
Programowanie w Ruby
Wykład 4

Marcin Młotkowski

29 października 2018

Klasy i obiekty
Mixins

Uzupełnienie

Plan wykładu

1 Klasy i obiekty

2 Mixins

3 Uzupełnienie

Marcin Młotkowski Programowanie w Ruby 100 / 430

Klasy i obiekty
Mixins

Uzupełnienie

Deklaracja klasy

class Device

end

Marcin Młotkowski Programowanie w Ruby 101 / 430

Klasy i obiekty
Mixins

Uzupełnienie

Konstruktor

class Device
def initialize(name, type)

@name = name
@type = type

end
end

Marcin Młotkowski Programowanie w Ruby 102 / 430

Klasy i obiekty
Mixins

Uzupełnienie

Deklaracja metody

class Device
def initialize(name, type)

...
end

def to s
@name + ’ ’ + @type

end
end

Marcin Młotkowski Programowanie w Ruby 103 / 430

Klasy i obiekty
Mixins

Uzupełnienie

Utworzenie obiektu

pendrive = Device.new(’/dev/sdc’, ’kingston’)
puts pendrive.to s

Marcin Młotkowski Programowanie w Ruby 104 / 430

Klasy i obiekty
Mixins

Uzupełnienie

Dygresja

Konwencja

równoważne: puts pendrive.to s
puts pendrive

Marcin Młotkowski Programowanie w Ruby 105 / 430

Klasy i obiekty
Mixins

Uzupełnienie

Zmienne obiektu (zmienne instancyjne)

Składnia

@nazwa

Zmienne instancyjne są prywatne.

Marcin Młotkowski Programowanie w Ruby 106 / 430

Klasy i obiekty
Mixins

Uzupełnienie

Dostęp do zmiennych obiektu (akcesory)

class Device
def name

@name
end

def zmien nazwe(nowa)
@name = nowa

end
end

Marcin Młotkowski Programowanie w Ruby 107 / 430

Klasy i obiekty
Mixins

Uzupełnienie

Inny modyfikator

class Device
def name=(nowa)

@name = nowa
end

end

pendrive.name = ’Corsair’

Marcin Młotkowski Programowanie w Ruby 108 / 430

Klasy i obiekty
Mixins

Uzupełnienie

Deklaracja akcesorów

Deklaracja

class Device
attr reader :name

end

Równoważne

class Device
def name

@name
end

end

Marcin Młotkowski Programowanie w Ruby 109 / 430

Klasy i obiekty
Mixins

Uzupełnienie

Modyfikatory

Zamiast pisać tak

class Device
def name=(nowa)

@name = nowa
end

end

Można napisać tak

class Device
attr writer :name

end

Marcin Młotkowski Programowanie w Ruby 110 / 430

Klasy i obiekty
Mixins

Uzupełnienie

Akcesor odczyt/zapis

class Device
attr accessor :name

end

Marcin Młotkowski Programowanie w Ruby 111 / 430

Klasy i obiekty
Mixins

Uzupełnienie

Atrybuty wirtualne

class Device
attr reader :name
def long name

@type + ’--->’ + @name
end

Użycie

puts pendrive.name
puts pendrive.long name

Marcin Młotkowski Programowanie w Ruby 112 / 430

Klasy i obiekty
Mixins

Uzupełnienie

Atrybuty wirtualne

Implementacja obiektu reprezentującego temperaturę

class Temperatura
attr reader :temperatura

end

Skale temperaturowe:

Celsius
Kelvin
Fahrenheit
Reamur

Marcin Młotkowski Programowanie w Ruby 113 / 430

Klasy i obiekty
Mixins

Uzupełnienie

Atrybuty wirtualne

Implementacja obiektu reprezentującego temperaturę

class Temperatura
attr reader :temperatura

end

Skale temperaturowe:

Celsius
Kelvin
Fahrenheit
Reamur

Marcin Młotkowski Programowanie w Ruby 113 / 430

Klasy i obiekty
Mixins

Uzupełnienie

Skale temperaturowe

class Temperatura
attr accessor :kelvin
def celsius=(c)

@kelvin = 273.15 + c
end
def celsius

return @kelvin - 273.15
end
def fahrenheit=(f)

@kelvin = (f - 32) * (5/9) + 273.15
end
def fahrenheit

return (@kelvin - 273.15)*(9/5) + 32
end

end
Marcin Młotkowski Programowanie w Ruby 114 / 430

Klasy i obiekty
Mixins

Uzupełnienie

Przykłady użycia

t = Temperatura.new
t.kelvin = 273.15
puts ”Cels #{t.celsius}, fahr #{t.fahrenheit}”

Cels 0.0, fahr 32.0

Marcin Młotkowski Programowanie w Ruby 115 / 430

Klasy i obiekty
Mixins

Uzupełnienie

Metody singletonowe

t = Temperatura.new
t.kelvin = 273.15

Skala Reaumura

def t.reaumur; (@kelvin - 273.15)*(5/4) end

puts t.reaumur

Marcin Młotkowski Programowanie w Ruby 116 / 430

Klasy i obiekty
Mixins

Uzupełnienie

Zmienne i metody klasy (statyczne)

class Device
@@liczba = 0
def initialize

@@liczba = @@liczba + 1
end

def Device.licznik
@@liczba.to s

end
end

Marcin Młotkowski Programowanie w Ruby 117 / 430

Klasy i obiekty
Mixins

Uzupełnienie

Zmienne i metody klasy (statyczne)

class Device
@@liczba = 0
def initialize

@@liczba = @@liczba + 1
end
def Device.licznik

@@liczba.to s
end

end

Marcin Młotkowski Programowanie w Ruby 117 / 430

Klasy i obiekty
Mixins

Uzupełnienie

Kontrola dostępu do pól i metod

Zmienne klasy i obiektu są prywatne

Metody klasy i obiektu są publiczne

Marcin Młotkowski Programowanie w Ruby 118 / 430

Klasy i obiekty
Mixins

Uzupełnienie

Metody protected

Można korzystać w podklasach

Można korzystać w metodach obiektów tej samej klasy

Składnia

class Device
protected

def scan
end

def block
end
protected :block

end

Marcin Młotkowski Programowanie w Ruby 119 / 430

Klasy i obiekty
Mixins

Uzupełnienie

Metody prywatne

Można je wywoływać wyłącznie w postaci

self.metoda prywatna

Marcin Młotkowski Programowanie w Ruby 120 / 430

Klasy i obiekty
Mixins

Uzupełnienie

Deklarowanie podklasy

class Printer < Device

end

Marcin Młotkowski Programowanie w Ruby 121 / 430

Klasy i obiekty
Mixins

Uzupełnienie

Konstruktor w podklasie

class Printer < Device
def initialize(name, type, port)

super(name, type)
@port = port

end
end

Marcin Młotkowski Programowanie w Ruby 122 / 430

Klasy i obiekty
Mixins

Uzupełnienie

Dziedziczenie i przykrywanie metod

Przykład

class Device
def to s

...
end

end
class Printer < Device

...
end

iglowka = Printer.new(’biurkowa’, ’dot printer’, ’PRN:’)
puts iglowka # puts iglowka.to s

Wynik

’biurkowa dot printer’
Marcin Młotkowski Programowanie w Ruby 123 / 430

Klasy i obiekty
Mixins

Uzupełnienie

Ulepszenie metody to s

Pierwsza wersja

class Printer < Device
def to s

super.to s + ’#{@port}’
end

end

Druga wersja

class Printer < Device
def to s

super + ’#{@port}’
end

end

Marcin Młotkowski Programowanie w Ruby 124 / 430

Klasy i obiekty
Mixins

Uzupełnienie

Ulepszenie metody to s

Pierwsza wersja

class Printer < Device
def to s

super.to s + ’#{@port}’
end

end

Druga wersja

class Printer < Device
def to s

super + ’#{@port}’
end

end

Marcin Młotkowski Programowanie w Ruby 124 / 430

Klasy i obiekty
Mixins

Uzupełnienie

Na koniec o metodach

Wszystkie metody są wirtualne.

Marcin Młotkowski Programowanie w Ruby 125 / 430

Klasy i obiekty
Mixins

Uzupełnienie

Plan wykładu

1 Klasy i obiekty

2 Mixins

3 Uzupełnienie

Marcin Młotkowski Programowanie w Ruby 126 / 430

Klasy i obiekty
Mixins

Uzupełnienie

Co to jest mixin

Mixin – mechanizm włączania kodu modułu do deklaracji klasy

Marcin Młotkowski Programowanie w Ruby 127 / 430

Klasy i obiekty
Mixins

Uzupełnienie

Przykład

Zadanie

Zdefinowanie modułu do odczytywania stanu obiektu

Marcin Młotkowski Programowanie w Ruby 128 / 430

Klasy i obiekty
Mixins

Uzupełnienie

Implementacja modułu

module Debugger
def snapshot

puts ”Stan obiektu klasy #{self.class}”
for iv in self.instance variables

puts ”#{iv} = #{self.instance variable get(iv)}”
end

end
end

Marcin Młotkowski Programowanie w Ruby 129 / 430

Klasy i obiekty
Mixins

Uzupełnienie

”Wmiksowanie”modułu do klasy

class Drukarka < Device
include Debugger

...
end

Marcin Młotkowski Programowanie w Ruby 130 / 430

Klasy i obiekty
Mixins

Uzupełnienie

Zastosowanie

lokalna = Drukarka.new(’kuchenna’, ’hp5000N’, ’/dev/’)
lokalna.snapshot

Marcin Młotkowski Programowanie w Ruby 131 / 430

Klasy i obiekty
Mixins

Uzupełnienie

Inne zastosowania

Moduł (mixin) Comparable

implementuje operatory porównania <, <=, ==, >=, > i
metodę between?

wymaga implementacji operatora <=>

Marcin Młotkowski Programowanie w Ruby 132 / 430

Klasy i obiekty
Mixins

Uzupełnienie

Zastosowanie modułu Comparable

class Wektor
include Comparable
def <=> (aWektor)

zwraca -1 gdy self< aWektor, 0 lub 1
end

end

Zastosowanie

w1 = Wektor.new([3, -4, 5])
w2 = Wektor.new([-5, 12, -2])

w1 < w1
w1 >= w2

Marcin Młotkowski Programowanie w Ruby 133 / 430

Klasy i obiekty
Mixins

Uzupełnienie

Plan wykładu

1 Klasy i obiekty

2 Mixins

3 Uzupełnienie

Marcin Młotkowski Programowanie w Ruby 134 / 430

Klasy i obiekty
Mixins

Uzupełnienie

Wszystkie klasy są podklasami klasy Object

Metody klasy Object

class - klasa obiektu

instance variables

freeze

to s

i inne...

Marcin Młotkowski Programowanie w Ruby 135 / 430

Klasy i obiekty
Mixins

Uzupełnienie

Chwila rozrywki

(irb)> 5.class
Fixnum

(irb)> 5.class.class
Class
(irb)> 5.class.class.class
Class

Marcin Młotkowski Programowanie w Ruby 136 / 430

Klasy i obiekty
Mixins

Uzupełnienie

Chwila rozrywki

(irb)> 5.class
Fixnum
(irb)> 5.class.class
Class

(irb)> 5.class.class.class
Class

Marcin Młotkowski Programowanie w Ruby 136 / 430

Klasy i obiekty
Mixins

Uzupełnienie

Chwila rozrywki

(irb)> 5.class
Fixnum
(irb)> 5.class.class
Class
(irb)> 5.class.class.class
Class

Marcin Młotkowski Programowanie w Ruby 136 / 430

Klasy i obiekty
Mixins

Uzupełnienie

Zmiana implementacji istniejącej klasy

class Fixnum
def to s

return ”Niespodzianka!”
end

end

puts 5

Marcin Młotkowski Programowanie w Ruby 137 / 430

Klasy i obiekty
Mixins

Uzupełnienie

Zagnieżdżanie klasy w klasie

class A
class InA
end

end

x = A::InA.new

Marcin Młotkowski Programowanie w Ruby 138 / 430

Klasy i obiekty
Mixins

Uzupełnienie

Dostęp indeksowany

class MyArray
def [](i)

return ”Zażądano #{i}”
end
def []=(i, v)

puts ”[#{i}]= #{v}”
end

end

arr = MyArray.new
arr[234]
arr[34] = 16

Marcin Młotkowski Programowanie w Ruby 139 / 430

	Klasy i obiekty
	Mixins
	Uzupełnienie

