
Electronic Notes in Theoretical Computer Science 78 (2016)
URL: http://www.elsevier.nl/locate/entcs/volume78.html 8 pages

Implementation of Generalized Refocusing

Klara Zieli«ska Maªgorzata Biernacka

University of Wrocªaw, Poland

Abstract

na na
bla bla
bla
bla
bla

Keywords: reduction semantics, abstract machines, formal veri�cation, Coq

1 Introduction

Refocusing is a procedure that may be used to generate an e�cient evaluator
or an abstract machine from a properly stated reduction semantics.

Both evaluators and abstract machines that realize calculi based on rewrit-
ing systems � like a lambda calculus � are composed from a part that looks
for a redex and a part that rewrites a found redex. Generally, refocusing says
how to regenerate an e�cient former part from a grammar of evaluation con-
texts. This, in fact, gives almost an entire evaluator/abstract machine as the
latter part is just an application of the rewriting relation, which in most cases
may be copied with little or no changes from the reduction semantics.

The concept was �rst described by Danvy and Nielsen in [1] and revisited
in some later papers like [3,5] or [4] (the last one was a starting point for this
work).

The issue that we aim here is that the current statements of refocusing does
not support reduction semantics where grammars of contexts have multiple
context non-terminal symbols. Speci�cally, the original statement formulated
in [1] is ill-formed and interpreting it for such reduction semantics may lead

©2016 Published by Elsevier Science B. V.

http://www.elsevier.nl/locate/entcs/volume78.html

Zielinska, Biernacka

to incorrect evaluators 1 , whereas, other authors rather refer to the original,
then restate the term. Thus, up to our knowledge, there is no solution for the
problem.

Despite the lack of interest, the issue is signi�cant. It is because there is
at least one important class of languages, which require more then one non-
terminal context symbol to be de�ned as a reduction semantics. Namely, the
fully normalized lambda calculus and languages that are based on it (e.g., the
core language of Coq).

X

To show that the machines generated by our refocusing precisely realize
reduction semantics given as the input we developed a de�nition of following.
It appeared that this de�nition is an equivalent of the relation called �bisim-
ulations� in Hardin's and Maranget's paper [2], when we reason only about
deterministic systems (machines, semantics), still, we decided to go on with
our de�nition as it is more general. Particularly, it applies to any abstract
rewriting systems including non-deterministic ones.

Due to lack of space, we assume in this paper some general knowledge and
standard notations for contexts, terms and formal grammars.

2 Contexts

Evaluation contexts (also known as reduction contexts) are ubiquitous in the
work on operational semantics. As demonstrated by Danvy et al. they can
be mechanically obtained by defunctionalizing continuations of an interpreter
in the CPS form � one thus obtains the popular �inside-out� representation of
contexts [?].

Intuitively, the �inside-out� contexts are ordinary contexts where all edges
on the path from the root to the hole � in the tree-representation of a context
� have been reversed. If we do not reason about the grammars of contexts,
then the choice of representation is just an implementational issue of picking
an appropriate data structure to store contexts, and as such it does not a�ect
the mathematical de�nition of contexts. In case when we reason about the
grammars things change, as the grammars are in�uenced by this choice. Par-
ticularly, switching between these approaches closely corresponds to reversing
regular grammars on words.

The deterministic �inside-out� grammars are useful for many applications
(such as evaluation) where they allow to immediately determine the local
neighbourhood of the hole and the kind of its context.

1 The reader may check the problem by referring to [1], taking a grammar of contexts such
that C ::= [], D ::= c ([]) and C is the starting symbol, and then running the refocusing
procedure on (c (r) , []) for some redex r. Still, we have no space to put it properly.

2

Zielinska, Biernacka

E ::= []E | λx.E | F t | a E
F ::= []F | F t | a E

Figure 1. A grammar of contexts for lambda
calculus with the normal-order strategy accepted
by our refocusing; where t ranges over lambda
terms, a over neutral terms and E is the starting
symbol

E, λx. []

E, [] (λy.y)

F , x [] � top

Figure 2. Our representation of the context
λx.

(
x []E

)
(λy.y) w.r.t. the grammar from Fig.

1 is the pair of the hole kind, E, and the above
stack.

This property, however, does not scale to non-deterministic grammars.
Even if we determinize such a grammar, we may still need to scan a whole
context up to the root in order to determine the kind of context local at the
hole. (Consider, e.g., the following grammar: E ::= E [a []] | b [] , F ::=
F [a []] | [], where E, F are both start symbols.) Because reduction semantics
may depend on these kinds, such a representation is not good as a general
solution.

The problem can be solved by using ordinary grammars and represent-
ing contexts by their derivations � in the form of stacks of elementary con-
texts (also called context frames), where the head element corresponds to the
nearest surrounding of the hole, as in �inside-out� contexts. We �nd such a
representation optimal for our purposes: it is natural, it withstands deter-
minization, it requires only a small space overhead, which generally does not
change asymptotic size of contexts (if a grammar has not too many context
non-terminal symbols), the eventual overhead may be eliminated by an op-
timization of an abstract machine utilizing such context representation, and
the time complexity of operations on contexts is proper for the purpose of
evaluation.

In general, when we give a reduction semantics, we may introduce multiple
kinds of reductions � to be used depending on the kind of the current eval-
uation context. This naturally leads to grammars of contexts with multiple
starting symbols, where each of these symbols generate one kind of contexts.
However, the same behavior may also be achieved in grammars with a single
starting symbol by introducing multiple kinds of holes. So, instead of saying
that �we can use a reduction α in a context generated by a grammar A�, we
say that �we can use α in a context that has the hole []α�. It can be proved
that both these approaches are interchangeable. (Note that in Fig. 1 we do
not need more then one kind of reduction, but the holes are labeled for the
purpose of demonstration and to correspond to our refocusing method, which
we describe later.)

In our refocusing method we make use of the two assumptions stated in this
section, i. e., we use ordinary grammars of context with (possibly) multiple
kinds of holes and we represent contexts as stacks of context frames.

3

Zielinska, Biernacka

3 Refocusing

Our refocusing implementation translates a subset of reduction semantics to
deterministic abstract machines. The subset is determined by additional prop-
erties that need to be satis�ed. Probably, it is the set of all deterministic
reduction semantics, but we have not checked it, yet.

3.1 Preliminaries

An abstract rewriting system is a pair of a set T of arbitrary entities and a
binary relation → over them.

We assume that k, k′, l range over non-terminal context symbols in gram-
mars of contexts. The set of these symbols in a grammar C is denoted by CK
and the start non-terminal by Cinit.

Without loss of generality we assume that all grammars of contexts are
normalized, that is, for every production k → P , we have P = []k or P does
not contain a hole.

We write Ck for the grammar C where all productions containing holes,
except k → []k, have been removed; if C ∈ Ck, then we say, C has a hole of
the kind k.

3.2 Reduction semantics

A reduction semantics represented by our implementation is an abstract rewrit-
ing system with an additional grammar of contexts, C, and a set {⇀k |k ∈ CK}
of partial functions (cf. * in Sec. 5) on T , where T is a set of terms and
t1 → t2 ⇐⇒ t1 = C [t3] ∧ t2 = C [t4] ∧ t3 ⇀k t4 for some k, t3, t4 and
C ∈ L (Ck). In other words, the harpoon-arrows directly state the rewriting
rules � by some authors they are called contraction � and the full arrow
states the reduction relation. Beside of this rather standard de�nition our re-
duction semantics speci�es also a set of values, Vk, per each k ∈ CK. Generally,
values are irreducible terms that can occur in the holes with corresponding
labels. Irreducible terms that are not values represent error terms � e.g.,
2/0.

In order to apply our refocusing to such semantics the semantics must
be deterministic and the reduction must be computable. To satis�es these
properties one needs to provide: ⇀k as Coq functions, a computable DFS
evaluation strategy and proofs that guarantee that the strategy �nds all re-
dexes and always comes to an end. The depth-�rst search means here that
a strategy turns back only if it has checked all possible subterms and it has
found that the current term is a value. Strategies that satisfy the mentioned
properties will be called exhaustive.

4

Zielinska, Biernacka

[t1 t2]k ⇓ [t1]F t2
[x]k ⇓ value

[λx.t]E ⇓ λx. [t]E
[λx.t]F ⇓ value

[[a]F t]k ⇑ a [t]E
[a [v]E]k ⇑ value

[λx. [v]E]k ⇑ value

Figure 3. Strategy for the grammar in Fig. 1

In Fig. 3 we show a simpli�ed example of two partial functions that deter-
minate a strategy for the grammar from Fig. 1, which is appropriate for our
refocusing. The indexes represent the last context non-terminal symbol of the
current context derivation.

3.3 Abstract machines

Our abstract machines are abstract rewriting systems, where T is a set of
con�gurations, → is a computable (possibly) non-deterministic function (cf.
Sec. 4), and initial and �nal states are explicitly speci�ed.

We require→ to be a computable non-deterministic function to ensure that
machines are anyhow realistic, that is, they can be build in the real world.

Each machine that is a result of our refocusing has the same follow-
ing form. Each con�guration is a triple 〈t, C, k〉 or 〈C, k, v〉, where t is a
term, k is the last context non-terminal symbol in the derivation of a cur-
rent evaluation context, C is the stack representing the rest of the deriva-
tion (cf. Fig. 2) and v is a value from Vk. The initial con�gurations are
〈t, ε, Cinit〉; the �nal con�gurations are 〈ε, Cinit, v〉; and the transitions are:
〈t, C, k〉 → 〈C, k, t〉 if [t]k ⇓ value, 〈t, C, k〉 → 〈t′, C, k〉 if [t]k ⇓ undef.∧t ⇀k

t′, 〈t, C, k〉 → 〈t′, C (k, C0) , k
′〉 if [t]k ⇓ C0 [t

′]k′ , 〈C (l, C0) , k, v〉 →
〈C, l, C0 [v]〉 if [C0 [v]k]l ⇑ value, 〈C (l, C0) , k, v〉 → 〈t, l, C〉 if [C0 [v]k]l ⇑
undef.∧C0 [v]⇀l t, 〈C (l, C0) , k, v〉 → 〈t, C (l, C1) , k

′〉 if [C0 [v]k]l ⇑ C1 [t]k′
(we are sorry for the compressed presentation). In fact, k in 〈C, k, v〉 con�g-
urations has no computational meaning in our implementation, as the cor-
responding argument of ⇑ is always determined by others, and so it can be
removed from con�gurations.

3.4 An example of a generated machine

Let us generate a machine with our refocusing implementation for lambda
calculus with normal-order strategy. For simplicity, let us assume that we can
perform a substitution in a single contraction step.

The input reductions semantics is de�ned as follows: T is the set of lambda
terms, C is the grammar of contexts de�ned in Fig. 1, contractions are de�ned
as (λx.t1) t2 ⇀k t1 [x/t2] for k = E,F , the values VE are β-normal forms and

5

Zielinska, Biernacka

〈x, C, k〉 → 〈C, k, x〉
〈t1 t2, C, k〉 → 〈t1, C (k, [] t2) , F 〉
〈λx.t, C, E〉 → 〈t, C (E, λx. []) , E〉
〈λx.t, C, F 〉 → 〈C, F, λx.t〉

〈C (l, [] t2) , F, λx.t1〉 → 〈t1 [x/t2] , C, l〉
〈C (l, [] t2) , F, a〉 → 〈t2, C (l, a []) , E〉
〈C (l, a []) , E, v〉 → 〈C, l, a v〉

〈C (E, λx. []) , E, v〉 → 〈C, E, λx.v〉
Figure 4. Transitions of the machine generated for lambda calculus with normal-order

VF are neutral terms plus all lambda abstractions. The strategy is de�ned by
the functions in Fig. 3. Besides, we need to provide few additional de�nitions
and prove around 20 small lemmas that guarantee that our representation is
well-formed and that the strategy is exhaustive. Despite the number of the
lemmas they are, in deed, very small and mostly very simple to prove � i.e.,
only one proof even requires induction (it has two occurrences in the code,
but they are exactly the same).

The result machine is de�ned as described in the previous section, speci�-
cally, with C ::= ε | (E, λx. []) C | (E, a []) C | (E, [] t) D, D ::= ε | (F, a []) C | (F, [] t) D
and the transition relation shown in Fig. 4. Note that the behavior of the
machine, in deed, depends on non-terminals introduced in con�gurations by
two bottom transitions on the left and the top transition on the right. This
should give a taste that in general case we do need these non-terminals.

Still, in this case we can easily optimize the contexts, as we have a nice
grammar and every small (elementary) context in a derivation determines the
next non-terminal symbol. Hopefully, this somehow veri�es one of our claims
from Section ??.

3.5 Following

For every machine generated by our refocusing our implementation provides
a proof that the input reduction semantics is followed by this machine.

De�nition 3.1 An abstract rewriting system 〈T1,→〉 follows another system
〈T2,⇒〉 if there exists a surjection JK : T1 → T2 such that

(i) if t1 → t2, then Jt1K = Jt2K ∨ t1 ⇒ t2,

(ii) if s1 ⇒ s2, then for each t0 such that Jt0K = s1 there exists a sequence
t1 → · · · → tn+1, where Jt0K = · · · = JtnK and Jtn+1K = s2, and

(iii) there is no in�nite sequences t0 → t1 → . . . (silent loops), where JtnK��⇒ Jtn+1K
for all n.

As we mentioned, our following is a more general version of the, so-called,
�bisimulation� from Hardin's and Maranget's paper [2]. Precisely, it is very
easy to prove that they are equivalent for deterministic system; that they are
not equivalent for non-deterministic ones; and to show that the �bisimulation�

6

Zielinska, Biernacka

acts badly for non-deterministic systems.

4 Implementation

Our work is implemented as a library in Coq 8.5. We extensively use dependent
types to represent context derivations � what, however, does not introduce
much complication. We also use dependent types to describe paths in rewriting
systems, and subsets � these are harder to work with, but the core of the
library can be used without theses features.

The library contains some type classes, but we are going to reconsider this
feature, as we have encountered a serious problem related to them. Generally,
we have discovered that a user may easily and unwittingly break the algorithm
that search for class instances, by adding an instance that generates an in�nite
breach in the search tree (cf. the source-code �le Lib/Subset.v). We deeply
believe that the search algorithm should use BFS, not DFS like it does now,
to prevent such situations, and we generally discourage usage of type classes
until introducing a solution for this issue.

A little, unusual idea in our implementation is that we introduce com-
putable (possibly) non-deterministic functions. We represent these by Coq
functions that take an extra argument, called entropy. Intuitively, it repre-
sents a random pre�x of the tape of a non-deterministic Turing machine.

One another thing that we found slightly interesting is that we was able
to exploit computable predicates � predicates that satis�es: forall x, {P

x} + {~P x} � to de�ne types that properly represent subsets of other types
(cf. the source-code �le Lib/Subset.v). By �properly� we mean that they
contain at most one representation of each value of the original type.

5 Some conclusions and observations

Our implementation is powerful enough to generate many e�cient abstract
machines, like CEK or Krivine machine � not a new result � and machines for
full β-normalization � a new result. However, it does not support reduction
semantics with advanced control �ow, like call/cc, and adding it is a future
work.

The decision of not-using �inside-out� grammars has an impact on the
size of states of generated machines � which stands in favor of the �inside-
out� grammars. Nevertheless, the overhead may be eliminated by an easy
optimization of the result machines, so we do not consider this a problem.

(*) The contractions, ⇀k, in our reduction semantics should be relations,
not partial functions. The current state is inherited form an earlier version.

X

7

Zielinska, Biernacka

References

[1] Olivier Danvy and Lasse R. Nielsen. Refocusing in reduction semantics, 2004.

[2] Thérèse Hardin and Luc Maranget. Functional runtime systems within the lambda-sigma
calculus. J. Funct. Program., 8(2):131�176, 1998.

[3] J. Johannsen. On Computational Small Steps and Big Steps: Refocusing for Outermost
Reduction. Department O�ce Computer Science, Aarhus University, 2015.

[4] Filip Sieczkowski, Malgorzata Biernacka, and Dariusz Biernacki. Automating derivations of
abstract machines from reduction semantics: - A generic formalization of refocusing in coq. In
Implementation and Application of Functional Languages - 22nd International Symposium, IFL
2010, Alphen aan den Rijn, The Netherlands, September 1-3, 2010, Revised Selected Papers,
pages 72�88, 2010.

[5] Wouter Swierstra. From mathematics to abstract machine: A formal derivation of an executable
krivine machine. In Proceedings Fourth Workshop on Mathematically Structured Functional
Programming, MSFP 2012, Tallinn, Estonia, 25 March 2012., pages 163�177, 2012.

8

	Introduction
	Contexts
	Refocusing
	Preliminaries
	Reduction semantics
	Abstract machines
	An example of a generated machine
	Following

	Implementation
	Some conclusions and observations
	References

