Metodyki zwinne wytwarzania oprogramowania

Wyktad 7

Marcin Mtotkowski

23 listopada 2016

Zasada pojedynczej odpowiedzialnosci

Plan wyktadu

@ Zasada pojedynczej odpowiedzialnosci

Marcin Mtotkowski Metodyki zwinne wytwarzania oprogramowania 2/48

Zasada pojedynczej odpowiedzialnosci

Single—Responsibility Principle (SRP)

Za chwile...

Marcin Mtotkowski Metodyki zwinne wytwarzania oprogramowania 3/48

Zasada pojedynczej odpowiedzialnosci

Przyktad

Prostokat - Aplikacja
. graficzna
—+rysowanie()
+pole(): double f—m — J

r
1
1
1

| 1
1V
Interfejs
graficzny

Geomertia
obliczeniowa

Marcin Mtotkowski Metodyki zwinne wytwarzania oprogramowania 4/48

Zasada pojedynczej odpowiedzialnosci

Co robi klasa Prostokat

Geometria

Modeluje matematyczny obiekt prostokat, dzieki czemu moze
obliczy¢ jego pole.

Wizualizuje prostokat za pomoca interfejsu graficznego.

Marcin Mtotkowski Metodyki zwinne wytwarzania oprogramowania 5/48

Zasada pojedynczej odpowiedzialnosci

Zmiana projektu

Zmiana interfejsu graficznego z 2D na 3D. J

Marcin Mtotkowski Metodyki zwinne wytwarzania oprogramowania 6/48

Zasada pojedynczej odpowiedzialnosci

Zmiana projektu

Zmiana interfejsu graficznego z 2D na 3D. J

Zmiana wymaga

Ponowna implementacja metody rysowanie()

Marcin Mtotkowski Metodyki zwinne wytwarzania oprogramowania 6/48

Zasada pojedynczej odpowiedzialnosci

Zmiana projektu

Zmiana interfejsu graficznego z 2D na 3D. J

Zmiana wymaga

Ponowna implementacja metody rysowanie()

Skompilowanie, przetestowanie i wdrozenie Aplikacji
geometrycznej, czy przypadkiem co$ sie nie zmienito.

Marcin Mtotkowski Metodyki zwinne wytwarzania oprogramowania 6/48

Zasada pojedynczej odpowiedzialnosci

Zmiana projektu

ProstokatGeometryczny — Aplikacja
graficzna
+pole(): double I
T
I | -
1
1 | 1V
- ! Interfejs
| I graficzny
1
I Prostokat .

+rysowanie()

Geomertia
obliczeniowa

Marcin Mtotkowski Metodyki zwinne wytwarzania oprogramowania 7/48

Zasada pojedynczej odpowiedzialnosci

Obserwacje

Zmiana projektu wymusita zmiany tylko czesci klasy, tj. czesci
"graficznej”. ’

Moze by¢ druga przyczyna zmiany projektu: zmiana czesci
" geometrycznej”. ’

Marcin Mtotkowski Metodyki zwinne wytwarzania oprogramowania 8/48

Zasada pojedynczej odpowiedzialnosci

Zasada pojedynczej odpowiedzialnosci

Zadna klasa nie moze by¢ modyfikowana z wiecej niz jednego
powodu.

Marcin Mtotkowski Metodyki zwinne wytwarzania oprogramowania 9/48

Zasada pojedynczej odpowiedzialnosci

Inny przyktad

Klasa Pracownik

+ ObliczPensje(): decimal
+ Zapisz()

+ EdycjaGUI()

Marcin Mtotkowski Metodyki zwinne wytwarzania oprogramowania 10 /48

Zasada otwarte—zamkniete

Plan wyktadu

© Zasada otwarte—zamkniete

Marcin Mtotkowski Metodyki zwinne wytwarzania oprogramowania 11/48

Zasada otwarte—zamkniete

Tydzien temu na wyktadzie:

Drobna zmiana w specyfikacji powoduje kaskadowe zmiany

Marcin Mtotkowski Metodyki zwinne wytwarzania oprogramowania 12 /48

Zasada otwarte—zamkniete

rozbudowa systemu wymagata tylko dodawania kodu, a nie jego
modyfikacji.

Marcin Mtotkowski Metodyki zwinne wytwarzania oprogramowania 13 /48

Zasada otwarte—zamkniete

Zasada otwarte-zamkniete (open—close principle, OCP)

Sktadniki oprogramowania (klasy, moduty, procedury etc.) musza
by¢ otwarte na rozbudowe, ale zamkniete na dla modyfikacji.

Marcin Mtotkowski Metodyki zwinne wytwarzania oprogramowania 14 /48

Zasada otwarte—zamkniete

Objasnienia

Otwarte na rozszerzenia

tatwo rozbudowaé funkcjonalnos¢ modutu

Zamkniete na modyfikacje

Zmiany nie moga skutkowa¢ modyfikacja kodu zrédtowego, ani
nawet zmianami na poziomie binaridw.

Marcin Mtotkowski Metodyki zwinne wytwarzania oprogramowania

Zasada otwarte—zamkniete

Przyktad niezgodnosci z zasadg OCP: architektura
klient-serwer

Dokument ——{DotPrinter

Marcin Mtotkowski Metodyki zwinne wytwarzania oprogramowania 16 /48

Zasada otwarte—zamkniete

Kod zrédtowy

public class DotPrinter {
}
public class Dokument {

public void drukuj(DotPrinter prn)
{

Marcin Mtotkowski Metodyki zwinne wytwarzania oprogramowania 17 /48

Zasada otwarte—zamkniete

Kod zrédtowy

public class DotPrinter {
}
public class Dokument {

public void drukuj(DotPrinter prn)

(o)
- -

Wymiana sprzetu

public class LaserPrinter {

Marcin Mtotkowski Metodyki zwinne wytwarzania oprogramowania 17 /48

Zasada otwarte—zamkniete

Rozwigzanie nr 1: wzorzec projektowy Strategia

<<interface>>

L
Dokument ClientInterface

oo

DotPrinter

Marcin Mtotkowski Metodyki zwinne wytwarzania oprogramowania 18 /48

Zasada otwarte—zamkniete

Implementacja

public interface Printer {

}

public class DotPrinter : Printer {
}

public class Dokument {

public void drukuj(Printer prn)

{

Marcin Mtotkowski Metodyki zwinne wytwarzania oprogramowania 19 /48

Zasada otwarte—zamkniete

Rozwigzanie nr 2: wzorzec projektowy Template Method

Dokument Drukarka

DotPrinter

Marcin Mtotkowski Metodyki zwinne wytwarzania oprogramowania 20/48

Inny przyktad ztego projektu: figury geometryczne

enum ShapeType { circle, square };
typedef struct Shape *ShapePointer;

void DrawAllShapes(ShapePointer list[], int n)
{
int i;
for(i = 0; i < nj; i++)
{
struct Shape *s = list[i];
switch (s->itsType)
{
case square:
DrawSquare((struct Squarex)s);
break;
case circle:
DrawCircle((struct Circlex)s);
break;

Zasada otwarte—zamkniete

Ocena takiego systemu

Dodanie nowej figury, np. trdjkata:
@ wyszukanie wszystkich warunkéw sprawdzajacych typ figury;

@ konieczno$é ponownej kompilacji modutu i wszystkich
modutéw zaleznych;

@ konieczno$¢ ponownej instalacji bibliotek.

Marcin Mtotkowski Metodyki zwinne wytwarzania oprogramowania 22 /48

Zasada otwarte—zamkniete

Dodanie nowego elementu do wyliczenia wymusza serie dziatan:
kompilacja, testowanie, instalacja.

Marcin Mtotkowski Metodyki zwinne wytwarzania oprogramowania 23 /48

Zasada otwarte—zamkniete

Dodanie nowego elementu do wyliczenia wymusza serie dziatan:
kompilacja, testowanie, instalacja.

Rozszerzenie implementacji wymaga starannego przejrzenia kodu w
poszukiwaniu switch--case i if--else badajacych typ figury.

Marcin Mtotkowski Metodyki zwinne wytwarzania oprogramowania 23 /48

Zasada otwarte—zamkniete

Dobre rozwigzanie

public interface Shape

{

void Draw();
3
public class Square : Shape
{

public void Draw() { ... }
3
public class Circle : Shape
{

public void Draw() { ... }
b

Marcin Mtotkowski Metodyki zwinne wytwarzania oprogramowania 24 /48

Zasada otwarte—zamkniete

Zgodnos¢ z zasada

tatwosé zmian w zakresie dodawania nowych figur.

Marcin Mtotkowski Metodyki zwinne wytwarzania oprogramowania 25 /48

Zasada otwarte—zamkniete

Zgodnos¢ z zasada

tatwosé zmian w zakresie dodawania nowych figur.

Zamknietos¢

Nie ma konieczno$ci modyfikacji istniejacego kodu przy
rozbudowie.

Marcin Mtotkowski Metodyki zwinne wytwarzania oprogramowania 25 /48

Zasada otwarte—zamkniete

A jakie s3 wady

Marcin Mtotkowski Metodyki zwinne wytwarzania oprogramowania 26 /48

Zasada otwarte—zamkniete

A jakie s3 wady

Trzeba przewidzie¢ kierunek zmian projektu. J

Marcin Mtotkowski Metodyki zwinne wytwarzania oprogramowania 26 /48

Zasada otwarte—zamkniete

Kiedy ten projekt zawiedzie

Shape shapes[];

foreach (Shape sh in shapes)
sh.Draw() ;

Marcin Mtotkowski Metodyki zwinne wytwarzania oprogramowania 27 /48

Zasada otwarte—zamkniete

Kiedy ten projekt zawiedzie

Shape shapes[];

foreach (Shape sh in shapes)
sh.Draw() ;

Dodatkowe zatozenie

Chcemy, aby najpierw byty kwadraty, a potem okregi.

Marcin Mtotkowski Metodyki zwinne wytwarzania oprogramowania 27 /48

Zasada otwarte—zamkniete

Kiedy ten projekt zawiedzie

Shape shapes[];

foreach (Shape sh in shapes)
sh.Draw() ;

Dodatkowe zatozenie

Chcemy, aby najpierw byty kwadraty, a potem okregi.

Nie da sie zaprojektowaé tak system, aby byt otwarty na dowolne
zmiany.

Marcin Mtotkowski Metodyki zwinne wytwarzania oprogramowania 27 /48

Zasada otwarte—zamkniete

Préba poprawienia

public interface Shape : IComparable
{
void Draw();

3

shapes.Sort();
foreach (Shape sh in shapes)
sh.Draw() ;

Marcin Mtotkowski Metodyki zwinne wytwarzania oprogramowania 28 /48

Zasada otwarte—zamkniete

Przypomnienie

public interface IComparable

{
int CompareTo(Object obj)
}

Marcin Mtotkowski Metodyki zwinne wytwarzania oprogramowania 29 /48

Zasada otwarte—zamkniete

Préba implemetacji

public class circle : Shape
{
public int CompareTo(object o)
{
if (o is Square)
return -1;
else
return O;

Marcin Mtotkowski Metodyki zwinne wytwarzania oprogramowania 30/48

Zasada otwarte—zamkniete

Ocena implementacji

Czy ta implementacja spetnia warunek ocp? J

Marcin Mtotkowski Metodyki zwinne wytwarzania oprogramowania 31/48

Zasada otwarte—zamkniete

Przewidywanie kierunku zmian

@ szybkie wydania;

Marcin Mtotkowski Metodyki zwinne wytwarzania oprogramowania 32/48

Zasada otwarte—zamkniete

Przewidywanie kierunku zmian

@ szybkie wydania;
@ szybkia prezentacja;

Marcin Mtotkowski Metodyki zwinne wytwarzania oprogramowania 32/48

Zasada otwarte—zamkniete

Przewidywanie kierunku zmian

@ szybkie wydania;
@ szybkia prezentacja;
@ szybkie uzyskanie informacji zwrotnej od klienta.

Marcin Mtotkowski Metodyki zwinne wytwarzania oprogramowania 32/48

Kilka negatywnych przyktadéw
Zasada podstawiana Liskov

Plan wyktadu

© Zasada podstawiana Liskov
@ Kilka negatywnych przyktadéw

Marcin Mtotkowski Metodyki zwinne wytwarzania oprogramowania 33/48

Kilka negatywnych przyktadéw
Zasada podstawiana Liskov

Oryginalne sformutowanie

Oczekujemy czegos na ksztaft wtasciwosci podstawienia:
Jezeli dla kazdego obiektu oy typu S istnieje taki obiekt
0 typu T, ze zachowanie wszystkich programéw P
zdefiniowanych na bazie typu T nie zmieni sie, jesli obiekt
01 zastapimy obiektem op, typ S jest podtypem typu T.

Barbara Liskov, 1988

Marcin Mtotkowski Metodyki zwinne wytwarzania oprogramowania 34 /48

Kilka negatywnych przyktadéw
Zasada podstawiana Liskov

Pierwszy przyktad: figury geometryczne

public enum ShapeType { square, circle 1};

public class Shape
{
private ShapeType type;
public Shape(ShapetType t) { this.type = t; }

public static void DrawShape(Shape s) {
if (s.type == ShapeType.square)
(s as Square) .Draw();
else if (s.type == ShapeType.circle)
(s as Circle) .Draw();

Marcin Mtotkowski Metodyki zwinne wytwarzania oprogramowania 35/48

Kilka negatywnych przyktadéw
Zasada podstawiana Liskov

Implementacja klas

public class Circle : Shape
{

public Circle() : base(ShapeType.circle) {}
public void Draw() { ... }
}

public class Square : Shape

{
public Square() : base(ShapeType.square) {7}

public void Draw() { ... }

Marcin Mtotkowski Metodyki zwinne wytwarzania oprogramowania 36/48

Kilka negatywnych przyktadéw
Zasada podstawiana Liskov

Chcemy unikna¢ polimorficznych wywotan bo kosztowne...
Shape[] obrazek = new Shape[100];

foreach(Shape sh in Shape)
Shape .DrawShape (sh) ;

Marcin Mtotkowski Metodyki zwinne wytwarzania oprogramowania 37/48

Kilka negatywnych przyktadéw

Zasada podstawiana Liskov

Chcemy unikna¢ polimorficznych wywotan bo kosztowne...
Shape[] obrazek = new Shape[100];

foreach(Shape sh in Shape)
Shape .DrawShape (sh) ;

Ocena implementacji

Narusza zasade otwarte—zamkniete

Marcin Mtotkowski Metodyki zwinne wytwarzania oprogramowania 37/48

Kilka negatywnych przyktadéw
Zasada podstawiana Liskov

Drugi bfad

Shape s = new Circle(ShapeType.circle);
s.Draw();

Marcin Mtotkowski Metodyki zwinne wytwarzania oprogramowania 38/48

Kilka negatywnych przyktadéw
Zasada podstawiana Liskov

Drugi bfad

Shape s = new Circle(ShapeType.circle);
s.Draw(); ’

Shape s = new Shape(ShapeType.circle);
s.Draw(); J

Marcin Mtotkowski Metodyki zwinne wytwarzania oprogramowania 38/48

Kilka negatywnych przyktadéw
Zasada podstawiana Liskov

Ciekawszy przyktad

public class Rectangle

{
double width;
double height;

public double Width {
get { return width; }
set { width = value; }
}

public double Height {
get { return height; }
set { height = value; }
}

Marcin Mtotkowski Metodyki zwinne wytwarzania oprogramowania 39/48

Kilka negatywnych przyktadéw
Zasada podstawiana Liskov

Ciag dalszy

Rozszerzamy implementacje o Kwadraty. J

Marcin Mtotkowski Metodyki zwinne wytwarzania oprogramowania 40 /48

Kilka negatywnych przyktadéw
Zasada podstawiana Liskov

Jak rozwinac¢ projekt

Rectangle

double: Height
double: Width

@ kwadrat jest prostokatem:;

Square

Marcin Mtotkowski Metodyki zwinne wytwarzania oprogramowania 41/48

Kilka negatywnych przyktadéw
Zasada podstawiana Liskov

Jak rozwinac¢ projekt

Rectangle

double: Height
double: Width

@ kwadrat jest prostokatem:;

o ale w klasie Square nie
potrzebujemy tylu atrybutéw!

Square

Marcin Mtotkowski Metodyki zwinne wytwarzania oprogramowania

41/48

Kilka negatywnych przyktadéw
Zasada podstawiana Liskov

A moze tak

Square
ggﬂg:g; \l;lvel(lj%nt o W kwadracie wysokos¢ i szeroko$¢
sg réwne, w prostokacie musimy
usuna¢ ten warunek;
Rectangle

Marcin Mtotkowski Metodyki zwinne wytwarzania oprogramowania 42 /48

Kilka negatywnych przyktadéw
Zasada podstawiana Liskov

A moze tak

Square

ggﬂg:g; \l;lvel(lj%nt o W kwadracie wysokos¢ i szeroko$¢

sq réowne, w prostokacie musimy
usuna¢ ten warunek;

@ musimy zmieni¢ implementacje
Rectangle klasy Square (czego programisci
zwinni unikaja).

Marcin Mtotkowski Metodyki zwinne wytwarzania oprogramowania 42 /48

Kilka negatywnych przyktadéw
Zasada podstawiana Liskov

Poprawiamy projekt

public class Square : Rectangle

{
public new double Width
{
set {
base.Width = value;
base.height = value;
}
}

public new double Height
{
set {
base.width = value;
base.height = value;

Marcin Mtotkowski Metodyki zwinne wytwarzania oprogramowania 43 /48

Kilka negatywnych przyktadéw
Zasada podstawiana Liskov

Czy to dziata?

void obszar(Rectangle r)
{
r.Width = 4.0;
r.Height = 5.0;
if (r.Area() !'= 20.0)
throw new Exception("Nieprawidlowa metoda Area!");

Marcin Mtotkowski Metodyki zwinne wytwarzania oprogramowania 44 /48

Kilka negatywnych przyktadéw
Zasada podstawiana Liskov

Czy to dziata?

void obszar(Rectangle r)

{
r.Width = 4.0;
r.Height = 5.0;
if (r.Area() != 20.0)
throw new Exception("Nieprawidlowa metoda Area!");

obszar (new Square());

Marcin Mtotkowski Metodyki zwinne wytwarzania oprogramowania 44 /48

Kilka negatywnych przyktadéw
Zasada podstawiana Liskov

Nie mozna uzywac obiektéw klasy Square zamiast Rectangle.

Marcin Mtotkowski Metodyki zwinne wytwarzania oprogramowania 45 /48

Kilka negatywnych przyktadéw
Zasada podstawiana Liskov

Nie mozna uzywac obiektéw klasy Square zamiast Rectangle.

Szukanie winnego

@ klasa Rectangle?
o klasa Square?
o funkcja obszar?

Marcin Mtotkowski Metodyki zwinne wytwarzania oprogramowania 45 /48

Kilka negatywnych przyktadéw

Zasada podstawiana Liskov

Analiza przypadkéw

Funkcja obszar

Wyglada na to, ze programista uzyt prawidtowo interfejsu klasy
Rectangle.

Marcin Mtotkowski Metodyki zwinne wytwarzania oprogramowania 46 /48

Kilka negatywnych przyktadéw

Zasada podstawiana Liskov

Analiza przypadkéw

Funkcja obszar

Wyglada na to, ze programista uzyt prawidtowo interfejsu klasy
Rectangle.

Klasa Rectangle

Marcin Mtotkowski Metodyki zwinne wytwarzania oprogramowania 46 /48

Kilka negatywnych przyktadéw

Zasada podstawiana Liskov

Analiza przypadkéw

Funkcja obszar

Wyglada na to, ze programista uzyt prawidtowo interfejsu klasy
Rectangle.

Klasa Rectangle
?

Klasa Square

Programista zmodyfikowat dziatanie metod.

Marcin Mtotkowski Metodyki zwinne wytwarzania oprogramowania 46 /48

Kilka negatywnych przyktadéw
Zasada podstawiana Liskov

Moze klasa Square nie musi by¢ podklasa Rectangle?

Marcin Mtotkowski Metodyki zwinne wytwarzania oprogramowania 47 /48

Kilka negatywnych przyktadéw

Zasada podstawiana Liskov

Zasada podstawiania Liskov

Musi istnie¢ mozliwos¢ zastepowania typéw bazowych ich
podtypami.

Marcin Mtotkowski Metodyki zwinne wytwarzania oprogramowania 48 /48

	Zasada pojedynczej odpowiedzialnosci
	Zasada otwarte–zamkniete
	Zasada podstawiana Liskov
	Kilka negatywnych przykładów

