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Abstract

Past attempts to apply Girard’s linear logic have
either had a clear relation to the theory (Lafont,
Holmström, Abramsky) or a clear practical value
(Guzmán and Hudak, Wadler), but not both. This
paper defines a sequence of languages based on lin-
ear logic that span the gap between theory and
practice. Type reconstruction in a linear type sys-
tem can derive information about sharing. An ap-
proach to linear type reconstruction based on use

types is presented. Applications to the array up-

date problem are considered.

1 Introduction

Storage reuse; single threading; in-place update;
sharing analysis; linearity: any problem with so
many names must be important. Girard’s lin-
ear logic has intrigued computer scientists with its
promise to focus new light on this old subject. (It
also hints at enlightenment with regard to paral-
lelism, but that’s a topic for other papers.)

Attempts to apply linear logic fall into two
camps, the theoreticians and the practitioners. On
the theoretical side sit Lafont [Laf88], Holmström
[Hol88], and Abramsky [Abr90]. Their languages
correspond to linear logic in a precise way, via
the Curry-Howard isomorphism. On the practical
side sit Guzmán and Hudak [GH90] and Wadler
[Wad90]. Their languages are inspired by linear

∗Author’s address: Department of Computing Science,
University of Glasgow, G12 8QQ, Scotland. Electronic mail:
wadler@dcs.glasgow.ac.uk.

Appears in ACM/IFIP Symposium on Partial Evaluation
and Semantics Based Program Manipulation (PEPM), Yale
University, June 1991.

logic, but the connection is of a vaguer and looser
kind. (Another practioner is Wakeling, who has
implemented Wadler’s system [Wak90].)

The goal of this paper is to build a bridge be-
tween the camps. It begins by defining a lan-
guage that corresponds closely to linear logic; it is a
slight variation of a language described by Abram-
sky [Abr90]. The suitability of this language for
practical purposes is examined, and it is found to
be lacking in some respects. Variants of the lan-
guage are defined to remedy these shortcomings.
One variant, motivated by the standard encoding
of intuitionistic logic into linear logic, is found to
closely resemble aspects of [GH90]. Another vari-
ant, motivated by restrictions on the Promotion
and Dereliction rules of linear logic, is found to
closely resemble aspects of [Wad90].

A desirable property of a type system is the pos-
session of a most general, or principal, type for
each typable term. The basic linear type system
appears not to have this property. To achieve it,
linear types are augmented with a notion of use

variables, which indicate presence or absence of the
of course operator of linear logic. A similar, but
more general, form of use appears in [GH90].

The main application of linear logic that we will
consider is the array update problem. A value com-
puted in an implementation of a functional lan-
guage is linear if there is exactly one pointer to
it. It is safe to deallocate the storage occupied by
a linear value as soon as the value has been ac-
cessed, or, equivalently, to reuse the storage. This
is particularly useful in the case of arrays, which
are finite maps from indices to values. A common
operation is update: given an array, an index, and
a value, return an array identical to that given ex-
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Intuitionistic types (§2, Fig. 2)
↓

Linear types (§3, Fig. 3) −→ Steadfast types (§7, Fig. 8)
↓ ↓

Use types (§5, Fig. 5) Steadfast use types (§7)
↓ ↓

Standard types (§6, Fig. 6) Steadfast standard types (§7, Fig. 9)

Figure 1: A road map

cept the given index maps to the given value. If
implemented naively, this requires copying the en-
tire array; but if the array is linear, it may be im-
plemented by overwriting the store at the location
corresponding to the given index.

Interest in the update problem dates back to the
pioneering work of Darlington and Burstall [DB76].
Syntactic constraints that guarantee the safety
of in-place update were suggested by Schmidt
[Sch85], and a variety of semantic analysis tech-
niques have been proposed, notably by Hudak and
Bloss [Hud86, Blo89].

The thrust of this paper, as well as of the other
attempts to apply linear logic [GH90, Wad90], is to
use type reconstruction rather than semantic anal-
ysis to determine when in-place update is safe. The
prototypical example of type reconstruction is the
Hindley-Milner algorithm [Hin69, Mil78, DM82];
another example from which we will draw inspira-
tion is Mitchell’s work on subtypes [Mit84, Mit91].
A related notion is the use of type reconstruction
to perform strictness analysis [KM89, Wri89].

To simplify the presentation, “let” terms will
not be considered, although they play a key role
in polymorphic type inference. A similar simplify-
ing assumption is made by Mitchell [Mit84, Mit91]
and by Guzmán and Hudak [GH90]. Adding “let”
terms appears to require more bookkeeping, but
does not appear to introduce fundamentally new
issues.

The treatment given here says nothing about
“read only” types, although they are central to the
work in [GH90] and [Wad90]. To find a more formal
relation between “read only” types and Girard’s

linear logic remains an interesting task for future
work.

The remainder of this paper is organised as fol-
lows.

Section 2 presents the usual simply typed lambda
calculus and its correspondence to intuitionistic
logic. The role of the Weakening and Contraction
rules is stressed.

Section 3 modifies this language to instead corre-
spond to linear logic. The Promotion and Derelic-
tion rules are presented, and turn out to have sur-
prising (and not entirely pleasant) consequences.
An application to the array update problem is
given.

Section 4 describes the standard mapping of in-
tuitionistic logic into linear logic.

Section 5 explains why the simple linear system
is unsuited to finding principal types, and intro-
duces a variant that is better suited, based on the
notion of use types.

Section 6 focuses on a standard form for linear
types, motivated by the encoding of Section 4. This
system possesses principal types, and a type re-
construction algorithm is presented. This variant
turns out to correspond closely to [GH90].

Section 7 presents a different branch of devel-
opment for the linear type system. The use of
Promotion and Dereliction is restricted, resulting
in a steadfast type system. Use types, standard
types, and the type reconstruction algorithm adopt
straightforwardly to steadfast types. This variant
turns out to correspond closely to [Wad90].

A road map through the various type systems
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appears in Figure 1.

2 Intuitionistic types

We begin with the simply typed lambda calculus,
which corresponds to intuitionistic logic. The pre-
sentation differs from some others in that it focuses
attention on the structural rules, which assume a
particular significance for linear logic.

A type is a type variable, function, product, or
sum:

T ,U ,V ::=
X | (U → V ) | (U ×V ) | (U +V ).

Let X ,Y ,Z range over type variables, and T ,U ,V

range over types.

A term is an individual variable or an introducer
or eliminator of a function, product, or sum type:

t , u, v ::=
x

| (λx . v) | (t u)
| (u, v) | (case t of {(x , y) → w})
| (inl u) | (inr v)
| (case t of {inl x → u; inr y → v}).

Let x , y , z range over individual variables and
t , u, v range over terms.

An assumption list pairs individual variables
with types:

A,B ::= x1 : T1 , . . . , xn : Tn .

Here n ≥ 0 and each of the xi is distinct. Let A and
B range over assumption lists. The order of entries
in an assumption list is, as we shall see, irrelevant.

A typing judgement takes the form

A ⊢ t : T .

This may be read “Under assumptions A the term
t has type T .”

The inference rules for assigning types to terms
are shown in Figure 2. The rules come in two fam-
ilies. The first four rules are structural, and deal
with variables. The remaining rules are logical, and
deal with all other terms; like the terms, the rules
come in introduction and elimination pairs.

Concatenation of assumption lists is written with
a comma, and implies that the two lists refer to
disjoint sets of individual variables. Hence, in the
→-I rule, the appearance of A, x : U means that x
cannot also appear in A; this sometimes appears as
an explicit side-condition in other presentations. In
the →-E rule, the appearance of A,B means that
t and u must have disjoint sets of free variables.
This may seem too restrictive, but we shall see that
Contraction allows variables to be shared in the
usual way.
The structural rules allow fine control over the

usage of variables; and we will take advantage of
this control shortly, to design a linear type system.
The Id rule is like a tautology. The Exchange rule
encodes the fact that order of variables in an as-
sumption list is irrelevant.
The Weakening rule allows a variable to be dis-

carded. In other presentations of simply typed
lambda calculus, the rule for variables looks like
this:

A, x : U ⊢ x : U .

This is mimicked in the system given here as fol-
lows: use the Id rule followed by one application of
weakening for each assumption in A.
The Contraction rule allows a variable to be

shared. The notation v z ,z
x ,y stands for the term v

with each free occurrence of x and y replaced by
z . Here x and y are introduced for technical con-
venience, to maintain the invariant that a variable
appears in an assumption list only once. In other
presentations of simply typed lambda calculus, the
rule for function application looks like this:

A ⊢ t : (U → V ) A ⊢ u : U

A ⊢ (t u) : V
.

This is mimicked in the system given here as fol-
lows. Let z be a list of all the variables in the
domain of A, and let x and y be two lists of fresh
variable names of the same length as z. Then we
have:

→-E
Ax

z
⊢ tx

z
: (U → V ) Ay

z
⊢ uy

z
: U

Cont
Ax

z
,Ay

z
⊢ (tx

z
uy

z
) : V )

A ⊢ (t u) : V .

The last line applies Contraction once for each vari-
able in A; observe that (tx

z
uy

z
)z,z
x,y

= (t u).
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Id
x : U ⊢ x : U

Exchange
A, x : U , y : V ,B ⊢ w : W

A, y : V , x : U ,B ⊢ w : W

Weakening
A ⊢ v : V

A, x : U ⊢ v : V
Contraction

A, x : U , y : U ⊢ v : V

A, z : U ⊢ v z ,z
x ,y : V

→-I
A, x : U ⊢ v : V

A ⊢ (λx . v) : (U → V )
→-E

A ⊢ t : (U → V ) B ⊢ u : U

A, B ⊢ (t u) : V

×-I
A ⊢ u : U B ⊢ v : V

A, B ⊢ (u, v) : (U ×V )
×-E

A ⊢ t : (U ×V ) B , x : U , y : V ⊢ w : W

A,B ⊢ (case t of {(x , y) → w}) : W

+-I
A ⊢ u : U

A ⊢ (inl u) : (U +V )

A ⊢ v : V

A ⊢ (inr v) : (U + V )

+-E
A ⊢ t : (U + V ) B , x : U ⊢ u : W B , y : V ⊢ v : W

A,B ⊢ (case t of {inl x → u; inr y → v}) : W

Figure 2: Rules for intuitionistic types

The Curry-Howard isomorphism. Take an infer-
ence rule for simply typed lambda calculus and
erase all the variables and terms: the result is a
rule of intuitionistic logic. For instance, the →-I
and →-E rules yield the deduction rule and modus
ponens:

→-I
A,U ⊢ V

A ⊢ (U → V )
,

→-E
A ⊢ (U → V ) A ⊢ U

A ⊢ V
.

One reads → as “implies”, × as “and”, + as “or”.
Every typing of a term maps into a proof of the cor-
responding proposition, and every proof of a propo-
sition maps into a typing of a corresponding term.
This remarkable correspondence between types and
logic was observed by Curry [Cur58] and refined by
Howard [How80].

It is instructive to consider the effect of the
Curry-Howard isomorphism on the structural rules:

Id
U ⊢ U

, Exch
A, U , V , B ⊢ W

A, V , U , B ⊢ W
,

Weak
A ⊢ W

A, U ⊢ W
, Cont

A, U , U ⊢ W

A, U ⊢ W
.

Id is an obvious tautology. Exchange says that the
the order of hypotheses is irrelevant. Weakening
says that a hypothesis can be ignored. Contraction
says that a hypothesis can be used twice.

Weakening corresponds to discarding the value
of a variable, and Contraction corresponds to using
it twice. These are exactly the things we wish to
restrict, and linear types provide a way of doing so.
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Id
x : U ⊢ x : U

Exchange
A, x : U , y : V ,B ⊢ w : W

A, y : V , x : U ,B ⊢ w : W

Promotion
(!A) ⊢ v : V

(!A) ⊢ v : (!V )
Dereliction

A, x : U ⊢ v : V

A, x : (!U ) ⊢ v : V

Weakening
A ⊢ v : V

A, x : (!U ) ⊢ v : V
Contraction

A, x : (!U ), y : (!U ) ⊢ v : V

A, z : (!U ) ⊢ v z ,z
x ,y : V

−◦-I
A, x : U ⊢ v : V

A ⊢ (λx . v) : (U −◦V )
−◦-E

A ⊢ t : (U −◦V ) B ⊢ u : U

A, B ⊢ (t u) : V

⊗-I
A ⊢ u : U B ⊢ v : V

A, B ⊢ (u, v) : (U ⊗V )
⊗-E

A ⊢ t : (U ⊗V ) B , x : U , y : V ⊢ w : W

A,B ⊢ (case t of {(x , y) → w}) : W

⊕-I
A ⊢ u : U

A ⊢ (inl u) : (U ⊕V )

A ⊢ v : V

A ⊢ (inr v) : (U ⊕ V )

⊕-E
A ⊢ t : (U ⊕ V ) B , x : U ⊢ u : W B , y : V ⊢ v : W

A,B ⊢ (case t of {inl x → u; inr y → v}) : W

Figure 3: Rules for linear types

3 Linear types

What a simple world it would be, if only it were
not for Weakening and Contraction!

Without Weakening, no value could be dis-
carded. Lazy evaluation is no longer required, be-
cause no computation can be ignored. Without
Contraction, no value could be duplicated. Over-
writing (one of the trickiest bits of graph reduction)
is no longer required, because no computation can
be shared. Each value has exactly one pointer to
it. Garbage collection is no longer required, be-
cause each value can be deallocated (or reused) at
the sole place it is accessed.

The only defect in this marvelously simple world

is that it is too simple: it is impossible to write
even the function that squares a number.

We cannot afford to get rid of Weakening and
Contraction outright, but we can at least bell the
cat. The linear type system introduces a new
type constructor, written “!” and pronounced “of
course!”. Only variables with types of the form
(!U ) may have Weakening or Contraction applied
to them. Types in the form (!U ) will be called
nonlinear, and all other types will be called linear;
but the name linear type system encompasses both
sorts of types. The intuition is that values of non-
linear type may be shared, while others may not;
so the presence of sharing is explicitly indicated
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by “!”. (The real story is a bit more complex than
this, as we shall see.)

Linear types. In the linear type system, functions
are written with −◦ instead of →, products with ⊗
instead of ×, and sums with ⊕ instead of +. Thus,
the full grammar of linear types is given by:

T ,U ,V ::=
X | (!U ) | (U −◦V ) | (U ⊗V ) | (U ⊕V ).

In Girard’s linear logic there is a second form of
linear product, written &, but that will not be used
here.

The inference rules for assigning types to terms
are shown in Figure 3. These rules are identical to
those given previously (modulo a change in sym-
bol names), with the exception of the four rules
concerned with “!” types: Promotion, Dereliction,
Weakening, and Contraction.

Promotion is an !-Introduction rule, while
Dereliction, Weakening, and Contraction are !-
Elimination rules. The introduction rule (Promo-
tion) states that a value may be shared if all of
its free variables may be shared. Here the nota-
tion (!A) stands for an assumption list in the form
x1 : (!U1 ), . . . , xn : (!Un). A value should not be
shared if it has a free variable of linear type, be-
cause sharing the value would, indirectly, create
shared pointers to the linear value, and this should
not happen. The three elimination rules corre-
spond to possible uses of a value of type (!U ): it
may be used exactly once (Dereliction), not at all
(Weakening), or many times (Contraction).

The system described here is nearly identical
to that given by Abramsky [Abr90], the only dif-
ference being that Abramsky introduces four new
term forms that correspond to the Promotion,
Dereliction, Weakening, and Contraction rules,
just as lambda abstraction and application corre-
spond to the →-I and →-E rules. These term forms
are omitted here because our interest is in assign-
ing a linear type to a term expressed in the usual
lambda calculus. Nonetheless, this type system
corresponds precisely to the linear logic of Girard,
via the Curry-Howard isomorphism.

Examples. Here is one detailed example to show
how the Dereliction and Contraction rules are used.

Consider the typing:

λf . λx . f (f x ) : !(X −◦X )−◦X −◦X .

(Parentheses are omitted according to convention:
−◦ associates to the right, and ! binds more tightly
than −◦.) First, use Id and −◦-E to derive a type
for the term f (f ′ x ), where one occurrence of f has
been replaced by f ′. Second, the criticial part of the
derivation. Write F as an abbreviation for the type
(X −◦X ). Then use Dereliction (twice) followed by
Contraction:

Der
f : F , f ′ : F , x : X ⊢ f (f ′ x ) : X

Cont
f : !F , f ′ : !F , x : X ⊢ f (f ′ x ) : X

f : !F , x : X ⊢ f (f x ) : X .

Third, use −◦-I twice to yield the typing given
above. Here Contraction is essential because f is
used twice, and Dereliction is essential to strip the
“!” off the type of f so that the −◦-E rule applies.
The combinators provide an instructive set of ex-

amples, as shown in Figure 4. Combinators I, B,
and C can be typed without recourse to “!”; the
!Y in the type of K allows Weakening, required be-
cause y is never used; and the !X in the type of S al-
lows Contraction, required because x is used twice.
A term containing only variables, function abstrac-
tions, and function applications can be typed with-
out recourse to “!” exactly when it can be can be
compiled into combinators using I, B, and C with-
out recourse to K and S.
A term can be assigned more than one type.

Consider the term

λf . λx . f x .

Among the types for this term are the following:

(X −◦Y )−◦X −◦Y ,

(X −◦Y )−◦ !X −◦Y ,

!(X −◦Y )−◦X −◦Y ,

!(X −◦Y )−◦ !X −◦ !Y .

The first typing requires only the Id, −◦-E, and−◦-I
rules. The second and third typings use Dereliction
on x and f respectively. The fourth typing uses
Dereliction on both f and x , and then Promotion
on (f x ). A type that this term does not possess is:

(X −◦Y )−◦ !X −◦ !Y .
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λx . x = I : X −◦X ,

λg . λf . λx . g (f x ) = B : (Y −◦ Z )−◦ (X −◦Y )−◦X −◦ Z ,

λf . λx . λy . f y x = C : (Y −◦X −◦ Z )−◦X −◦Y −◦ Z ,

λx . λy . x = K : X −◦ !Y −◦X ,

λf . λg . λx . f x (g x ) = S : (!X −◦Y −◦ Z )−◦ (!X −◦Y )−◦ !X −◦ Z .

Figure 4: Example: Combinators

Promotion cannot be used here, because in the
assumption list for f x there will be a variable
(namely f ) whose type does not begin with “!”.
The existence of multiple typings raises the ques-

tion: is there a “most general” type that can be
assigned to a term? This is the subject of Sections
5 and 6.

What linearity does and doesn’t mean. The guiding
intuition behind this type system is that sharing is
explicitly indicated by the use of nonlinear types.
One would expect, therefore, that a value of linear
type will have exactly one pointer to it. Unfortu-
nately, this is not quite what happens.
The difficulty is with the Dereliction rule. On

the surface of it, Dereliction seems eminently rea-
sonable: it expresses the idea that one thing you
may do with a variable of nonlinear type is to use
it exactly once. Similarly, Weakening expresses the
idea that you may use it not at all; and Contrac-
tion expresses the idea that you may use it many
times.
Without Dereliction there would be no way to re-

move “!” from a type, and hence no way to use any
of the elimination rules on nonlinear types. Con-
sider again the typing of:

λf . λx . f (f x ) : !(X −◦X )−◦X −◦X .

Clearly f is nonlinear. But in order to type each
of the applications of f , we must treat f as if it
has type X −◦ X , not type !(X −◦ X ). (The −◦-E
rule can be used with the former type but not the
latter.) This is what Dereliction enables us to do.
But here’s the rub: Dereliction means one cannot

guarantee that a value of linear type always has

exactly one pointer to it. In the example above,
f has linear type at the point of application, but
since f “really” has nonlinear type, there may be
more than one pointer to it. As a further example,
consider the valid typing:

λf . λg . λx . (f x , g x ) :
(X −◦Y )−◦ (X −◦ Z )−◦ !X −◦ (Y ⊗ Z ).

Here, f and g each take arguments of linear type.
But, thanks to Dereliction, they can each be passed
the argument x of nonlinear type.

Does this mean that linearity is useless for prac-
tical purposes? Not completely. Dereliction means
we cannot guarantee a priori that a variable of lin-
ear type has exactly one pointer to it. But if we
know this by other means, then linearity guaran-
tees that the pointer will not be duplicated or dis-
carded.

Arrays. In-place update of arrays can be supported
as follows. Assume a linear array type Arr , with
indices of type !Ix and values of type !Val (the in-
dex and value types must be nonlinear, because we
can access each several times). The following op-
erations are provided:

block : !(!Val −◦ (Arr −◦ (X ⊗Arr))−◦X ),
lookup : !(!Ix −◦Arr −◦ (!Val ⊗Arr)),
update : !(!Ix −◦ !Val −◦Arr −◦Arr).

The block operation creates an array, initialises
each location to the given value, and passes it to
the given function; this function returns the final
array paired with a value of type X ; the array is
deallocated and the value of type X is returned.
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The function is passed the only pointer to the ar-
ray, and the array has linear type, so it is guar-
anteed that the pointer is not duplicated and in-
place update is safe. Pointers of linear type cannot
be discarded, so the lookup operation must return,
in addition to the value looked up, the pointer to
the given array. This is just as well: since there is
only one pointer, if it was not returned then one
lookup would be all one could do. As it is, passing
the array around in this way enforces a very strict
form of single threading, where each operation on
the array is sequentialised.

In practice one would prefer a system where only
update operations are sequentialised but lookups
can occur in parallel. The “read only” types of
[GH90] and [Wad90] allow this, but such types ap-
pear to go beyond the basics of linear logic, and
are outside the scope of this paper.

It would not work to create arrays with an op-
eration:

alloc :!(!Val −◦Arr).

The problem is this: Promotion can be applied to
create a value of type !Arr , pointers to the created
array can be copied, and now Dereliction causes
difficulties as described previously. In the system
of [GH90], the sites at which an array is created
are treated as introducing a new bound variable
of linear type. This somewhat odd restriction ap-
pears to have been introduced in order to prevent
a problem analogous to the one described here.

So, with some care, linear types can support in-
place update despite the problems introduced by
Promotion and Derelication. But one might won-
der: is it possible to restrict these rules so as to
guarantee that values of linear type really do have
exactly one pointer to them? This is the subject of
Section 7.

4 Encoding intuitionistic types

as linear types

The linear system refines the notion of type, but
not of typeability. Every typing judgement in the
intuitionistic system (Figure 2) can be mapped into
a corresponding judgement in the linear system
(Figure 3), and vice versa. A corollary of this is

that a term is typable in the intuitionistic system
if and only if it is typable in the linear system.

In one direction, the mapping is trivial. A linear
judgement maps into a corresponding intuitionis-
tic judgement as follows: remove each occurrence
of “!”, and replace occurrences of −◦, ⊗, ⊕ with
corresponding occurrences of →, ×, +. If the lin-
ear judgement is derivable, so is the corresponding
intuitionistic one.

In the reverse direction, there are several possi-
ble ways to encode an intuitionistic type as a linear
type. The simplest just adds “!” symbols every-
where, so that, for instance, X → Y encodes as
!((!X )−◦ (!Y )). But there is a standard encoding,
due to Girard, that is somewhat more parsimonious
in its use of “!”. For instance, it encodes X → Y

as (!X )−◦Y .

If T is an intuitionistic type, write T ◦ for its
encoding as a linear type:

X ◦ = X ,

(U → V )◦ = (!U ◦)−◦V ◦,

(U ×V )◦ = (!U ◦)⊗ (!V ◦),
(U +V )◦ = (!U ◦)⊕ (!V ◦).

Function arguments are given “!” types, but func-
tion results are not. For products and sums, the
mapping is more straightforward: each component
is given a “!” type. (In Girard’s original encoding,
× maps into & rather than ⊗; that’s not done here
because we are eschewing the use of &.)

The encoding extends to judgements as follows:

(x1 : U1 , . . . , xn : Un ⊢ v : V )◦ =
x1 : !U ◦

1 , . . . , xn : !U ◦

n ⊢ v : V ◦.

Each variable is given a “!” type, but the term itself
is not. When A stands for the assumption list on
the left above, write !A◦ for the assumption list on
the right.

If the judgement A ⊢ v : V is derivable in the in-
tuitionistic system, then the corresponding judge-
ment !A◦ ⊢ v : V ◦ is derivable in the linear system.
This is shown by providing an encoding of each in-
tuitionistic rule into one or more linear rules. The
only tricky cases are those for the Id and→-E rules.
The intuitionistic Id rule maps into a combination
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of linear Id and Dereliction:

Der

Id
x : U ◦ ⊢ x : U ◦

x : !U ◦ ⊢ x : U ◦.

The →-E rule maps into a combination of Promo-
tion and the −◦-E rule:

−◦-E
!A◦ ⊢ t : (!U ◦ −◦V ◦)

Pro
!B◦ ⊢ u : U ◦

!B◦ ⊢ u : !U ◦

!A◦, !B◦ ⊢ (t u) : V ◦.

The →-I rule is quite straightforward, and maps
directly into the −◦-I rule:

−◦-I
!A◦, x : !U ◦ ⊢ v : V ◦

!A◦ ⊢ (λx . v) : (!U ◦ −◦V ◦).

The maps for the remaining rules are equally
straightforward.
This encoding does not introduce the minimal

number of “!” symbols. For instance, consider the
term (λx . x ). This term has the intuitionsistic type
(X → X ), and the encoding yields the linear type
(!X −◦ X ). However, this term also has the linear
type (X −◦ X ), which contains no “!” instead of
one.
Although the encoding is not minimal, it does

guarantee that every typable term has a typ-
ing where “!” does not appear in certain places
(namely, at the very outside and in the range of
a linear function). This will motivate the defini-
tion of standard linear types in Section 6.

5 Use types

In the intuitionistic type system, each term can be
assigned a most general, or principal, typing: one of
which all other typings are substitution instances.
This is the basis of the Hindley-Milner system.
We might similarly ask: can each term be as-

signed a most general typing under the linear type
system? The answer is no. The identity function
λx . x has both the type X −◦X and type !X −◦X ,
and neither of these is a substitution instance of
the other.
That’s too bad, but perhaps the situation can

be saved by changing the definition of “most gen-
eral”. For instance, we might introduce a notion

of subtype. Write U ≤ V to indicate that U is a
subtype of V ,that is, whenever a term has type U

it also has type V . Recall that function arguments
are antimonotonic with regard to subtyping, so if
U ≤ U ′ and V ≤ V ′ then (U ′ −◦V ) ≤ (U −◦V ′).
Should one take U ≤ !U or !U ≤ U ? There are

good arguments in both directions. By Promotion,
if v : V then also v : !V (whenever the free vari-
ables of v are all nonlinear), which suggests taking
V ≤ !V (though the constraint on the free vari-
ables of v mitigates against this). By Dereliction
combined with −◦-I, if λx . v : U −◦ V then also
λx . v : !U −◦ V , which by anti-monotonicity sug-
gests taking !U ≤ U . Thus in some ways U is a
subtype of !U , and in some ways the opposite is
true.
This appears to bode ill for subtyping, but let’s

try anyway. Provisionally choose !U ≤ U . Return-
ing to the identity function example, we now have
!X −◦X ≤ X −◦X , so we can consider the latter to
be the “most general” type of the identity function.
But consider the term λf . λx . λy . f (x , y), which

corresponds to currying. Depending on whether
Promotion and Dereliction are applied, this term
has the following types, among others:

((X ⊗Y )−◦ Z )−◦X −◦Y −◦ Z ,

((X ⊗Y )−◦ Z )−◦ !X −◦ !Y −◦ Z ,

(!(X ⊗ Y )−◦ Z )−◦ !X −◦ !Y −◦ Z ,

(!(!X ⊗ !Y )−◦ Z )−◦ !X −◦ !Y −◦ Z .

It does not have this type:

(!(X ⊗Y )−◦ Z )−◦X −◦Y −◦ Z .

Regardless of whether we choose !U ≤ U or U ≤
!U , there is no type that is larger than all the legal
types and not larger than any of the illegal types.
Legal typings of this term depend on a complex
relation between the arguments: the argument to
f must definitely be a pair, but this pair may be a
“!” type only if x and y both have “!” types. Any
approach based on subtyping appears doomed.
So a different approach is required to defining

“most general” types. What we will do is to gener-
alise our notion of type to include not just type
variables, but also use variables, which indicate
whether a value is used in a linear or nonlinear way.
For instance, the type of the identity function will

9



be written !mX −◦ X , where m is a use variable.
This has both X −◦ X and !X −◦ X as instances
(the first by takingm = 0 and the second by taking
m = 1 ). To indicate relations among arguments,
each type is paired with a context, which is a set
of inequalities its use variables must satisfy. The
next section presents an algorithm that derives the
following as the most general type of the currying
term:

!i(!j(!kX ⊗ !lY )−◦ Z )−◦ !mX −◦ !nY −◦ Z
[m ≥ j ,n ≥ j ,m ≥ k ,n ≥ l ].

Here the context consists of four inequalities. As we
shall see, the set of instances of this type satisfying
the context is equal to the set of legal types of the
currying term in the linear type system, when we
restrict our attention to types in a standard form.

Use types. More formally, the system of use types
is defined as follows.
A use is either a use variable or the constant

value 0 (denoting linear) or 1 (denoting nonlinear):

i , j , k ::= m | 0 | 1 .

Let m range over use variables, and i , j , k range
over uses.
Types of the form (!U ) are generalised to types

of the form (!iU ). Thus, a use type has one of the
forms:

T ,U ,V ::=
X | (!iU ) | (U −◦V ) | (U ⊗V ) | (U ⊕ V ).

where T ,U ,V now range over use types. A use
type of the form (!0U ) corresponds to the type U

in the linear system, and a use type of the form
(!1U ) corresponds to the type (!U ) in the linear
system.
A context is a set of inequalities between uses:

C ,D ,E ::= i1 ≥ j1 , . . . , in ≥ jn .

Let C ,D ,E range over contexts. A substitution
mapping each use variable to either 0 or 1 will ei-
ther satisfy a given context, or not. Inequalities of
the form i ≥ 0 and 1 ≥ j are considered tautolo-
gous and may be removed from the context; they
are always satisfiable. An inequality of the form
i ≥ 1 can be satisfied only if i takes on the value

1. An inequality of the form 0 ≥ j can be satisfied
only if j takes on the value 0. A context is unsatis-
fiable if its transitive closure contains an inequality
of the form 0 ≥ 1 .
A use list pairs individual variables with uses:

I , J ::= x1 : i1 , . . . , xn : in .

As with assumption lists, this has length n ≥ 0 and
each of the xi is distinct. Let I and J range over use
lists. If I is a use list x1 : i1 , . . . , xn : in and A is an
assumption list x1 : U1 , . . . , xn : Un , then !IA de-
notes the assumption list x1 : !i1U1 , . . . , xn : !inUn ,
and I ≥ j denotes the context i1 ≥ j , . . . , in ≥ j .
A typing judgement now takes the form:

A ⊢ t : T [C ].

This may be read “Under assumptions A the term
t has type T in context C”.
The new type inference rules are shown in Fig-

ure 5. The changes from the old rules are quite
small. First, contexts have been added to all rules.
The contexts in the hypothesis of a rule are com-
bined to yield the context of the conclusion. Sec-
ond, the four rules concerned with “!” types have
been reformulated in terms of uses and contexts.
The Weakening and Contraction rules are the same
as before, except !U has been replaced by !1U . The
Dereliction rule removes a use from a type, and the
Promotion rule adds a use to a type. In the Pro-
motion rule, the constraint I ≥ j ensures the re-
sult type !jV to correspond to a “!” type only when
each type in the assumption !IA corresponds to a
“!” type.

Equivalence to linear types. The use type system
of Figure 5 is sound and complete with regard to
the linear type system of Figure 3, in the following
sense.
Each judgement in the use type system can be

thought of a standing for a set of judgements in
the linear type system. To derive this set, replace
each use variable consistently by either 0 or 1, and
then replace each occurrence of !0U with U and
each occurrence of !1U with !U . The resulting con-
texts will either be tautologous, in which case the
judgment is included in the set; or unsatisfiable, in
which case it is not.
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Id
x : U ⊢ x : U [ ]

Exchange
A, x : U , y : V ,B ⊢ w : W [C ]

A, y : V , x : U ,B ⊢ w : W [C ]

Promotion
(!IA) ⊢ v : V [C ]

(!IA) ⊢ v : (!jV ) [C , I ≥ j ]
Dereliction

A, x : U ⊢ v : V [C ]

A, x : (!iU ) ⊢ v : V [C ]

Weakening
A ⊢ v : V [C ]

A, x : (!1U ) ⊢ v : V [C ]
Contraction

A, x : (!1U ), y : (!1U ) ⊢ v : V [C ]

A, z : (!1U ) ⊢ v z ,z
x ,y : V [C ]

−◦-I
A, x : U ⊢ v : V [C ]

A ⊢ (λx . v) : (U −◦V ) [C ]
−◦-E

A ⊢ t : (U −◦V ) [C ] B ⊢ u : U [D ]

A, B ⊢ (t u) : V [C , D ]

⊗-I
A ⊢ u : U [C ] B ⊢ v : V [D ]

A, B ⊢ (u, v) : (U ⊗V ) [C , D ]

⊗-E
A ⊢ t : (U ⊗V ) [C ] B , x : U , y : V ⊢ w : W [D ]

A,B ⊢ (case t of {(x , y) → w}) : W [C , D ]

⊕-I
A ⊢ u : U [C ]

A ⊢ (inl u) : (U ⊕V ) [C ]

A ⊢ v : V [C ]

A ⊢ (inr v) : (U ⊕ V ) [C ]

⊕-E
A ⊢ t : (U ⊕V ) [C ] B , x : U ⊢ u : W [D ] B , y : V ⊢ v : W [E ]

A,B ⊢ (case t of {inl x → u; inr y → v}) : W [C , D , E ]

Figure 5: Rules for use types

It is easy to see that if a typing judgement is
derivable in the use type system, then each judge-
ment in the corresponding set is derivable in the
linear type system; this is soundness. Further, any
derivation in the linear type system trivially has
a corresponding derivation in the use type system
(just replace each occurrence of !U with !1U ); this
is completeness.

Principal types. We now formulate precisely what

it means for a term to have a most general, or prin-
cipal, type.

A substitution is a mapping of type variables to
use types and use variables to uses. Let S range
over substitutions. Substitutions apply to types,
assumptions, and contexts in the usual way.

Given a term t and two typing judgements for
it,

A ⊢ t : T [C ] and A′ ⊢ t : T ′ [C ′],

11



the second judgment is said to be an instance of
the first if there is a substitution S such that SA =
A′, ST = T ′, and SC is a subset of the reflexive
transitive closure of C ′. A typing judgement is
principal for t if every other typing judgement for
t is an instance of it.
A syntactic completeness theorem asserts that

every typable term has a principal typing judg-
ment. This is usually proved by giving a type recon-
struction algorithm that given a t either fails (if t is
untypable) or returns a principal typing judgement
for t .
It appears straightforward to give a type recon-

struction algorithm for the use type system. How-
ever, we will see in the next section that it is inter-
esting to restrict our attention to types and judge-
ments in a standard form. Rather than do all the
work twice, we will defer consideration of type re-
construction until after this new form has been in-
troduced.

6 Standard types

It will prove interesting to restrict our attention
to standard types. The grammar of standard types
is given by

T ,U ,V ::=
X | (!iU −◦V ) | (!iU ⊗ !jV ) | (!iU ⊕ !jV ),

where T ,U ,V now range over standard types. A
standard typing judgement has the form !IA ⊢ t :
T [C ], where T and all types in A are standard.
The restriction to standard types and judge-

ments is motivated by the standard encoding given
in Section 4, which takes intuitionistic types into
linear types in standard form. Since every lin-
ear typing maps trivially into a corresponding in-
tuitionistic typing, and every intuitionistic typing
maps into a standard linear typing, it follows that
if a term possesses a linear type judgement then it
must posses one in standard form. Alas, it doesn’t
follow that this judgement will contain a minimal
number of “!” symbols. Nonetheless, it is useful be-
cause it simplifies the form of principal type judge-
ments slightly, by allowing us to write U instead of
!iU in a few places.
The derivation of a standard judgement may

contain sub-derivations of judgements that are not

standard. In particular, any use of the Dereliction
or Promotion rules will necessarily have a hypothe-
sis or conclusion not in standard form (Dereliction
because there is an assumption of the form x : U
rather that x : !iU ; Promotion because the derived
type is of the form v : !jV rather than v : V ). Fig-
ure 6 gives an equivalent set of inference rules where
all the judgements are in standard form. It has no
Dereliction and Promotion rules; these have been
“built into” the other rules. For example, the new
Id rule is a combination of the old Id and Derelic-
tion rules; and the new −◦-E rule is a combination
of the old Promotion and −◦-E rules.

The rules for inferring standard types given in
Figure 6 are sound and complete relative to the
rules for use types given in Figure 5: a standard
judgement can be derived by the new, standard
type rules if and only if it can be derived by the old,
use type rules. Soundness follows from the fact that
each new rule can be expressed as a combination of
old rules, and completeness follows from a simple
induction over derivations in the old system.

Type reconstruction. We now turn our attention to
a type reconstruction algorithm L. Given a term
t , if any typing judgement for t exists then the
call L(t) will return a triple (!IA; T ; C ) such that
!IA ⊢ t : T [C ] is a principle standard judgement
for t (i.e., one that has all standard judgements for
t as instances), and fails otherwise. Our algorithm
will be similar in style to the algorithm given by
Mitchell for subtyping [Mit84, Mit91].

The rules in Figure 6 are already quite close
to a type reconstruction algorithm. Since Dere-
liction and Promotion have been eliminated, the
only inferences that are not dictated by the form a
term are the Exchange, Weakening, and Contrac-
tion rules. Exchange is trivial: simply disregard
the order of the assumptions, treating the assump-
tion list as a bag. Apply Contraction whenever a
variable shows up in two assumption lists that are
to be combined (this may happen in the −◦-E, ⊗-I,
⊗-E, and ⊕-E rules). Apply Weakening whenever
a variable shows up in one but not the other of two
assumption lists that should be identical (this may
happen in the ⊕-E rule). Also apply Weakening
whenenever a bound variable doesn’t appear in its
scope (this may happen in the −◦-I, ⊗-E, and ⊕-E

12



Id
x : !iU ⊢ x : U [ ]

Exchange
!IA, x : !iU , y : !jV , !JB ⊢ w : W [C ]

!IA, y : !jV , x : !iU , !JB ⊢ w : W [C ]

Weakening
!IA ⊢ v : V [C ]

!IA, x : !1U ⊢ v : V [C ]
Contraction

!IA, x : !1U , y : !1U ⊢ v : V [C ]

!IA, z : !1U ⊢ v z ,z
x ,y : V [C ]

−◦-I
!IA, x : !iU ⊢ v : V [C ]

!IA ⊢ (λx . v) : (!iU −◦V ) [C ]

−◦-E
!IA ⊢ t : (!iU −◦V ) [C ] !JB ⊢ u : U [D ]

!IA, !JB ⊢ (t u) : V [C , D , J ≥ i ]

⊗-I
!IA ⊢ u : U [C ] !JB ⊢ v : V [D ]

!IA, !JB ⊢ (u, v) : (!iU ⊗ !jV ) [C , D , I ≥ i , J ≥ j ]

⊗-E
!IA ⊢ t : (!iU ⊗ !jV ) [C ] !JB , x : !iU , y : !jV ⊢ w : W [D ]

!IA, !JB ⊢ (case t of {(x , y) → w}) : W [C , D ]

⊕-I
!IA ⊢ u : U [C ]

!IA ⊢ (inl u) : (!iU ⊕ !jV ) [C , I ≥ i ]

!JB ⊢ v : V [D ]

!JB ⊢ (inr v) : (!iU ⊕ !jV ) [D , J ≥ j ]

⊕-E
!IA ⊢ t : (!iU ⊕ !jV ) [C ] !JB , x : !iU ⊢ u : W [D ] !JB , y : !jU ⊢ v : W [E ]

!IA, !JB ⊢ (case t of {inl x → u; inr y → v}) : W [C , D , E ]

Figure 6: Rules for standard types

rules). Finally, apply unification whenever a type
or use appears twice in one of the rules.

Given this analysis, the inference rules in Fig-
ure 6 can be read off directly to yield the algorithm
shown in Figure 7.

The auxiliary function unify takes a set of equa-
tions between types and uses and returns the most
general unifier of all the equations, if a unifier ex-
ists. If no unifier exists, the call to unify (and
hence the call to L) fails. Equations are pre-

sented in three forms. First, in the simple form
U = V , where U and V are types. Second, in
the form !IA = !JB , which corresponds to Contrac-
tion. This stands for the set of equations containing
U = V , i = 1 , j = 1 for each x such that x : !iU is
in !IA and x : !jV is in !JB . Third, in the form I \J ,
which corresponds to Weakening. This stands for
the set of equations containing i = 1 for each x

such that x : i is in I and x is not in the domain
of J .
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L(x ) = let m,X be fresh
in (x : !mX ; X ; )

L(λx . v) = let (!IA, x : !iU ; V ; C ) = L(v)
in (!IA; (!iU −◦V ); C )

L(t u) = let m,Y be fresh
(!IA; T ; C ) = L(t)
(!JB ; U ; D) = L(u)
S = unify (T = (!mU −◦Y ), !IA = !JB)

in (S !IA, S !JB ; SY ; SC , SD , SJ ≥ Sm)

L((u, v)) = let m,n be fresh
(!IA; U ; C ) = L(u)
(!JB ; V ; D) = L(v)
S = unify (!IA = !JB)

in (S !IA, S !JB ; (!mSU ⊗ !nSV ); SC , SD , SI ≥ m, SJ ≥ n)

L(case t of {(x , y) → w})
= let (!IA; T ; C ) = L(t)

(!JB , x : !iU , y : !jV ; W ; D) = L(w)
S = unify (T = (!iU ⊗ !jV ), !IA = !JB)

in (S !IA,S !JB ; SW ; SC , SD)

L(inl u) = let m,n,Y be fresh
(!IA; U ; C ) = L(u)

in (!IA; !mU ⊕ !bY ; C , I ≥ m)

L(inr v) = let m,n,X be fresh
(!JB ; V ; D) = L(v)

in (!JB ; !mX ⊕ !nV ; D , J ≥ n)

L(case t of {inl x → u; inr y → v})
= let (!IA; T ; C ) = L(t)

(!JB , x : !iU ; W ; D) = L(u)

(!J
′

B ′, y : !jV ; W ′; D ′) = L(v)
S = unify(T = (!iU ⊕ !jV ), W = W ′,

!IA = !JB , !IA = !J
′

B ′, J \ J ′, J ′ \ J )

in (S !IA,S !JB ,S !J
′

B ′; SW ; SC , SD , SD ′)

Figure 7: Reconstruction algorithm for standard types

The algorithm is expressed using a form of pat- tern matching against assumption lists. The pat-
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tern !IA, x : !iU binds against an assumption list as
follows. If the assumption list contains x , then !iU
is bound to the type associated with x , and !IA is
bound to the list with the entry for x removed (this
corresponds to Exchange). If x is not in the list,
then !IA is bound to the entire list, and i is bound
to 1, and U is bound to a fresh type variable (this
corresponds to Weakening).

The correctness of the algorithm should be ap-
parent from the above description. A formal proof
would resemble that for the Hindley-Milner algo-
rithm [Hin69, Mil78, DM82] or Mitchell’s algorithm
for subtypes [Mit84, Mit91], and appears straight-
forward.

Relation to Guzmán and Hudak. The type infer-
ence rules given here are strongly reminiscent of
those in [GH90]. Both papers have similar notions
of “type”, “use”, “assumptions”, and “context”.
The “use lists” of this paper correspond directly
to the “liabilities” of that paper. Types written in
the form !iU −◦V here correspond to types written

in the form U
i
→ V there. One interesting differ-

ence is that here contexts consist only of inequali-
ties between uses, while there contexts also contain
inequalities between types. Hence the reconstruc-
tion algorithm there needs auxiliary routines for
matching and simplifying types in contexts, which
are unnecessary here.

The work reported in [GH90] goes considerably
beyond the work reported here in that it has a
much richer family of uses, in the technical sense:
seven there as compared to two here. As a re-
sult, it is also of greater use, in the practical sense:
a far wider range of programs will pass the type
checker. In particular, unlike the work here, it at-
tempts to cope with the important notion of “read
only” uses. Nonetheless, the work described here
seems to form a valuable bridge between the the-
ory of linear logic on the one side, and the practical
concerns of Guzmán and Hudak on the other.

7 Steadfast types

Now return to the end of Section 3 and consider a
different path of development. Recall that Derelic-
tion allows circumstances to arise in which a value

of linear type may have more than one pointer to it.
This section considers a variant of the linear system
that restricts the use of Dereliction and Promotion
so that every value of linear type is guaranteed to
have exactly one pointer to it. The resulting type
system is called steadfast. Steadfast types are never
worthy of Promotion, nor guilty of Dereliction.

It won’t do to simply get rid of Promotion and
Dereliction, since this would provide no way to
introduce or eliminate terms of nonlinear type.
Instead, Promotion and Dereliction are replaced
by new introduction and elimination rules for the
other type formers. The new system consists of
all the rules in Figure 3 except for Promotion and
Dereliction, together with the new rules shown in
Figure 8.

For each type former there are now two sets of
rules, the linear rules (in Figure 3) and the non-
linear rules (in Figure 8). For instance, the linear
rules −◦-I and −◦-E introduce and eliminate types
of the form (U −◦V ), while the nonlinear rules !−◦-
I and !−◦-E introduce and eliminate types of the
form !(U −◦ V ). Since Promotion and Dereliction
provide the only way to add or remove “!” from a
type, and these rules are now gone, (U −◦ V ) and
!(U −◦ V ) may be regarded as completely distinct
types.

A nonlinear data structure must not contain any
pointers to components of linear type. Thus, lin-
ear products have the form (U ⊗V ), where U and
V may be either linear or nonlinear; but nonlinear
products must have the form !(!U ⊗ !V ), where the
components are constrained to be nonlinear. Simi-
larly for sums. It’s easy to see why this constraint
is neccessary. Consider the term

case z of {
inl x → case z of {

inl x ′ → . . . x . . . x ′ . . .}}.

If z has type !(!U ⊕ !V ) then this is legal. But
if the nonlinear type !U is replaced by the linear
type U , then there would be two variables, x and
x ′, containing a pointer to the same linear value—a
disaster! Hence the requirement that components
of products and sums be nonlinear.

For functions, the situation is a little different.
Functions of the form !(U −◦V ) are allowed for U
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!−◦-I
!A, x : U ⊢ v : V

!A ⊢ (λx . v) : !(U −◦V )
!−◦-E

A ⊢ t : !(U −◦V ) B ⊢ u : U

A, B ⊢ (t u) : V

!⊗-I
A ⊢ u : !U B ⊢ v : !V

A, B ⊢ (u, v) : !(!U ⊗ !V )
!⊗-E

A ⊢ t : !(!U ⊗ !V ) B , x : !U , y : !V ⊢ w : W

A,B ⊢ (case t of {(x , y) → w}) : W

!⊕-I
A ⊢ u : !U

A ⊢ (inl u) : !(!U ⊕ !V )

A ⊢ v : !V

A ⊢ (inr v) : !(!U ⊕ !V )

!⊕-E
A ⊢ t : !(!U ⊕ !V ) B , x : !U ⊢ u : W B , y : !V ⊢ v : W

A,B ⊢ (case t of {inl x → u; inr y → v}) : W

Plus all rules in Figure 3 except Promotion and Dereliction.

Figure 8: Rules for steadfast types

and V either linear or nonlinear. For instance,

⊢ (λx . x ) : !(X −◦X )

is a valid typing by the !−◦-I rule, indicating that
it is perfectly alright to use the identity function
many times, even on nonlinear values. What is
required is that the closure representing a nonlinear
function must not contain any pointers to values of
linear type. This is enforced by the use of !A rather
than A in the !−◦-I rule. For instance,

x : X ⊢ (λy . x ) : !(!Y −◦X )

is not a valid typing. If it were, applying this func-
tion multiple times would allow multiple access to
the supposedly linear variable x . But this typing
would be valid if the nonlinear type !X replaced
the linear type X .
Examination of the rules should convince the

reader that this new system indeed has the desired
property: values of nonlinear type will always have
exactly one pointer to them. The pairing of the
introduction and elimination rules is now particu-
larly exact: each value is allocated, and the sole

pointer to it created, by an introduction rule; and
that sole pointer will eventually be passed into a
corresponding elimination rule, which deallocates
the value.

Relation of steadfast and linear types. The new,
steadfast system of Figure 8 relates to the old, lin-
ear system of Figure 3 as follows. The following
are all well-typings in the old system:

(λx . x ) : (!X )−◦X ,

(λz . case z of {(x , y) → (x , y)})
: (!X ⊗ !Y )−◦!(!X ⊗ !Y ),

(λz . case z of {inl x → inl x ; inr y → inr y})
: (!X ⊕ !Y )−◦!(!X ⊕ !Y ).

The first follows from Dereliction and −◦-I; the sec-
ond from ⊗-E, Promotion, ⊗-I, and −◦-I; the third
from ⊕-E, Promotion, ⊕-I, and −◦-I. Semantically,
each of these terms behaves as the identity: they
are in effect coercion functions that remove or add
“!” symbols in a permitted way.
The new !−◦-E, !⊗-E and !⊕-E rules follow from

the corresponding old elimination rules combined
with application of the first coercion function. The
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new !−◦-I rule follows from the old −◦-I rule and
Promotion. The new !⊗-I and !⊕-I rules follow
from the corresponding old introduction rules com-
bined with applications of the second and third co-
ercion functions.

For each term that is well-typed in the new sys-
tem, there is a corresponding term (possibly with
some applications of the above coercion functions)
that is well-typed in the old system. It follows that
in the new system, the type of every well-typed
term corresponds to a theorem of Girard’s linear
logic. However, the converse does not hold. There
are theorems of Girard’s logic that have no terms
of corresponding type in the new system. The
most obvious example is the theorem (!X ) −◦ X ,
corresponding to Dereliction, which cannot be de-
rived in the new system. Similarly, the theorems
(!X ⊗ !Y )−◦!(!X ⊗ !Y ) and (!X ⊕ !Y )−◦!(!X ⊕ !Y ),
arising from Promotion, also cannot be derived. In
this sense, the new system is sound but not com-

plete with respect to the old system.

Arrays revisited. The old linear system required a
single operation

block : !(!Val −◦ (Arr −◦ (X ⊗Arr))−◦X )

to allocate, initialise, process, and deallocate a lin-
ear array. In the new steadfast system, this un-
wieldy operation may be neatly decomposed into
smaller parts, introducing separate operations to
allocate and deallocate the array:

alloc : !(!Val −◦Arr),
dealloc : !(Arr −◦Unit).

Here Unit is a type containing only a single value,
which is introduced by the term () and eliminated
by the term (case t of {() → w}). Now block can
be defined as follows:

block =
λv . λf . case f (alloc v) of {

(x , a) → case dealloc a of {
() → x}}.

Since a has a linear type, the type system prevents
it from simply being discarded; instead, it must be
explicitly deallocated.

Recall that this approach would not work in the
old system: combining alloc with Promotion and
Dereliction spelled disaster.

A syntactic trick. In the steadfast system, there
is no way to convert a value of type U to a value
of type !U , or vice versa, so we may as well intro-
duce distinct names for the two families of types.
For instance, we can decide to write !(U −◦ V ) as
(U → V ), to write !(U ⊗ V ) as (U × V ), and to
write !(U ⊕ V ) as (U + V ). We cannot intercon-
vert values of types X and !X either, so we might
as well regard these as two distinct families of type
variables. Since in practice we might expect non-
linear values to be more common then linear ones,
let’s reverse the convention and write !X as X , and
write X as ¡X .
These conventions make the intuitionistic type

system a subset of the system given here. Every
term typable in the intuitionistic system has the
same type in the new system, although it may have
other types. For instance, the term (λx . x ) has all
the following as valid typings: (¡X−◦¡X ), (X−◦X ),
(¡X → ¡X ), and (X → X ).
The type system yielded by this syntactic trick

corresponds to the one described in [Wad90]. Al-
though that paper claimed to be about a type sys-
tem closely related to linear logic, readers familiar
with linear logic found the relationship to not be so
clear. The connection with linear logic — and the
reason for the confusion — now stands revealed.
The type system of [Wad90] is indeed based on lin-
ear logic, but it is a variant of linear logic which
restricts the use of Dereliction and Promotion.

Steadfast standard types. The syntactic trick just
described is something of a dead end. A more pro-
ductive path is to follow the same development as
before, introducing steadfast variants of use types
and standard types. In this case, the appropriate
version of standard types allows for possible nonlin-
earity everywhere, though it rules out types such as
!i(!jU ). The grammar of steadfast standard types
is given by

T ,U ,V ::=
X | (!iU −◦ !jV ) | (!iU ⊗ !jV ) | (!iU ⊕ !jV ),

where T ,U ,V now range over steadfast standard
types. Similarly, a steadfast standard judgement
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Id
x : !iU ⊢ x : !iU [ ]

Exchange
!IA, x : !iU , y : !jV , !JB ⊢ w : !lW [C ]

!IA, y : !jV , x : !iU , !JB ⊢ w : !lW [C ]

Weakening
!IA ⊢ v : !jV [C ]

!IA, x : !1U ⊢ v : !jV [C ]
Contraction

!IA, x : !1U , y : !1U ⊢ v : !jV [C ]

!IA, z : !1U ⊢ v z ,z
x ,y : !jV [C ]

−◦-I
!IA, x : !iU ⊢ v : !jV [C ]

!IA ⊢ (λx . v) : !k(!iU −◦ !jV ) [C , I ≥ k ]

−◦-E
!IA ⊢ t : !k(!iU −◦ !jV ) [C ] !JB ⊢ u : !iU [D ]

!IA, !JB ⊢ (t u) : !jV [C , D ]

⊗-I
!IA ⊢ u : !iU [C ] !JB ⊢ v : !jV [D ]

!IA, !JB ⊢ (u, v) : !k(!iU ⊗ !jV ) [C , D , i ≥ k , j ≥ k ]

⊗-E
!IA ⊢ t : !k(!iU ⊗ !jV ) [C ] !JB , x : !iU , y : !jV ⊢ w : !lW [D ]

!IA, !JB ⊢ (case t of {(x , y) → w}) : !lW [C , D ]

⊕-I
!IA ⊢ u : !iU [C ]

!IA ⊢ (inl u) : !k(!iU ⊕ !jV ) [C , k ≥ i ]

!JB ⊢ v : V [D ]

!JB ⊢ (inr v) : !k(!iU ⊕ !jV ) [D , k ≥ j ]

⊕-E
!IA ⊢ t : !k(!iU ⊕ !jV ) [C ] !JB , x : !iU ⊢ u : !lW [D ] !JB , y : !jU ⊢ v : !lW [E ]

!IA, !JB ⊢ (case t of {inl x → u; inr y → v}) : !lW [C , D , E ]

Figure 9: Rules for steadfast standard types

has the form !IA ⊢ t : !kT [C ] where T and all
types in A are steadfast standard.

The corresponding inference rules are shown in
Figure 9. As before, we can show that these rules
are sound and complete with regard to the infer-
ence rules for steadfast types. And, as before, we
can derive from these rules a type reconstruction
algorithm that yields principle steadfast standard
types. Indeed, the reconstruction algorithm can be
read off from the inference rules in just the same

style as used previously. This is quite straightfor-
ward and left as an exercise for the reader.

In [Wad90] the question was raised as to whether
the type system described there possessed a type
reconstruction algorithm analogous to Hindley-
Milner. Having at last answered this question in
the affirmative, here seems an appropriate place to
conclude this study of the uses of linear logic.
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