
Metodyki zwinne wytwarzania oprogramowania
Wykład 7

Marcin Młotkowski

23 listopada 2016

Zasada pojedynczej odpowiedzialności
Zasada otwarte–zamknięte
Zasada podstawiana Liskov

Plan wykładu

1 Zasada pojedynczej odpowiedzialności

2 Zasada otwarte–zamknięte

3 Zasada podstawiana Liskov
Kilka negatywnych przykładów

Marcin Młotkowski Metodyki zwinne wytwarzania oprogramowania 2 / 48

Zasada pojedynczej odpowiedzialności
Zasada otwarte–zamknięte
Zasada podstawiana Liskov

Single–Responsibility Principle (SRP)

Definicja

Za chwilę...

Marcin Młotkowski Metodyki zwinne wytwarzania oprogramowania 3 / 48

Zasada pojedynczej odpowiedzialności
Zasada otwarte–zamknięte
Zasada podstawiana Liskov

Przykład

Prostokąt

+rysowanie()
+pole(): double

Aplikacja
graficzna

Interfejs
graficzny

Geomertia
obliczeniowa

Marcin Młotkowski Metodyki zwinne wytwarzania oprogramowania 4 / 48

Zasada pojedynczej odpowiedzialności
Zasada otwarte–zamknięte
Zasada podstawiana Liskov

Co robi klasa Prostokąt

Geometria

Modeluje matematyczny obiekt prostokąt, dzięki czemu może
obliczyć jego pole.

Grafika

Wizualizuje prostokąt za pomocą interfejsu graficznego.

Marcin Młotkowski Metodyki zwinne wytwarzania oprogramowania 5 / 48

Zasada pojedynczej odpowiedzialności
Zasada otwarte–zamknięte
Zasada podstawiana Liskov

Zmiana projektu

Zmiana interfejsu graficznego z 2D na 3D.

Zmiana wymaga

Ponowna implementacja metody rysowanie()

Konieczne

Skompilowanie, przetestowanie i wdrożenie Aplikacji
geometrycznej, czy przypadkiem coś się nie zmieniło.

Marcin Młotkowski Metodyki zwinne wytwarzania oprogramowania 6 / 48

Zasada pojedynczej odpowiedzialności
Zasada otwarte–zamknięte
Zasada podstawiana Liskov

Zmiana projektu

Zmiana interfejsu graficznego z 2D na 3D.

Zmiana wymaga

Ponowna implementacja metody rysowanie()

Konieczne

Skompilowanie, przetestowanie i wdrożenie Aplikacji
geometrycznej, czy przypadkiem coś się nie zmieniło.

Marcin Młotkowski Metodyki zwinne wytwarzania oprogramowania 6 / 48

Zasada pojedynczej odpowiedzialności
Zasada otwarte–zamknięte
Zasada podstawiana Liskov

Zmiana projektu

Zmiana interfejsu graficznego z 2D na 3D.

Zmiana wymaga

Ponowna implementacja metody rysowanie()

Konieczne

Skompilowanie, przetestowanie i wdrożenie Aplikacji
geometrycznej, czy przypadkiem coś się nie zmieniło.

Marcin Młotkowski Metodyki zwinne wytwarzania oprogramowania 6 / 48

Zasada pojedynczej odpowiedzialności
Zasada otwarte–zamknięte
Zasada podstawiana Liskov

Zmiana projektu

Prostokąt

+rysowanie()

Aplikacja
graficzna

Interfejs
graficzny

Geomertia
obliczeniowa

ProstokątGeometryczny

+pole(): double

Marcin Młotkowski Metodyki zwinne wytwarzania oprogramowania 7 / 48

Zasada pojedynczej odpowiedzialności
Zasada otwarte–zamknięte
Zasada podstawiana Liskov

Obserwacje

Zmiana projektu wymusiła zmiany tylko części klasy, tj. części
”graficznej”.

Może być druga przyczyna zmiany projektu: zmiana części
”geometrycznej”.

Marcin Młotkowski Metodyki zwinne wytwarzania oprogramowania 8 / 48

Zasada pojedynczej odpowiedzialności
Zasada otwarte–zamknięte
Zasada podstawiana Liskov

Zasada pojedynczej odpowiedzialności

Definicja

Żadna klasa nie może być modyfikowana z więcej niż jednego
powodu.

Marcin Młotkowski Metodyki zwinne wytwarzania oprogramowania 9 / 48

Zasada pojedynczej odpowiedzialności
Zasada otwarte–zamknięte
Zasada podstawiana Liskov

Inny przykład

Klasa Pracownik

+ ObliczPensję(): decimal
+ Zapisz()
+ EdycjaGUI()

Marcin Młotkowski Metodyki zwinne wytwarzania oprogramowania 10 / 48

Zasada pojedynczej odpowiedzialności
Zasada otwarte–zamknięte
Zasada podstawiana Liskov

Plan wykładu

1 Zasada pojedynczej odpowiedzialności

2 Zasada otwarte–zamknięte

3 Zasada podstawiana Liskov
Kilka negatywnych przykładów

Marcin Młotkowski Metodyki zwinne wytwarzania oprogramowania 11 / 48

Zasada pojedynczej odpowiedzialności
Zasada otwarte–zamknięte
Zasada podstawiana Liskov

Tydzień temu na wykładzie:

Sztywność

Drobna zmiana w specyfikacji powoduje kaskadowe zmiany

Marcin Młotkowski Metodyki zwinne wytwarzania oprogramowania 12 / 48

Zasada pojedynczej odpowiedzialności
Zasada otwarte–zamknięte
Zasada podstawiana Liskov

Cel

Chcemy aby:

rozbudowa systemu wymagała tylko dodawania kodu, a nie jego
modyfikacji.

Marcin Młotkowski Metodyki zwinne wytwarzania oprogramowania 13 / 48

Zasada pojedynczej odpowiedzialności
Zasada otwarte–zamknięte
Zasada podstawiana Liskov

Zasada otwarte–zamknięte (open–close principle, OCP)

Definicja

Składniki oprogramowania (klasy, moduły, procedury etc.) muszą
być otwarte na rozbudowę, ale zamknięte na dla modyfikacji.

Marcin Młotkowski Metodyki zwinne wytwarzania oprogramowania 14 / 48

Zasada pojedynczej odpowiedzialności
Zasada otwarte–zamknięte
Zasada podstawiana Liskov

Objaśnienia

Otwarte na rozszerzenia

łatwo rozbudować funkcjonalność modułu

Zamknięte na modyfikacje

Zmiany nie mogą skutkować modyfikacją kodu źródłowego, ani
nawet zmianami na poziomie binariów.

Marcin Młotkowski Metodyki zwinne wytwarzania oprogramowania 15 / 48

Zasada pojedynczej odpowiedzialności
Zasada otwarte–zamknięte
Zasada podstawiana Liskov

Przykład niezgodności z zasadą OCP: architektura
klient-serwer

Dokument DotPrinter

Marcin Młotkowski Metodyki zwinne wytwarzania oprogramowania 16 / 48

Zasada pojedynczej odpowiedzialności
Zasada otwarte–zamknięte
Zasada podstawiana Liskov

Kod źródłowy

public class DotPrinter {
...
}

public class Dokument {

public void drukuj(DotPrinter prn)
{
...
}
}

Wymiana sprzętu

public class LaserPrinter {
...
}

Marcin Młotkowski Metodyki zwinne wytwarzania oprogramowania 17 / 48

Zasada pojedynczej odpowiedzialności
Zasada otwarte–zamknięte
Zasada podstawiana Liskov

Kod źródłowy

public class DotPrinter {
...
}

public class Dokument {

public void drukuj(DotPrinter prn)
{
...
}
}

Wymiana sprzętu

public class LaserPrinter {
...
} Marcin Młotkowski Metodyki zwinne wytwarzania oprogramowania 17 / 48

Zasada pojedynczej odpowiedzialności
Zasada otwarte–zamknięte
Zasada podstawiana Liskov

Rozwiązanie nr 1: wzorzec projektowy Strategia

Dokument
<<interface>>
ClientInterface

DotPrinter

Marcin Młotkowski Metodyki zwinne wytwarzania oprogramowania 18 / 48

Zasada pojedynczej odpowiedzialności
Zasada otwarte–zamknięte
Zasada podstawiana Liskov

Implementacja

public interface Printer {
...
}

public class DotPrinter : Printer {
...
}

public class Dokument {

public void drukuj(Printer prn)
{
...
}
}

Marcin Młotkowski Metodyki zwinne wytwarzania oprogramowania 19 / 48

Zasada pojedynczej odpowiedzialności
Zasada otwarte–zamknięte
Zasada podstawiana Liskov

Rozwiązanie nr 2: wzorzec projektowy Template Method

DotPrinter

DrukarkaDokument

Marcin Młotkowski Metodyki zwinne wytwarzania oprogramowania 20 / 48

Inny przykład złego projektu: figury geometryczne

enum ShapeType { circle, square };
typedef struct Shape *ShapePointer;

void DrawAllShapes(ShapePointer list[], int n)
{
int i;
for(i = 0; i < n; i++)
{
struct Shape *s = list[i];
switch (s->itsType)
{
case square:
DrawSquare((struct Square*)s);
break;
case circle:
DrawCircle((struct Circle*)s);
break;

}
}
}

Zasada pojedynczej odpowiedzialności
Zasada otwarte–zamknięte
Zasada podstawiana Liskov

Ocena takiego systemu

Dodanie nowej figury, np. trójkąta:

wyszukanie wszystkich warunków sprawdzających typ figury;

konieczność ponownej kompilacji modułu i wszystkich
modułów zależnych;

konieczność ponownej instalacji bibliotek.

Marcin Młotkowski Metodyki zwinne wytwarzania oprogramowania 22 / 48

Zasada pojedynczej odpowiedzialności
Zasada otwarte–zamknięte
Zasada podstawiana Liskov

Wady

Sztywność

Dodanie nowego elementu do wyliczenia wymusza serię działań:
kompilacja, testowanie, instalacja.

Wrażliwość

Rozszerzenie implementacji wymaga starannego przejrzenia kodu w
poszukiwaniu switch--case i if--else badających typ figury.

Marcin Młotkowski Metodyki zwinne wytwarzania oprogramowania 23 / 48

Zasada pojedynczej odpowiedzialności
Zasada otwarte–zamknięte
Zasada podstawiana Liskov

Wady

Sztywność

Dodanie nowego elementu do wyliczenia wymusza serię działań:
kompilacja, testowanie, instalacja.

Wrażliwość

Rozszerzenie implementacji wymaga starannego przejrzenia kodu w
poszukiwaniu switch--case i if--else badających typ figury.

Marcin Młotkowski Metodyki zwinne wytwarzania oprogramowania 23 / 48

Zasada pojedynczej odpowiedzialności
Zasada otwarte–zamknięte
Zasada podstawiana Liskov

Dobre rozwiązanie

public interface Shape
{
void Draw();
}

public class Square : Shape
{
public void Draw() { ... }
}

public class Circle : Shape
{
public void Draw() { ... }
}

Marcin Młotkowski Metodyki zwinne wytwarzania oprogramowania 24 / 48

Zasada pojedynczej odpowiedzialności
Zasada otwarte–zamknięte
Zasada podstawiana Liskov

Zgodność z zasadą

Otwartość

Łatwość zmian w zakresie dodawania nowych figur.

Zamkniętość

Nie ma konieczności modyfikacji istniejącego kodu przy
rozbudowie.

Marcin Młotkowski Metodyki zwinne wytwarzania oprogramowania 25 / 48

Zasada pojedynczej odpowiedzialności
Zasada otwarte–zamknięte
Zasada podstawiana Liskov

Zgodność z zasadą

Otwartość

Łatwość zmian w zakresie dodawania nowych figur.

Zamkniętość

Nie ma konieczności modyfikacji istniejącego kodu przy
rozbudowie.

Marcin Młotkowski Metodyki zwinne wytwarzania oprogramowania 25 / 48

Zasada pojedynczej odpowiedzialności
Zasada otwarte–zamknięte
Zasada podstawiana Liskov

A jakie są wady

Trzeba przewidzieć kierunek zmian projektu.

Marcin Młotkowski Metodyki zwinne wytwarzania oprogramowania 26 / 48

Zasada pojedynczej odpowiedzialności
Zasada otwarte–zamknięte
Zasada podstawiana Liskov

A jakie są wady

Trzeba przewidzieć kierunek zmian projektu.

Marcin Młotkowski Metodyki zwinne wytwarzania oprogramowania 26 / 48

Zasada pojedynczej odpowiedzialności
Zasada otwarte–zamknięte
Zasada podstawiana Liskov

Kiedy ten projekt zawiedzie

Shape shapes[];

foreach (Shape sh in shapes)
sh.Draw();

Dodatkowe założenie

Chcemy, aby najpierw były kwadraty, a potem okręgi.

Smutny wniosek

Nie da się zaprojektować tak system, aby był otwarty na dowolne
zmiany.

Marcin Młotkowski Metodyki zwinne wytwarzania oprogramowania 27 / 48

Zasada pojedynczej odpowiedzialności
Zasada otwarte–zamknięte
Zasada podstawiana Liskov

Kiedy ten projekt zawiedzie

Shape shapes[];

foreach (Shape sh in shapes)
sh.Draw();

Dodatkowe założenie

Chcemy, aby najpierw były kwadraty, a potem okręgi.

Smutny wniosek

Nie da się zaprojektować tak system, aby był otwarty na dowolne
zmiany.

Marcin Młotkowski Metodyki zwinne wytwarzania oprogramowania 27 / 48

Zasada pojedynczej odpowiedzialności
Zasada otwarte–zamknięte
Zasada podstawiana Liskov

Kiedy ten projekt zawiedzie

Shape shapes[];

foreach (Shape sh in shapes)
sh.Draw();

Dodatkowe założenie

Chcemy, aby najpierw były kwadraty, a potem okręgi.

Smutny wniosek

Nie da się zaprojektować tak system, aby był otwarty na dowolne
zmiany.

Marcin Młotkowski Metodyki zwinne wytwarzania oprogramowania 27 / 48

Zasada pojedynczej odpowiedzialności
Zasada otwarte–zamknięte
Zasada podstawiana Liskov

Próba poprawienia

public interface Shape : IComparable
{
void Draw();
}

...
shapes.Sort();
foreach (Shape sh in shapes)
sh.Draw();

Marcin Młotkowski Metodyki zwinne wytwarzania oprogramowania 28 / 48

Zasada pojedynczej odpowiedzialności
Zasada otwarte–zamknięte
Zasada podstawiana Liskov

Przypomnienie

public interface IComparable
{
int CompareTo(Object obj)
}

Marcin Młotkowski Metodyki zwinne wytwarzania oprogramowania 29 / 48

Zasada pojedynczej odpowiedzialności
Zasada otwarte–zamknięte
Zasada podstawiana Liskov

Próba implemetacji

public class circle : Shape
{
public int CompareTo(object o)
{
if (o is Square)
return -1;
else
return 0;

}
}

Marcin Młotkowski Metodyki zwinne wytwarzania oprogramowania 30 / 48

Zasada pojedynczej odpowiedzialności
Zasada otwarte–zamknięte
Zasada podstawiana Liskov

Ocena implementacji

Czy ta implementacja spełnia warunek ocp?

Marcin Młotkowski Metodyki zwinne wytwarzania oprogramowania 31 / 48

Zasada pojedynczej odpowiedzialności
Zasada otwarte–zamknięte
Zasada podstawiana Liskov

Przewidywanie kierunku zmian

szybkie wydania;

szybkia prezentacja;
szybkie uzyskanie informacji zwrotnej od klienta.

Marcin Młotkowski Metodyki zwinne wytwarzania oprogramowania 32 / 48

Zasada pojedynczej odpowiedzialności
Zasada otwarte–zamknięte
Zasada podstawiana Liskov

Przewidywanie kierunku zmian

szybkie wydania;
szybkia prezentacja;

szybkie uzyskanie informacji zwrotnej od klienta.

Marcin Młotkowski Metodyki zwinne wytwarzania oprogramowania 32 / 48

Zasada pojedynczej odpowiedzialności
Zasada otwarte–zamknięte
Zasada podstawiana Liskov

Przewidywanie kierunku zmian

szybkie wydania;
szybkia prezentacja;
szybkie uzyskanie informacji zwrotnej od klienta.

Marcin Młotkowski Metodyki zwinne wytwarzania oprogramowania 32 / 48

Zasada pojedynczej odpowiedzialności
Zasada otwarte–zamknięte
Zasada podstawiana Liskov

Kilka negatywnych przykładów

Plan wykładu

1 Zasada pojedynczej odpowiedzialności

2 Zasada otwarte–zamknięte

3 Zasada podstawiana Liskov
Kilka negatywnych przykładów

Marcin Młotkowski Metodyki zwinne wytwarzania oprogramowania 33 / 48

Zasada pojedynczej odpowiedzialności
Zasada otwarte–zamknięte
Zasada podstawiana Liskov

Kilka negatywnych przykładów

Oryginalne sformułowanie

Oczekujemy czegoś na kształt właściwości podstawienia:
jeżeli dla każdego obiektu o1 typu S istnieje taki obiekt
o2 typu T , że zachowanie wszystkich programów P
zdefiniowanych na bazie typu T nie zmieni się, jeśli obiekt
o1 zastąpimy obiektem o2, typ S jest podtypem typu T .

Barbara Liskov, 1988

Marcin Młotkowski Metodyki zwinne wytwarzania oprogramowania 34 / 48

Zasada pojedynczej odpowiedzialności
Zasada otwarte–zamknięte
Zasada podstawiana Liskov

Kilka negatywnych przykładów

Pierwszy przykład: figury geometryczne

public enum ShapeType { square, circle };

public class Shape
{
private ShapeType type;
public Shape(ShapetType t) { this.type = t; }

public static void DrawShape(Shape s) {
if (s.type == ShapeType.square)
(s as Square).Draw();
else if (s.type == ShapeType.circle)
(s as Circle).Draw();

}
}

Marcin Młotkowski Metodyki zwinne wytwarzania oprogramowania 35 / 48

Zasada pojedynczej odpowiedzialności
Zasada otwarte–zamknięte
Zasada podstawiana Liskov

Kilka negatywnych przykładów

Implementacja klas

public class Circle : Shape
{
...
public Circle() : base(ShapeType.circle) {}
public void Draw() { ... }
}

public class Square : Shape
{
public Square() : base(ShapeType.square) {}
public void Draw() { ... }

}

Marcin Młotkowski Metodyki zwinne wytwarzania oprogramowania 36 / 48

Zasada pojedynczej odpowiedzialności
Zasada otwarte–zamknięte
Zasada podstawiana Liskov

Kilka negatywnych przykładów

Użycie

Chcemy uniknąć polimorficznych wywołan bo kosztowne...

Shape[] obrazek = new Shape[100];
...
foreach(Shape sh in Shape)
Shape.DrawShape(sh);

Ocena implementacji

Narusza zasadę otwarte–zamknięte

Marcin Młotkowski Metodyki zwinne wytwarzania oprogramowania 37 / 48

Zasada pojedynczej odpowiedzialności
Zasada otwarte–zamknięte
Zasada podstawiana Liskov

Kilka negatywnych przykładów

Użycie

Chcemy uniknąć polimorficznych wywołan bo kosztowne...

Shape[] obrazek = new Shape[100];
...
foreach(Shape sh in Shape)
Shape.DrawShape(sh);

Ocena implementacji

Narusza zasadę otwarte–zamknięte

Marcin Młotkowski Metodyki zwinne wytwarzania oprogramowania 37 / 48

Zasada pojedynczej odpowiedzialności
Zasada otwarte–zamknięte
Zasada podstawiana Liskov

Kilka negatywnych przykładów

Drugi błąd

Shape s = new Circle(ShapeType.circle);
s.Draw();

Shape s = new Shape(ShapeType.circle);
s.Draw();

Marcin Młotkowski Metodyki zwinne wytwarzania oprogramowania 38 / 48

Zasada pojedynczej odpowiedzialności
Zasada otwarte–zamknięte
Zasada podstawiana Liskov

Kilka negatywnych przykładów

Drugi błąd

Shape s = new Circle(ShapeType.circle);
s.Draw();

Shape s = new Shape(ShapeType.circle);
s.Draw();

Marcin Młotkowski Metodyki zwinne wytwarzania oprogramowania 38 / 48

Zasada pojedynczej odpowiedzialności
Zasada otwarte–zamknięte
Zasada podstawiana Liskov

Kilka negatywnych przykładów

Ciekawszy przykład

public class Rectangle
{
double width;
double height;

public double Width {
get { return width; }
set { width = value; }
}

public double Height {
get { return height; }
set { height = value; }
}

} Marcin Młotkowski Metodyki zwinne wytwarzania oprogramowania 39 / 48

Zasada pojedynczej odpowiedzialności
Zasada otwarte–zamknięte
Zasada podstawiana Liskov

Kilka negatywnych przykładów

Ciąg dalszy

Rozszerzamy implementację o Kwadraty.

Marcin Młotkowski Metodyki zwinne wytwarzania oprogramowania 40 / 48

Zasada pojedynczej odpowiedzialności
Zasada otwarte–zamknięte
Zasada podstawiana Liskov

Kilka negatywnych przykładów

Jak rozwinąć projekt

Square

Rectangle
double: Height
double: Width

kwadrat jest prostokątem;

ale w klasie Square nie
potrzebujemy tylu atrybutów!

Marcin Młotkowski Metodyki zwinne wytwarzania oprogramowania 41 / 48

Zasada pojedynczej odpowiedzialności
Zasada otwarte–zamknięte
Zasada podstawiana Liskov

Kilka negatywnych przykładów

Jak rozwinąć projekt

Square

Rectangle
double: Height
double: Width

kwadrat jest prostokątem;

ale w klasie Square nie
potrzebujemy tylu atrybutów!

Marcin Młotkowski Metodyki zwinne wytwarzania oprogramowania 41 / 48

Zasada pojedynczej odpowiedzialności
Zasada otwarte–zamknięte
Zasada podstawiana Liskov

Kilka negatywnych przykładów

A może tak

Rectangle

Square
double: Height
double: Width W kwadracie wysokość i szerokość

są równe, w prostokącie musimy
usunąć ten warunek;

musimy zmienić implementację
klasy Square (czego programiści
zwinni unikają).

Marcin Młotkowski Metodyki zwinne wytwarzania oprogramowania 42 / 48

Zasada pojedynczej odpowiedzialności
Zasada otwarte–zamknięte
Zasada podstawiana Liskov

Kilka negatywnych przykładów

A może tak

Rectangle

Square
double: Height
double: Width W kwadracie wysokość i szerokość

są równe, w prostokącie musimy
usunąć ten warunek;

musimy zmienić implementację
klasy Square (czego programiści
zwinni unikają).

Marcin Młotkowski Metodyki zwinne wytwarzania oprogramowania 42 / 48

Zasada pojedynczej odpowiedzialności
Zasada otwarte–zamknięte
Zasada podstawiana Liskov

Kilka negatywnych przykładów

Poprawiamy projekt

public class Square : Rectangle
{
public new double Width
{
set {
base.Width = value;
base.height = value;
}
}

public new double Height
{
set {
base.width = value;
base.height = value;
}
}
}

Marcin Młotkowski Metodyki zwinne wytwarzania oprogramowania 43 / 48

Zasada pojedynczej odpowiedzialności
Zasada otwarte–zamknięte
Zasada podstawiana Liskov

Kilka negatywnych przykładów

Czy to działa?

void obszar(Rectangle r)
{
r.Width = 4.0;
r.Height = 5.0;
if (r.Area() != 20.0)
throw new Exception("Nieprawidłowa metoda Area!");

}

obszar(new Square());

Marcin Młotkowski Metodyki zwinne wytwarzania oprogramowania 44 / 48

Zasada pojedynczej odpowiedzialności
Zasada otwarte–zamknięte
Zasada podstawiana Liskov

Kilka negatywnych przykładów

Czy to działa?

void obszar(Rectangle r)
{
r.Width = 4.0;
r.Height = 5.0;
if (r.Area() != 20.0)
throw new Exception("Nieprawidłowa metoda Area!");

}

obszar(new Square());

Marcin Młotkowski Metodyki zwinne wytwarzania oprogramowania 44 / 48

Zasada pojedynczej odpowiedzialności
Zasada otwarte–zamknięte
Zasada podstawiana Liskov

Kilka negatywnych przykładów

Morał

Nie można używać obiektów klasy Square zamiast Rectangle.

Szukanie winnego

klasa Rectangle?
klasa Square?
funkcja obszar?

Marcin Młotkowski Metodyki zwinne wytwarzania oprogramowania 45 / 48

Zasada pojedynczej odpowiedzialności
Zasada otwarte–zamknięte
Zasada podstawiana Liskov

Kilka negatywnych przykładów

Morał

Nie można używać obiektów klasy Square zamiast Rectangle.

Szukanie winnego

klasa Rectangle?
klasa Square?
funkcja obszar?

Marcin Młotkowski Metodyki zwinne wytwarzania oprogramowania 45 / 48

Zasada pojedynczej odpowiedzialności
Zasada otwarte–zamknięte
Zasada podstawiana Liskov

Kilka negatywnych przykładów

Analiza przypadków

Funkcja obszar

Wygląda na to, że programista użył prawidłowo interfejsu klasy
Rectangle.

Klasa Rectangle

?

Klasa Square

Programista zmodyfikował działanie metod.

Marcin Młotkowski Metodyki zwinne wytwarzania oprogramowania 46 / 48

Zasada pojedynczej odpowiedzialności
Zasada otwarte–zamknięte
Zasada podstawiana Liskov

Kilka negatywnych przykładów

Analiza przypadków

Funkcja obszar

Wygląda na to, że programista użył prawidłowo interfejsu klasy
Rectangle.

Klasa Rectangle

?

Klasa Square

Programista zmodyfikował działanie metod.

Marcin Młotkowski Metodyki zwinne wytwarzania oprogramowania 46 / 48

Zasada pojedynczej odpowiedzialności
Zasada otwarte–zamknięte
Zasada podstawiana Liskov

Kilka negatywnych przykładów

Analiza przypadków

Funkcja obszar

Wygląda na to, że programista użył prawidłowo interfejsu klasy
Rectangle.

Klasa Rectangle

?

Klasa Square

Programista zmodyfikował działanie metod.

Marcin Młotkowski Metodyki zwinne wytwarzania oprogramowania 46 / 48

Zasada pojedynczej odpowiedzialności
Zasada otwarte–zamknięte
Zasada podstawiana Liskov

Kilka negatywnych przykładów

Może klasa Square nie musi być podklasą Rectangle?

Marcin Młotkowski Metodyki zwinne wytwarzania oprogramowania 47 / 48

Zasada pojedynczej odpowiedzialności
Zasada otwarte–zamknięte
Zasada podstawiana Liskov

Kilka negatywnych przykładów

Zasada podstawiania Liskov

Definicja

Musi istnieć możliwość zastępowania typów bazowych ich
podtypami.

Marcin Młotkowski Metodyki zwinne wytwarzania oprogramowania 48 / 48

	Zasada pojedynczej odpowiedzialnosci
	Zasada otwarte–zamkniete
	Zasada podstawiana Liskov
	Kilka negatywnych przykładów

