Bottom Up (Shift/Reduce) Parsing
Bottom Up Parsing has the following advantages over top-down parsing.

Attribute computation is easy.

Since choices are made only at the end of a rule, shared prefixes are unproblematic. Because of this, there is usually no need to modify grammar rules.

The parser can be generated automatically.

One big disadvantage is the fact that bottom-up parsing does not support left/right information flow. (For example, checking symbol definitions.)
Shift/Reduce Parsing

Let $\mathcal{G} = (\Sigma, A, R, S')$ be an attribute grammar.

The shift/reduce parser operates on triples $(s, v, u) \in (\Sigma \otimes S)^* \times (\Sigma \otimes S)^* \times (\Sigma \otimes S)^*$, where

- $s \in (\Sigma \otimes A)^*$ is the stack.
- $v \in (\Sigma \otimes A)^*$ is the lookahead,
- $u \in (\Sigma \otimes A)^*$ is the input that is not yet read.
Shift/Reduce Parsing

We write \vdash for the transition relation of the parser.

The parser starts in a state of form (ϵ, ϵ, u).

(Empty stack, empty lookahead, no input read.)
Read

A read means that the parser moves one unread token to the lookahead:

\[(s, v, (\sigma, \alpha) \cdot u) \vdash (s, v \cdot (\sigma, \alpha), u).\]
Shift

A shift means that the parser shifts one token from lookahead to the stack:

\[(s, (\sigma, \alpha) \cdot v, u) \vdash (s \cdot (\sigma, \alpha), v, u).\]
Reduction

A **reduction** means that the parser replaces the right hand side of a grammar rule by the left hand side. It uses the attribute function of the grammar rule to compute the new attribute.

If $(A \rightarrow w_1 \cdot \ldots \cdot w_n) : f \in R$, then

$$(s \cdot (w_1, \alpha_1) \cdot \ldots \cdot (w_n, \alpha_n), v, u) \vdash (s \cdot (A, f(\alpha_1, \ldots, \alpha_n)), v, u).$$

Reductions can only be made at the top of the stack!
Accept

The shift/reduce parser accepts its input if it is in a state

\(((S, \alpha), \epsilon, \epsilon) \).

This means that it has read all the input, has empty lookahead, and it managed to rewrite the input to \(S \).

In practice an EOF symbol is used. Let \(\# \not\in \Sigma \) be a special EOF symbol.

The shift/reduce parser accepts its input if it is in a state

\(((S, \alpha), \#, \epsilon) \).
Making the Decisions

At each state, the parser has the following choices:

- If the top of the stack contains the right hand side of a rule, it can reduce.
- It it didn’t reach end of file, it can shift.

It is possible that more than one reduction is possible. If a reduction is possible, it is still possible to shift. In order to decide, the parser uses the lookahead.

A good parser makes its decisions as early as possible, that means with the smallest possible lookahead.

We will only consider parsers that use a lookahead of at most 1.
Parser Generation Tools/Practical Aspects

There exist many parser generation tools that support attribute grammars. (Yacc, Bison, Maploon). The attribute functions are usually represent by general C/C++ -statements. In the code, $1, 2, 3, ...$ refer to the attributes of the first, second, etc. token on the right hand side.

The notation $$ refers to the attribute of the token on the left hand side.

A rule of form $A \rightarrow A + B : f(x, y, z) = x + z$ is represented by:

\[
A \rightarrow A + B \quad // \quad $$ = $1 + $3;
\]
LALR parsing

LALR stands for *look ahead left right*. It is a technique for deciding when reductions have to be made in shift/reduce parsing. Often, it can make the decisions without using a look ahead. Sometimes, a look ahead of 1 is required.

Most parser generators (and in particular Bison and Yacc) construct LALR parsers.

In LALR parsing, a deterministic finite automaton is used for determining when reductions have to be made. The deterministic finite automaton is usually called *prefix automaton*. On the following slides, I will explain how it is constructed.
Items

Let $G = (\Sigma, R, S)$ be a context-free grammar.

Definition Let $A \in \Sigma$, $w_1, w_2 \in \Sigma^*$. If $A \rightarrow w_1 \cdot w_2 \in R$, then $A \rightarrow w_1 \cdot w_2$ is called an item.

An item is a rule with a dot added somewhere in the right hand side.

The intuitive meaning of an item $A \rightarrow w_1 \cdot w_2$ is that w_1 has been read, and if w_2 will also be read, then the rule $A \rightarrow w_1 w_2$ can be reduced.
Items

Let $a \rightarrow bBc$ be a rule. The following items can be constructed from this rule:

$$a \rightarrow . bBc, \quad a \rightarrow b . Bc, \quad a \rightarrow bB . c, \quad a \rightarrow bBc .$$

For a given grammar G, the set of possible items is always finite.
Operations on Itemsets (1)

Definition: An itemset is a set of items.

Because for a given grammar, there exists only a finite set of possible items, the set of itemsets is also finite.

Let I be an itemset. The closure $\text{CLOS}(I)$ of I is defined as the smallest itemset J, s.t.

- $I \subseteq J$,
- If $A \rightarrow w_1 . B w_2 \in J$, and there exists a rule $B \rightarrow v \in R$, then $B \rightarrow . v \in J$.
Operations on Itemsets (2)

Let I be an itemset, let $\alpha \in \Sigma$ be a symbol. The set $\text{TRANS}(I, \alpha)$ is defined as

$$\{ A \rightarrow w_1 \alpha \cdot w_2 \mid A \rightarrow w_1 \cdot \alpha w_2 \in I \}.$$
The Prefix Automaton

Let $G = (\Sigma, R, S)$ be a grammar. The prefix automaton of G is the deterministic finite automaton $A = (\Sigma, Q, Q_s, Q_a, \delta)$, that is the result of the following algorithm:

- Start with $A = (\Sigma, \{\text{CLOS}(I)\}, \{\text{CLOS}(I)\}, \emptyset, \emptyset)$, where $I = \{\hat{S} \rightarrow .S \#\}$, $\hat{S} \not\in \Sigma$ is a new start symbol, S is the original start symbol of G, and $\# \not\in \Sigma$ is the EOF symbol.

- As long as there exist an $I \in Q$ and an $A \in \Sigma$, s.t. $I' = \text{CLOS}(\text{TRANS}(I, A)) \not\in Q$, put
 \[Q := Q \cup \{I'\}, \quad \delta := \delta \cup \{(I, A, I')\}. \]

- As long as there exist $I, I' \in Q$, and an $A \in \Sigma$, s.t. $I' = \text{CLOS}(\text{TRANS}(I, A))$, and $(I, A, I') \not\in \delta$, put
 \[\delta := \delta \cup \{(I, A, I')\}. \]
The Prefix Automaton (2)

The prefix automaton may be big, but it can be easily computed. Every context-free language has a prefix automaton, but not every language can be parsed by an LALR parser, because of the lookahead sets.

Theorem: Let $G = (\Sigma, R, S)$ be a context-free grammar. Let L be its associated language, i.e. $L = \{w \in \Sigma^* | S \Rightarrow^* w\}$. Let L' be the language defined by

$$\{w \in \Sigma^* | \exists w' \in \Sigma^* : ww' \in L\}.$$

Then the language L' is regular.

proof. It follows from the construction of the prefix automaton on the previous slides.
Parse Algorithm (1)

```
std::vector< state > states;
    // Stack of states of the prefix automaton.

std::vector< token > tokens;
    // We assume that a token has attributes, so
    // we don’t encode them separately.

std::dequeue< token > lookahead;
    // Will never be longer than one.

states. push_back( q0 ); // The initial state.

while( true )
{
```
Parse Algorithm (2)

decision = unknown;

state topstate = states. back();
if(topstate has only one reduction R and no shifts)
 decision = reduce(R);

// We know for sure that we need lookahead:

if(decision == unknown && lookahead. size() == 0)
{
 lookahead. push_back(inputstream. readtoken());
}
Parse Algorithm (3)

if(lookahead.front() == EOF) {
 if(topstate is an accepting state)
 return tokens.back();
 else
 return error, unexpected end of input.
}
Parse Algorithm (4)

if(decision == unknown &&
 topstate has only one reduction R with
 lookahead. front() &&
 no shift is possible with lookahead. front())
{
 decision = reduce(R);
}

if(decision == unknown &&
 topstate has only a shift Q with
 lookahead. front() &&
 no reduction is possible with lookahead. front())
{
 decision = shift(Q);
}
Parse Algorithm (5)

if(decision == unknown)
{
 // Either we have a conflict, or the parser is
 // stuck.

 if(no reduction/no shift is possible)
 print error message, try to recover.
Parse Algorithm (6)

// A conflict can be shift/reduce, or
// reduce/reduce:

Let R, from the set of possible reductions,
(taking into account lookahead. front()),
be the rule with the smallest number.

decision = reduce(R);
}
Parse Algorithm (7)

if(decision == push(Q))
{
 states. push_back(Q);
 tokens. push_back(lookahead. front());
 lookahead. pop_front();
}
else
{
 // decision has form reduce(R)

 unsigned int n =
 the length of the rhs of R.
Parse Algorithm (8)

token lhs =
 compute_lhs(R,
 tokens. begin() + tokens. size() - n,
 tokens. begin() + tokens. size());
 // this also computes the attribute.

for(unsigned int i = 0; i < n; ++ i)
{
 states. pop_back();
 tokens. pop_back();
}
Parse Algorithm (9)

// The shift of the lhs after a reduction is
// usually called ’goto’

topstate = states. back();
state newstate =
 the state reachable from topstate under lhs.

states. push_back(newstate);
tokens. push_back(lhs);
}
}

// Unreachable.
Lookahead Sets

We already have seen lookahead sets in action.

If a state has more than one reduction, or a reduction and a shift, the parser looks at the lookahead symbol, in order to decide what to do next.

\[LA(I, A \rightarrow w) \subseteq \Sigma \] is defined as a set of tokens. If the parser is in state \(I \), and the lookahead \(\sigma \in LA(I, A \rightarrow w) \), then the parser can reduce \(A \rightarrow w \).

When should a token \(\sigma \) be in \(LA(I, A \rightarrow w) \)?
Lookahead Sets (2)

Definition:

\[s \in \text{LA}(I, \ A \rightarrow w) \text{ if} \]

1. \(A \rightarrow w \) \(\in \) \(I \) (obvious)

2. There exists a correct input word \(w_1 \ s \ w_2 \ # \), such that

3. The parser reaches a state with state stack \((\ldots, I) \) and token stack \((\ldots, w) \), the lookahead (of the parser) is \(s \), and

4. the parser can reduce the rule \(A \rightarrow w \), after which

5. it can read the rest of the input \(w_2 \) and reach an accepting state.
Computing Look Ahead Sets

For every rule \(A \rightarrow w \) of the grammar \(G \), such that there exist states \(I_1, I_2, I_3 \), s.t. \(A \rightarrow . \ w \in I_1, \ A \rightarrow w . \in I_2 \), there exists a path from \(I_1 \) to \(I_2 \) in the prefix automaton that reads \(w \), and there is a transition from \(I_1 \) to \(I_3 \) that reads \(A \), the following must hold:

- For every symbol \(\sigma \in \Sigma \), for which a transition from \(I_3 \) to some other state is possible in the prefix automaton, \(\sigma \in \text{LA}(I_2, \ A \rightarrow w .) \).

- For every item of form \(B \rightarrow v . \in I_3 \), \(\text{LA}(I_3, \ B \rightarrow v .) \subseteq \text{LA}(I_2, \ A \rightarrow w .) \)

Compute the LA as the smallest such sets.
Computing Look Ahead Sets (2)

Example

\[S \to Aa, \]
\[A \to B, \]
\[A \to Bb, \]
\[B \to C, \]
\[B \to Cc, \]
\[C \to d. \]
The algorithm on the previous slides can sometimes compute too big look ahead sets. You will see this in the exercises.
Computing the Lookahead Sets in the Correct Way

Definition: Let $G = (\Sigma, R, S)$ be a grammar. An LR(1)-item (based on G) is an object of form $A \rightarrow w_1 \cdot w_2 / s$, where $(A \rightarrow w_1 w_2) \in R$, and $s \in \Sigma$ is a terminal symbol of G.

A LR(1)-item set is a set of LR(1)-items.

The intuitive meaning of $A \rightarrow w_1 \cdot w_2 / s$ is something like: ‘We have read w_1, and are prepared to read $w_2 \cdot s$ after that’.
Closure of LR(1)-Itemsets

Let I be an LR(1)-itemset. The closure CLOS(I) of I is defined as the smallest LR(1)-itemset J, s.t.

- $I \subseteq J$,

- If $A \rightarrow w_1 . Bw_2/s \in J$, and there exists a rule $B \rightarrow v \in R$, then for each terminal symbol $s' \in \text{FIRST}(w_2s)$, also $B \rightarrow . v/s' \in J$.

(FIRST is defined in the slides on top-down parsing.)
Transitions of LR(1)-Itemsets

Let \(I \) be an LR(1)-itemset, let \(\alpha \in \Sigma \) be a symbol. \(\text{TRANS}(I, \alpha) \) is defined as

\[
\{ A \rightarrow w_1 \alpha \cdot w_2/s \mid A \rightarrow w_1 \cdot \alpha w_2/s \in I \}.
\]
Core of an LR(1)-Itemset

Let I be an LR(1)-itemset. The core of I, written as $\text{CORE}(I)$ is defined as

$$\{A \rightarrow w_1 . w_2 \mid \exists s \in \Sigma : A \rightarrow w_1 . w_2/s \in I\}.$$

(The set of LR(0)-items that one obtains when one removes all the lookaheads.)
Construction of the Prefix Automaton with LR(1)-Items

Let \(\mathcal{G} = (\Sigma, R, S) \) be a grammar. The prefix automaton of \(\mathcal{G} \) is the deterministic finite automaton \(\mathcal{A} = (\Sigma, Q, Q_s, Q_a, \delta) \), that is the result of the following algorithm:

- Start with \(\mathcal{A} = (\Sigma, \{CLOS(I)\}, \{CLOS(I)\}, \emptyset, \emptyset) \), where \(I = \{\hat{S} \rightarrow . S/#\} \), \(\hat{S} \not\in \Sigma \) is a new start symbol, \(S \) is the original start symbol of \(\mathcal{G} \), and \(# \not\in \Sigma \) is the EOF symbol.
• As long as there exist an $I \in Q$ and an $A \in \Sigma$, s.t. $I' = \text{CLOS}(\text{TRANS}(I, A))$, and there is no state $I'' \in Q$ with $\text{CORE}(I'') = \text{CORE}(I')$, set

$$Q := Q \cup \{I'\}, \quad \delta := \delta \cup \{(I, A, I')\}.$$

• As long as there exist $I, I' \in Q$, and an $A \in \Sigma$, s.t. $\text{CORE}(I') = \text{CORE}(\text{CLOS}(\text{TRANS}(I, A)))$, and either
 1. $(I, A, I') \not\in \delta$, or
 2. $I' \neq I$,

set

$$\begin{cases} I' := I' \cup \text{CLOS}(\text{TRANS}(I, A)), \\ \delta := \delta \cup \{(I, A, I')\}. \end{cases}$$

(Formally, one must define a predicate between automata, and construct the fixed point of this predicate. It would be unpleasant.)
Once the prefix automaton $A = (\Sigma, Q, Q_s, Q_a, \delta)$ has been constructed, the lookahead sets can be obtained from the LR(1)-items as follows:

If a state I contains items of form $A \to w/s'$, the lookahead set for reducing $A \to w$ equals

$$\{ s' \in \Sigma \mid A \to w/s' \in I \}.$$
The construction on the previous slides is carried out automatically by parser generators. Examples are YACC, Bison, and also Maphoon.

Using a parser generator, it is easier to extend the language later. Also, the parser generator automatically analyzes the language, and shows where the conflicts are.

Top-Down parsing (recursive descend) has the advantage that one doesn’t need to study a tool, but it will be a lot harder to change the language later. Developers often avoid use of a parser generator, and then regret later, when they have to change the language.