parser.cpp in different
directories.

If one uses namespaces, one must be careful how to address types and
functions: Attribute definitions of form %attribute name type must name
type in such a way that N::type is the correct addressing, where N is the
namespace given by %tokennamespace. Global variable definitions of form
%global name type must declare type in such a way that type is a correct

12

name on top level. If type contains any namespaces, they have to be mentioned
explicitly in type.

Maphoon puts the semantic action in an anonymous namespace on toplevel.
If one wants to address functions or classes from inside a semantic action, they
must be addresssed by the full name, including all namespaces.

10 Interface to the Parser

Maphoon reads from standard input, or from a file that is specified as param-
eter. Lines that do not start with % are copied to the file parser.cpp without
change. Lines that start with % must contain a valid Maphoon directive. The
implementation of the parser is written at the end of the file parser.cpp. The
parser is declared in the file parser.h, and it has the following interface:

void parser(tokenizer& input,

G1& g1, G2& g2, ..., Gn& gn,

tokentype start,

unsigned int recoverlength);

The tokenizer is described in Section 6. The variables g1, . . . , gn are the global
variables, their purpose is explained in Section 5. The parser passes the global
variables to every reduction.

When the parser is called, start denotes the start symbol that the user
wants to parse. Only symbols that were declared as startsymbol in the input
can be used as start symbol. Otherwise, the parser quits with an error message
could not find startsymbol. The parser uses read. lookahead for return-
ing the result of the parse. There are four possibilities:

1. The parse was succesful and the parser did not need a lookahead for de-
ciding that it reached the end of the input. This happens when the ac-
cepted input is not a prefix of another acceptable input. In that case,
read. lookahead has size 1 and consists of the start symbol.

2. The parse was successful, but the parser needed a lookehead for deciding
that it reached the end of the input. This happens when the accepted input
is the prefix of another acceptable input string. In that case, lookahead
has size 2 and consists of a start symbol followed by the encountered
lookahead symbol.

3. The parse could not recover from a syntax error and reached a lookahead
symbol while trying to recover. In that case, read. lookahead has size
1, and consists of the encountered lookahead symbol.

4. The parser could not recover from a syntax error and gave up, because it
threw away more than recoverlength symbols. In that case, read. lookahead

has size 1, and consists of a single _recover symbol.

13

Note that, if a syntax error occurred from which the parser could recover, it
will return in state (1) or (2). It is the responsibility of the user (either in
function read. syntaxerror() or by the value of the returned attributes) to
keep track of encountered errors.

If the parser behaves in an unexpected way, it can be debugged by including
a definition of form #define MAPH_DEBUG 1 in the file parser.cpp. When
included, the parser prints a lot of debugging information about its state and
its decisions while running.

11 Bugs, Missing Features, Possible Improve-

ments

• The parse tables are quite space efficient, but not time efficient. Maybe
using the original Yacc compression technique is better.

• There is a strange feature originating from the mixture of syntax and
semantics. Suppose that one has a rule E : E DIVIDES E . It is natural
to attach the following action to it:

if(E3 -> val. front() == 0.0)

{

std::cout << "division by zero\n";

refuse;

}

if(!lookahead. size() ||

shouldreduce(*DIVIDES2, lookahead. front()))

{

E1 -> val. front() = E1 -> val. front() /

E3 -> val. front();

return E1;

}

else

refuse;

This causes a curious behaviour on 1/0 + 8. The first parse (1/0) + 8 will
fail, but Maphoon will simply construct the alternative parse 1/(0+8). It
can be concluded that using refuse; for semantic errors is not a good
idea, but maybe it has a useful application. Until I really understand the
consequences, I do not intend to do anything about it.

• At present, there is no mechanism for graceful termination before the parse
is complete. We will probably add an accept command in the future. At
present, the user can only terminate the parser by throwing an exception.

14

• It it in principle possible that the tokenizer constructs more than one
token at the same time, and appends them to lookahead. Maphoon was
not tested for this case. This should be done.

15

