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Abstract. The problem of reconstructing a discrete set from its hori-
zontal and vertical projections (RSP) is of primary importance in many
different problems for example pattern recognition, image processing and
data compression.
We give a new algorithm which provides a reconstruction of convex
polyominoes from horizontal and vertical projections. It costs atmost
O(min(m, n)2 · mn log mn) for a matrix that has m × n cells. In this
paper we provide just a sketch of the algorithm.

1 Introduction

1.1 Definition of the problem

Let R be a matrix which has m × n cells containing “0”s and “1”s. Let S be a
set of cells containing “1”s. Given S we put hi(S) which is the number of cells
containing “1” in the ith row of S and we put vj(S) which is the number of cells
containing “1” in the jth column of S. We call hi(S) the ith row projection of S
and vj(S) the jth column projection of S.

We consider the different properties of a set S. We say that a set S of cells
satisfies the properties p, v and h if

p: S is a polyomino i.e. S is a connected finite set.
v: every column of S is a connected set i.e. a column in R containing “0” between

two different “1”s does not exist.
h: every row of S is a connected set i.e. a row in R containing “0” between two

different “1”s does not exist.

The set S belongs to class (x) (S ∈ (x)) iff it satisfies the properties x.
We can now define the problem of reconstructing a set S from its pro-

jections: Given two assigned vectors H = (h1, h2, . . . , hm) ∈ {1, . . . , n}m and
V = (v1, v2, . . . , vn) ∈ {1, . . . ,m}n we examine whether the pair (H,V ) is satis-
fiable in class (x). It is satisfiable if there is at least one set S ∈ (x) such that
hi(S) = hi, for i = 1, . . . ,m, and vj(S) = vj , for j = 1, . . . , n. We also say that
S satisfies (H,V ) in (x).

We define a set S as a convex polyomino if S ∈ (p,v,h).
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Fig. 1. A convex polyomino that satisfies (H,V )

1.2 Previous work

First Ryser [4], and subsequently Chang [3] and Wang [5] studied existence of
S satisfying (H,V ) in the class of sets without any conditions (∅). They showed
that the decision problem can be solved in O(mn) time. These authors also
developed some algorithms that reconstruct S starting from (H,V ).

Woeginger [6] proved that the reconstruction problem in the classes of hori-
zontally and vertically convex sets (h,v) and polyominoes (p) is an NP-complete
problem.

In [1] Barcucci, Del Lungo, Nivat, Pinzani showed that the reconstruction
problem is NP-complete in the class of column-convex polyominoes (p,v) (row-
convex polyominoes (p,h)) and in the class of sets having connected columns
(v) (rows (h)). Therefore, the problem can be solved in polynomial time only if
all three properties (p,h,v) are verified by the cell set.

An algorithm that establishes the existence of a convex polyomino (p, v, h)
satisfying a pair of assigned vectors (H,V ) in polynomial time was described in
[1]. The main idea of this algorithm is to construct a certain initial positions
of some “0”s and “1”s and to perform a procedure called filling operation for
each such position. We call them the feet’s positions. The number of possible
feet’s positions in the algorithm is O(m2n2). The filling operation procedure
costs O(m2n2). Hence, all the algorithm has a complexity O(m4n4).



In this paper we show a variant of above algorithm which has a complexity
O(min(m,n)2 ·mn log mn). In section 2 we describe some properties of convex
polyominoes. In section 3 we show a new filling operation procedure which has
only complexity O(mn log mn). And in section 4 we describe a idea of new initial
positions which give a correctness solution.

2 Some convex polyomino properties

We follow the notation from [1,2]. We assume n ≤ m in the matrix R. If n > m
we can exchange columns with rows. Moreover we assume

m∑
j=1

hj =
n∑

i=1

vi,

otherwise it does not exist a solution.
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Fig. 2. Some properties of convex polyomino: Nuj−1 ⊂Wj−1 ⊂ Ndj

Let 〈n1, n2〉 be positions of “1”s in upper row, i.e. first row contains “1”s in
cells from n1 to n2. And let 〈s1, s2〉 be positions of “1”s in lower (m-th) row.
These cells we are called feet’s positions. Let us introduce the following notations:

Hk =
k∑

j=1

hj , Vk =
k∑

i=1

vi,



A =
m∑

j=1

hj =
n∑

i=1

vi.

We assume that n2 < s1 (the case s2 < n1 is similar and other cases we do not
consider). Let Wj be the set of “1”s in first j columns, and let Ni be a set of
“1”s in first i rows (see Fig. 2). Let R(uj , j) and R(dj , j) be the upmost and the
lowest cells of j-th column containing “1”.

Proposition 1. [2] For all j ∈ [n2 + 1..s1 − 1] we have

Nuj−1 ⊂Wj−1 and Wj−1 ⊂ Ndj
.

From above proposition and its variants we get:

Corollary 1. If n2 < s1 then for all j ∈ [n2 + 1..s1 − 1] we have

Huj−1 < Vj−1 and Hdj
> Vj ,

A−Hdj
< A− Vj and A−Huj−1 > A− Vj−1.

If s2 < n1 then for all j ∈ [s2 + 1..n1 − 1] we have

Huj−1 < A− Vj and Hdj
> A− Vj−1,

A−Hdj
< Vj−1 and A−Huj−1 > Vj .

We use above properties in section 4 for finding positions of some initial “1”s.

3 Filling operation

We use the balanced binary trees (like e.g. AVL) in our procedure with the
following operations:

empty( tree ) — a function returning true when a tree is empty or false other-
wise. It always costs O(1).

delete( k, tree ) — a procedure deleting an element k from a tree. The comple-
xity of the function is less than O(log |tree|), where |tree| means size of a
tree (a number of elements in a tree).

insert( k, tree ) — a procedure putting k in a tree where k 6∈ tree or doing
nothing otherwise. The complexity of this function is less than O(log |tree|).

min( tree ) — a function returning a minimal element of a tree. It costs less
than O(log |tree|).

max( tree ) — a function returning a maximal element of a tree. It costs less
than O(log |tree|).

We have two global variables treecol and treerow which are balanced binary
trees. In these trees we will store the numbers of columns and rows, respectively,
which we will review in a next step of the main loop in our procedure.

For each row i, where i ∈ [1, . . . ,m], we define the following auxiliary varia-
bles: li, ri, pi, qi, l̃i, r̃i, p̃i, q̃i, free0i (for each column j, where j ∈ [1, . . . , n], we



define lj , rj , pj , qj , l̃j , r̃j , p̃j , q̃j , free0j , respectively). The variable l is a minimal
position containing “1”, r is a maximal position containing “1”, p is a minimal
position without “0” and q is a maximal position without “0”, respectively, for
all rows and columns. The variables l̃, r̃, p̃, q̃ are temporary values of l, r, p,
q, respectively. The variable free0 is the balanced binary tree containing “0”
positions which are between p̃ and q̃.

We initialize these variables in a row as follows l = l̃ = n + 1, r = r̃ = 0,
p = p̃ = 1, q = q̃ = n, free0 = nil (in column l = l̃ = m+1, r = r̃ = 0, p = p̃ = 1,
q = q̃ = m, free0 = nil, respectively), where nil means the empty tree.

We introduce two auxiliary operations:

put “0” in the ith row in the jth position:

if R[i, j] = 1 then exit( fail ) {we break the procedure in this case}
if R[i, j] 6= 0 then {it is a new “0”}

R[i, j]← 0
insert( j, treecol )
if i < p̃j + vj and i ≥ p̃j then

p̃j ← i + 1
while not empty( free0j ) and (k ←min( free0j ))< p̃j + vj do

delete( k, free0j )
p̃j ← k + 1

if i > q̃j − vj and i ≤ q̃j then
q̃j ← i− 1
while not empty( free0j ) and (k ←max( free0j ))> q̃j − vj do

delete( k, free0j )
q̃j ← k − 1

if p̃j + vj ≤ i ≤ q̃j − vj then insert( i, free0j )

put “1” in the ith row in the jth position:

if R[i, j] = 0 then exit( fail ) {we break the procedure in this case}
if R[i, j] 6= 1 then {it is a new “1”}

R[i, j]← 1
insert( j, treecol )
if rj < lj then {column j hasn’t “1”s}

lj ← rj ← l̃j ← r̃j ← i
if p̃j < i− vj + 1 then p̃j ← i− vj + 1
if q̃j < i + vj − 1 then q̃j ← i + vj − 1
while not empty( free0j ) do

k ←min( free0j )
delete( k, free0j )
if k < i and k + 1 > p̃j then p̃j ← k + 1
if k > i and k − 1 < q̃j then q̃j ← k − 1

else {column j has “1”s}
if i < l̃j then l̃j ← i
if i > r̃j then r̃j ← i



The operations described above retain in memory the number of a column that
is modifying when we put new symbol in a row. We analogously define these
operations in columns.

Now we define ⊕,	,⊗,� operations described in [1]. They are of the follo-
wing form:

operation ⊕ in the ith row:

if l̃i < li then
for j ← l̃i to li − 1 do put “1” in the ith row in the jth position
li ← l̃i

if r̃i > ri then
for j ← ri + 1 to r̃i do put “1” in the ith row in the jth position
ri ← r̃i

operation 	 in the ith row:

if pi < p̃i then
for j ← pi to p̃i − 1 do put “0” in the ith row i in the jth position
pi ← p̃i

if qi > q̃i then
for j ← q̃i + 1 to qi do put “0” in the ith row in the jth position
qi ← q̃i

operation ⊗ in the ith row:

if li > ri and pi + hi − 1 ≥ qi − hi + 1 then
li ← l̃i ← qi − hi + 1
ri ← r̃i ← pi + hi − 1
for j ← li to ri do put “1” in the ith row in the jth position

if li ≤ ri and qi − hi + 1 < li then
for j ← qi − hi + 1 to li − 1 do

put “1” in the ith row in the jth position
li ← l̃i ← qi − hi + 1

if li ≤ ri and pi + hi − 1 > ri then
for j ← ri + 1 to pi + hi − 1 do

put “1” in the ith row in the jth position
ri ← r̃i ← pi + hi − 1

operation � in the ith row:

if li ≤ ri and pi ≤ ri − hi then
for j ← pi to ri − hi do put “0” in the ith row in the jth position
pi ← p̃i ← ri − hi + 1

if li ≤ ri and qi ≥ li + hi then
for j ← li + hi to qi do put “0” in the ith row in the jth position
qi ← q̃i ← li + hi − 1

The operations ⊕, ⊗ put new “1”s in matrix R and the operations 	, � put
new “0”s. We analogously define these operations in columns.



The main loop of the procedure filling operation has the following form now:

The main loop of the procedure:

repeat
while not empty( treerow ) do

k ←min( treerow )
delete( k, treerow )
perform operations ⊕,	,⊗,� in the kth row

while not empty( treecol ) do
k ←min( treecol )
delete( k, treecol )
perform operations ⊕,	,⊗,� in the kth column

until empty( treerow ) and empty( treecol )

When we do preprocessing (described in section 4) we put neither “0” nor
“1”. We only modify variables p̃ and q̃ of a particular row or a column when it
is necessary. We put the numbers of these rows or columns in treerow or treecol,
respectively. We will put “0” or “1” while performing filling operation procedure
described above (see the 	 operation and the ⊗ operation).

If the filling operation procedure returns fail, we know that a convex poly-
omino which has projections H and V (and the same initial position) does not
exist.
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If trees treerow and treecol are empty, we have two different cases:

case 1: Each cell of R contain “0” or “1”. We have the solution. The set S is a
convex polyomino and satisfies (H,V ).

case 2: Each row contains at least one “1” (we assure this in section 4) and we
have some cells in R which contain neither “0” nor “1” (see Fig. 3). If we
have any row or any column containing these empty cells and at least one
“1”, then the auxiliary variables in the row or the column will satisfy the
properties:

l − p̃ = q̃ − r 6= 0.

If any column have not “1”, the number of empty cells in this column is
equal to double number of “1” that we can put in this column. Moreover, if
R[i, j] contains neither “0” nor “1”, then it exists R[i′, j′] containing neither
“0” nor “1” and satisfying i = i′ and |j − j′| = hi or j = j′ and |i− i′| = vj .
In addition the number of empty cells in entire R is equal to double number
of missing “1”s. Hence, the cells, which contain neither “0” nor “1”, form
a cycle or a union of disjoint cycles, each of them contains at least 4 cells.
The cells of the cycle are labelled alternately “0” and “1”. But some cycles
are labelled dependent. In order to fill these cells correctly we build suitable
2-SAT problem, that can be solved in linear time (for more details see [1]).
Because the number of empty cells is less than mn the additional cost of
solution in this case is at most O(mn).

Now we estimate the complexity of the main loop in the filling operation
procedure. In each position (i, j) we perform operation put only twice (one
operation in the ith row and one operation in the jth column). Moreover, when
we do operations ⊕, 	, ⊗, � in a row or in a column in our algorithm, we execute
at least one put operation. Hence, we review only O(mn) columns and rows
and the review of one row costs O(log n) + [cost of the put operations] and the
review of one column costs O(log m) + [cost of the put operations]. Therefore,
the global cost of the main loop of the algorithm is O(mn(log m + log n)) +
[cost of all put operations].

Now we estimate global cost of all put operations. In the ith row when we
perform put operations we execute at most m insert operations in treecol. It
costs O(m log m). For all rows the cost is at most O(mn log m). In all columns
the cost of the insert operations in treerow is at most O(mn log n), analogously.

Since the insert operations in free0i in the ith row we are doing no more
than one time for each position. There are not more than m delete operations,
either. We execute functions min and max only during modifying p̃i or q̃i. Hence,
the number of these operations is at most m. All operations in tree free0i cost
at most O(m log m). For all n rows the cost is at most O(mn log m). In all m
columns the cost of the operation in trees is at most O(mn log n), analogously.

The complexity of all residual operations is at most O(mn). Hence, the cost
of the procedure called filling operation is at most O(mn(log m + log n)).

The proof of the correctness of the procedure is a small modification of the
proof from [1].



Theorem 1. The filling operation procedure costs at most O(mn log mn).

4 Main algorithm

The main idea of the algorithm is testing all possible positions of “1”s into first
and last rows, i.e. feet’s positions. If we fix any initial positions of upper and
lower rows, we will use the Corollary 1 for computing positions of some “1”s
in columns between feet’s positions. We want to have at least one “1” in each
row when we start filling procedure described in section 3. It assures the correct
effect of working this procedure.

If we have feet’s positions 〈n1, n2〉 and 〈s1, s2〉 and n2 < s1, we compute for
all j ∈ [n2 + 1..s1 − 1]:

Dj = min{i ∈ [1..m− 1] : A−Hi < A− Vj},
Uj = max{i ∈ [2..m] : Hi−1 < Vj−1}.

If n1 > s2 we compute for all j ∈ [s2 + 1..n1 − 1]:

Dj = min{i ∈ [1..m− 1] : A−Hi < Vj−1},
Uj = max{i ∈ [2..m] : Hi−1 < A− Vj}.

It is easy to check that always Uj ≤ Dj and moreover, in first case Dj +1 ≥ Uj+1

and in second case Uj + 1 ≥ Dj+1. Hence, in j-th column we can put “1” in all
cells between Uj and Dj and we can put “0” in cells upper Dj−vj +1 and lower
Uj +vj−1. Moreover, we have all “1”s and “0”s in columns which are appointed
by feet’s positions. Finally, we have at least one “1” in each row.

Otherwise, if both feet’s positions have a common column then its must
contain only “1”s because we have “1” on the first and on the last position in
this column and a area of “1”s is connected. Hence, in this case we also have at
last one “1” in each row.

The preprocessing described above costs at most 0(m + n).
We assume, there exists convex polyomino S satisfying (H,V ). If we guess

the right feet’s positions of S (because we tested all feet’s positions we must
guess it correctly in course the time) we will have all “1”s and “0”s in columns
n1...n2 and s1...s2. Moreover, we have at least one “1” in each column between
feet’s positions (if there exist such columns). Finally we have at last one “1” in
each row and each of them is correct. Hence, the filling procedure cannot answer
fail and must return the correct polyomino.

If for vectors (H,V ) do not exist convex polyomino S satisfying (H,V ) the
filling procedure answers fail.

The number of all feet’s positions tests is at most n2 and it is equal to
min(m,n)2. The preprocessing and filling procedure costs at most O(mn log mn).
Hence, we have

Theorem 2. The reconstruction of convex polyomino with vertical and horizon-
tal projections costs at most O(min(m,n)2 ·mn log mn).
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