LALR parsing
LALR stands for **look ahead left right**. It is a technique for deciding when reductions have to be made in shift/reduce parsing. Often, it can make the decisions without using a look ahead. Sometimes, a look ahead of 1 is required.

Most parser generators (and in particular Bison and Yacc) construct LALR parsers.

In LALR parsing, a deterministic finite automaton is used for determining when reductions have to be made. The deterministic finite automaton is usually called **prefix automaton**. On the following slides, I will explain how it is constructed.
Items

Let \(\mathcal{G} = (\Sigma, R, S) \) be a grammar.

Definition Let \(\sigma \in \Sigma, \ w_1, w_2 \in \Sigma^* \). If \(\sigma \rightarrow w_1 \cdot w_2 \in R \), then \(\sigma \rightarrow w_1.w_2 \) is called an **item**.

An item is a rule with a dot added somewhere in the right hand side.

The intuitive meaning of an item \(\sigma \rightarrow w_1.w_2 \) is that \(w_1 \) has been read, and if \(w_2 \) is also found, then rule \(\sigma \rightarrow w_1w_2 \) can be reduced.
Items

Let $a \rightarrow bBc$ be a rule. The following items can be constructed from this rule:

$$a \rightarrow .bBc, \quad a \rightarrow b.Bc, \quad a \rightarrow bB.c, \quad a \rightarrow bBc.$$

For a given grammar G, the set of possible items is finite.
Operations on Itemsets (1)

Definition: An itemset is a set of items.

Because for a given grammar, there exists only a finite set of possible items, the set of itemsets is also finite.

Let I be an itemset. The closure $\text{CLOS}(I)$ of I is defined as the smallest itemset J, s.t.

- $I \subseteq J$,
- If $\sigma \rightarrow w_1.Aw_2 \in J$, and there exists a rule $A \rightarrow v \in R$, then $A \rightarrow .v \in J$.
Operations on Itemsets (2)

Let I be an itemset, let $\alpha \in \Sigma$ be a symbol. The set $\text{TRANS}(I, \alpha)$ is defined as

$$\{ \sigma \rightarrow w_1 \alpha . w_2 \mid \sigma \rightarrow w_1 . \alpha w_2 \in I \}.$$
The Prefix Automaton

Let $G = (\Sigma, R, S)$ be a grammar. The prefix automaton of G is the deterministic finite automaton $A = (\Sigma, Q, Q_s, Q_a, \delta)$, that is the result of the following algorithm:

- Start with $A = (\Sigma, \{\text{CLOS}(I)\}, \{\text{CLOS}(I)\}, \emptyset, \emptyset)$, where $I = \{\hat{S} \rightarrow .S \#\}$, $\hat{S} \not\in \Sigma$ is a new start symbol, S is the original start symbol of G, and $\# \not\in \Sigma$ is the EOF symbol.

- As long as there exists an $I \in Q$, and a $\sigma \in \Sigma$, s.t. $I' = \text{CLOS}(\text{TRANS}(I, \sigma)) \not\in Q$, put
 \[Q := Q \cup \{I'\}, \quad \delta := \delta \cup \{(I, \sigma, I')\}. \]

- As long as there exist $I, I' \in Q$, and a $\sigma \in \Sigma$, s.t. $I' = \text{CLOS}(\text{TRANS}(I, \sigma))$, and $(I, \sigma, I') \not\in \delta$, put
 \[\delta := \delta \cup \{(I, \sigma, I')\}. \]
The Prefix Automaton (2)

The prefix automaton can be big, but it can be easily computed. Every context-free language has a prefix automaton, but not every language can be parsed by an LALR parser, because of the look ahead sets.
Parse Algorithm (1)

```cpp
std::vector< state > states;
    // Stack of states of the prefix automaton.

std::vector< token > tokens;
    // We assume that a token has attributes, so
    // we don’t encode them separately.

std::deque< token > lookahead;
    // Will never be longer than one.

states. push_back( q0 ); // The initial state.

while( true )
{
```
Parse Algorithm (2)

decision = unknown;

state topstate = states. back();
if(topstate has only one reduction R and no shifts)
 decision = reduce(R);

// We know for sure that we need lookahead:

if(decision == unknown && lookahead. size() == 0)
{
 lookahead. push_back(inputstream. readtoken());
}
Parse Algorithm (3)

if(lookahead. front() == EOF)
{
 if(topstate is an accepting state)
 return tokens. back();
 else
 return error, unexpected end of input.
}
Parse Algorithm (4)

if(decision == unknown &&
 topstate has only one reduction R with
 lookahead. front() &&
 no shift is possible with lookahead. front())
{
 decision = reduce(R);
}
if(decision == unknown &&
 topstate has only a shift Q with
 lookahead. front() &&
 no reduction is possible with lookahead. front())
{
 decision = shift(Q);
}
Parse Algorithm (5)

 if(decision == unknown)
 {
 // Either we have a conflict, or the parser is
 // stuck.

 if(no reduction/no shift is possible)
 print error message, try to recover.
Parse Algorithm (6)

// A conflict can be shift/reduce, or
// reduce/reduce:

Let R, from the set of possible reductions,
(taking into account lookahead. front()),
be the rule with the smallest number.

decision = reduce(R);
}
Parse Algorithm (7)

if(decision == push(Q))
{
 states. push_back(Q);
 tokens. push_back(lookahead. front());
 lookahead. pop_front();
}
else
{
 // decision has form reduce(R)

 unsigned int n =
 the length of the rhs of R.
Parse Algorithm (8)

token lhs =
 compute_lhs(R,
 tokens. begin() + tokens. size() - n,
 tokens. begin() + tokens. size());
 // this also computes the attribute.

 for(unsigned int i = 0; i < n; ++ i)
 {
 states. pop_back();
 tokens. pop_back();
 }

Parse Algorithm (9)

// The shift of the lhs after a reduction is
// also called 'goto'

topstate = states. back();
state newstate =
 the state reachable from topstate under lhs.

states. push_back(newstate);
tokens. push_back(lhs);
}
}

// Unreachable.
Lookahead Sets

We already have seen lookahead sets in action.

If a state has more than one reduction, or a reduction and a shift, the parser looks at the lookahead symbol, in order to decide what to do next.

\[\text{LA}(I, \sigma \rightarrow w) \subseteq \Sigma \] is defined a set of tokens. If the parser is in state \(I \), and the lookahead \(\in \text{LA}(I, \sigma \rightarrow w) \), then the parser can reduce \(\sigma \rightarrow w \).

When should a token \(\sigma \) be in \(\text{LA}(I, \sigma \rightarrow w) \) ?
Lookahead Sets (2)

Definition:

\[s \in \text{LA}(I, \sigma \rightarrow w) \text{ if } \]

1. \(\sigma \rightarrow w. \in I \) (obvious)

2. There exists a correct input word \(w_1 \cdot s \cdot w_2 \cdot \# \), such that

3. The parser reaches a state with state stack \((\ldots, I)\) and token stack \((\ldots, w)\), the lookahead (of the parser) is \(s \), and

4. the parser can reduce the rule \(\sigma \rightarrow w \), after which

5. it can read the rest of the input \(w_2 \) and reach an accepting state.
Computing Look Ahead Sets

For every rule $A \rightarrow w$ of the grammar G, such that there exist states I_1, I_2, I_3, s.t. $A \rightarrow .w \in I_1$, $A \rightarrow w. \in I_2$, there exists a path from I_1 to I_2 in the prefix automaton using w, and there is a transition from I_1 to I_3 based on A, the following must hold:

- For every symbol $\sigma \in \Sigma$, for which a transition from I_3 to some other state is possible in the prefix automaton, $\sigma \in \text{LA}(I_2, A \rightarrow w.)$.

- For every item of form $B \rightarrow v. \in I_3$, $\text{LA}(I_3, B \rightarrow v.) \subseteq \text{LA}(I_2, A \rightarrow w.)$

Compute the LA as the smallest such sets.
Computing Look Ahead Sets (2)

Example

\[S \rightarrow Aa, \]
\[A \rightarrow B, \]
\[A \rightarrow Bb, \]
\[B \rightarrow C, \]
\[B \rightarrow Cc, \]
\[C \rightarrow d. \]
The algorithm on the previous slides can sometimes compute too big look ahead sets. You will see this in the exercises.
Computing the Correct Sets

I don’t want to say much about this, because it is complicated.

Definition: An LR(1)-item has form $\sigma \rightarrow w_1.w_2/s$, where $\sigma \rightarrow w_1 w_2$ is a rule of the grammar, and $s \in S$.

STEP remains the same.

CLOS has to be modified.