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Single–Responsibility Principle (SRP)

Definicja

Za chwilę...
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Przykład

Prostokąt

+rysowanie()
+pole(): double

Aplikacja
graficzna

Interfejs
graficzny

Geomertia
obliczeniowa
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Co robi klasa Prostokąt

Geometria

Modeluje matematyczny obiekt prostokąt, dzięki czemu może
obliczyć jego pole.

Grafika

Wizualizuje prostokąt za pomocą interfejsu graficznego.
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Zmiana projektu

Zmiana interfejsu graficznego z 2D na 3D.

Zmiana wymaga

Ponowna implementacja metody rysowanie()

Konieczne

Skompilowanie, przetestowanie i wdrożenie Aplikacji
geometrycznej, czy przypadkiem coś się nie zmieniło.
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Zmiana projektu

Prostokąt

+rysowanie()

Aplikacja
graficzna

Interfejs
graficzny

Geomertia
obliczeniowa

ProstokątGeometryczny

+pole(): double
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Obserwacje

Zmiana projektu wymusiła zmiany tylko części klasy, tj. części
”graficznej”.

Może być druga przyczyna zmiany projektu: zmiana części
”geometrycznej”.
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Zasada pojedynczej odpowiedzialności

Definicja

Żadna klasa nie może być modyfikowana z więcej niż jednego
powodu.
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Inny przykład

Klasa Pracownik

+ ObliczPensję(): decimal
+ Zapisz()
+ EdycjaGUI()
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Tydzień temu na wykładzie:

Sztywność

Drobna zmiana w specyfikacji powoduje kaskadowe zmiany
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Cel

Chcemy aby:

rozbudowa systemu wymagała tylko dodawania kodu, a nie jego
modyfikacji.
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Zasada otwarte–zamknięte (open–close principle, OCP)

Definicja

Składniki oprogramowania (klasy, moduły, procedury etc.) muszą
być otwarte na rozbudowę, ale zamknięte na dla modyfikacji.
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Objaśnienia

Otwarte na rozszerzenia

łatwo rozbudować funkcjonalność modułu

Zamknięte na modyfikacje

Zmiany nie mogą skutkować modyfikacją kodu źródłowego, ani
nawet zmianami na poziomie binariów.
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Przykład niezgodności z zasadą OCP: architektura
klient-serwer

Dokument DotPrinter
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Kod źródłowy

public class DotPrinter {
...
}

public class Dokument {

public void drukuj(DotPrinter prn)
{
...
}
}

Wymiana sprzętu

public class LaserPrinter {
...
}
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Rozwiązanie nr 1: wzorzec projektowy Strategia

Dokument
<<interface>>
ClientInterface

DotPrinter
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Implementacja

public interface Printer {
...
}

public class DotPrinter : Printer {
...
}

public class Dokument {

public void drukuj(Printer prn)
{
...
}
}
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Rozwiązanie nr 2: wzorzec projektowy Template Method

DotPrinter

DrukarkaDokument
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Inny przykład złego projektu: figury geometryczne

enum ShapeType { circle, square };
typedef struct Shape *ShapePointer;

void DrawAllShapes(ShapePointer list[], int n)
{
int i;
for(i = 0; i < n; i++)
{
struct Shape *s = list[i];
switch (s->itsType)
{
case square:
DrawSquare( (struct Square*)s);
break;
case circle:
DrawCircle( (struct Circle*)s);
break;

}
}
}
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Ocena takiego systemu

Dodanie nowej figury, np. trójkąta:

wyszukanie wszystkich warunków sprawdzających typ figury;

konieczność ponownej kompilacji modułu i wszystkich
modułów zależnych;

konieczność ponownej instalacji bibliotek.
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Wady

Sztywność

Dodanie nowego elementu do wyliczenia wymusza serię działań:
kompilacja, testowanie, instalacja.

Wrażliwość

Rozszerzenie implementacji wymaga starannego przejrzenia kodu w
poszukiwaniu switch--case i if--else badających typ figury.
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Dobre rozwiązanie

public interface Shape
{
void Draw();
}

public class Square : Shape
{
public void Draw() { ... }
}

public class Circle : Shape
{
public void Draw() { ... }
}
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Zgodność z zasadą

Otwartość

Łatwość zmian w zakresie dodawania nowych figur.

Zamkniętość

Nie ma konieczności modyfikacji istniejącego kodu przy
rozbudowie.
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A jakie są wady

Trzeba przewidzieć kierunek zmian projektu.
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Kiedy ten projekt zawiedzie

Shape shapes[];

foreach (Shape sh in shapes)
sh.Draw();

Dodatkowe założenie

Chcemy, aby najpierw były kwadraty, a potem okręgi.

Smutny wniosek

Nie da się zaprojektować tak system, aby był otwarty na dowolne
zmiany.

Marcin Młotkowski Metodyki zwinne wytwarzania oprogramowania 27 / 48



Zasada pojedynczej odpowiedzialności
Zasada otwarte–zamknięte
Zasada podstawiana Liskov

Kiedy ten projekt zawiedzie

Shape shapes[];

foreach (Shape sh in shapes)
sh.Draw();

Dodatkowe założenie

Chcemy, aby najpierw były kwadraty, a potem okręgi.

Smutny wniosek

Nie da się zaprojektować tak system, aby był otwarty na dowolne
zmiany.

Marcin Młotkowski Metodyki zwinne wytwarzania oprogramowania 27 / 48



Zasada pojedynczej odpowiedzialności
Zasada otwarte–zamknięte
Zasada podstawiana Liskov

Kiedy ten projekt zawiedzie

Shape shapes[];

foreach (Shape sh in shapes)
sh.Draw();

Dodatkowe założenie

Chcemy, aby najpierw były kwadraty, a potem okręgi.

Smutny wniosek

Nie da się zaprojektować tak system, aby był otwarty na dowolne
zmiany.

Marcin Młotkowski Metodyki zwinne wytwarzania oprogramowania 27 / 48



Zasada pojedynczej odpowiedzialności
Zasada otwarte–zamknięte
Zasada podstawiana Liskov

Próba poprawienia

public interface Shape : IComparable
{
void Draw();
}

...
shapes.Sort();
foreach (Shape sh in shapes)
sh.Draw();
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Przypomnienie

public interface IComparable
{
int CompareTo(Object obj)
}
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Próba implemetacji

public class circle : Shape
{
public int CompareTo(object o)
{
if (o is Square)
return -1;
else
return 0;

}
}
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Ocena implementacji

Czy ta implementacja spełnia warunek ocp?
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Przewidywanie kierunku zmian

szybkie wydania;

szybkia prezentacja;
szybkie uzyskanie informacji zwrotnej od klienta.
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Oryginalne sformułowanie

Oczekujemy czegoś na kształt właściwości podstawienia:
jeżeli dla każdego obiektu o1 typu S istnieje taki obiekt
o2 typu T , że zachowanie wszystkich programów P
zdefiniowanych na bazie typu T nie zmieni się, jeśli obiekt
o1 zastąpimy obiektem o2, typ S jest podtypem typu T .

Barbara Liskov, 1988
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Pierwszy przykład: figury geometryczne

public enum ShapeType { square, circle };

public class Shape
{
private ShapeType type;
public Shape(ShapetType t) { this.type = t; }

public static void DrawShape(Shape s) {
if (s.type == ShapeType.square)
(s as Square).Draw();
else if (s.type == ShapeType.circle)
(s as Circle).Draw();

}
}
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Implementacja klas

public class Circle : Shape
{
...
public Circle() : base(ShapeType.circle) {}
public void Draw() { ... }
}

public class Square : Shape
{
public Square() : base(ShapeType.square) {}
public void Draw() { ... }

}
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Użycie

Chcemy uniknąć polimorficznych wywołan bo kosztowne...

Shape[] obrazek = new Shape[100];
...
foreach(Shape sh in Shape)
Shape.DrawShape(sh);

Ocena implementacji

Narusza zasadę otwarte–zamknięte

Marcin Młotkowski Metodyki zwinne wytwarzania oprogramowania 37 / 48
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Drugi błąd

Shape s = new Circle(ShapeType.circle);
s.Draw();

Shape s = new Shape(ShapeType.circle);
s.Draw();
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s.Draw();
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Ciekawszy przykład

public class Rectangle
{
double width;
double height;

public double Width {
get { return width; }
set { width = value; }
}

public double Height {
get { return height; }
set { height = value; }
}

} Marcin Młotkowski Metodyki zwinne wytwarzania oprogramowania 39 / 48
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Ciąg dalszy

Rozszerzamy implementację o Kwadraty.
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Jak rozwinąć projekt

Square

Rectangle
double: Height
double: Width

kwadrat jest prostokątem;

ale w klasie Square nie
potrzebujemy tylu atrybutów!
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A może tak

Rectangle

Square
double: Height
double: Width W kwadracie wysokość i szerokość

są równe, w prostokącie musimy
usunąć ten warunek;

musimy zmienić implementację
klasy Square (czego programiści
zwinni unikają).
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Poprawiamy projekt

public class Square : Rectangle
{
public new double Width
{
set {
base.Width = value;
base.height = value;
}
}

public new double Height
{
set {
base.width = value;
base.height = value;
}
}
}
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Czy to działa?

void obszar(Rectangle r)
{
r.Width = 4.0;
r.Height = 5.0;
if (r.Area() != 20.0)
throw new Exception("Nieprawidłowa metoda Area!");

}

obszar(new Square());
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Morał

Nie można używać obiektów klasy Square zamiast Rectangle.

Szukanie winnego

klasa Rectangle?
klasa Square?
funkcja obszar?
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Analiza przypadków

Funkcja obszar

Wygląda na to, że programista użył prawidłowo interfejsu klasy
Rectangle.

Klasa Rectangle

?

Klasa Square

Programista zmodyfikował działanie metod.
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Może klasa Square nie musi być podklasą Rectangle?
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Zasada podstawiania Liskov

Definicja

Musi istnieć możliwość zastępowania typów bazowych ich
podtypami.
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