
Description Logic. Seminar presentation.

Mikolaj Kalinowski

January 16, 2014

1 Introduction to Description Logic

Description Logics were developed to facilitate building high-level representations of the world,
with the languages used to query it. Terminological knowledge is used to build knowledge
databases and algorithms use that data to infer implicit consequences not directly stated in
the system.

1.1 History of Research

Some early predecessors of Description Logics (DLs) were Frames and Knowledge Networks.
Those systems provided a method of representing human knowledge in a more friendly way
than first-order logic. Previous knowledge formalisms often aimed for rejection of logical
formalisms, but shortly after bestowing DL with formal semantics, it turned out it is actually
a curious subset of FOL [Hayes, 1979].

The development of Description Logic continued in the 1980s and first DL-based systems
started to show up in 1985. Those systems provided a universal interface for knowledge
specified with the new, functional approach and deductive algorithms performed simple rea-
soning on this knowledge representation. While expressiveness was limited at that time, an
important point of focus was on avoiding techniques of FOL theorem provers and providing
polynomial complexities.

During 1990s a next generation of reasoning algorithms has emerged, viz the tableau
method. Increased expressiveness came with the price of non-polynomial worst-case complex-
ity.

2000s turned out to be pretty big for Description Languages, when World Wide Web
Consortium (W3C) founded an Ontology Working Group with the goal of designing a family
of DLs for representation of ontology and Semantic Web.

1.2 Relation to other logics

Description Logics can be translated to a subset of first-order logic with formulas restricted
syntactically to contain at most 2 variables. This subset, called also L2, is decidable [Mor-
timer, 1975].

There is also a relationship between Description Logics and multi-modal K. In fact, con-
cepts in Description Logics are immediately translated to and fromK-formulas in multi-modal
K. This correspondence let mathematicians unify a lot of research, including complexity re-
sults and reasoning techniques.

1

1.3 Basic Concepts

One represents the knowledge in DLs using concepts denoting sets of individuals and roles
describing relations between those. Complex concepts are described with terms, that are
build with concept constructors. To describe a man that is married to a doctor and has only
kids that are doctors themselves, one would write:

Man(x) ^ 9y(married(x, y) ^Doctor(y)) ^ 8y(child(x, y) ! Doctor(y))

Systems implementing DLs are sometimes called Tell and Ask. The ”Tell” part involves
describing the knowledge base using the mentioned concept terms and you can ”Ask” the
system to perform the inferences for you. Two most basic inferences are subsumption and
satisfiability inference. Determining subsumption, usually written as C @ D, comprises
checking if the concept denoted by D is considered more general than the one denoted by C.
Satisfiability means checking whether the concept term denotes the empty concept.

1.4 Knowledge Representation

The nature of the knowledge bases is twofold: intentional knowledge, inherent to the problem
domain and extensional knowledge specific to a particular problem.

Intentional knowledge in Description Logics is defined in a TBox (T stands for terminology
or taxonomy) built with concept declarations, i.e. concept terms and subjunction statements.
(note the lattice-like structure).

Extensional knowledge is what comprises an ABox (Assertional). It contains role assign-
ments of the individuals in the particular domain. While intentional knowledge is deemed
immutable, knowledge in ABox really describes a particular situation and is variable.

Common inference tasks include validating if as set of assertions in an ABox is consistent
(if there is a model).

Let us consider a description logic containing medical knowledge database. In this case a
TBox will describe a whole body of Medicine and ABox will be a single Patient data. This
system can now aid doctors, by answering questions in the form:

patient1 v 8hasCancer.Patients

2 Formalism

2.1 Description Languages

we willThere is a whole family of Description Logic languages and in the following, we will
look at ALCN: It is an Attributed Language extended with Negation, Number Restriction.

In the abstract notation we will use letters A and B for atomic concepts, letter R for
atomic roles and letters C and D for content descriptions.

2

Content description in ALCN is formed as follows:

C, D !A (atomic concept)

|> (universal concept)

|? (bottom concept)

|¬C (atomic negation extended to concepts)

|C uD (conjunction)

|C tD (disjunction)

|8R.C (value restriction)

|9R.C (existential restriction)

| nR (number restriction)

| nRC (qualifying number restriction)

Suppose that Person and Female are atomic concepts and that hasChild is an atomic role.

Person u Female denotes the concept: person that is female

Person u ¬Female denotes the concept: person that is not female

Person u 9hasChild.> denotes the concept all people who have children

Person u 8hasChild.Female denotes the concept all people who have only female children

Person u 8hasChild.? denotes the concept: all people without children

Person u (1hasChild t (� 3hasChild u 9hasChild.Female)) describes those people who have

either not more than one child or at least three children, one of whom are female

2.1.1 Semantics

The semantics of ALCN is defined with interpretations I = (�I , ·I).
�I is a non-empty set representing the domain of interpretation. ·I is an interpretation

function assigning to every atomic concept A a set AI ✓ �I and to each role a binary relation
RI ✓ �I ⇥ �I . An interpretation I is a model of a concept description C if CI 6= ;. The
interpretation function is then inductively extended to content descriptions as follows:

>I = �I

?I = ;
(¬C)I = �I \CI

(C uD)I = CI \DI

(C tD)I = CI [DI

(8R.C)I = {a 2 �I |8b.(a, b) 2 RI ! b 2 CI }
(9R.C)I = {a 2 �I |9b.(a, b) 2 RI ^ b 2 CI }
(nR)I = {a 2 �I ||{(a, b) 2 RI }| n}
(nRC)I = {a 2 �I ||{(a, b) 2 RI |b 2 CI }| n}

With this definition we can say that two concepts are equivalent if they their models are
equal for all interpretations I. For example we can easily verify that interpretations of

3

8hasChild.Female t 8hasChild.Female

and

8hasChild.(Female t Student)

denote the same sets for every interpretation of atomic concepts and roles, so those com-
pound concepts are equivalent.

2.1.2 Translation to FOL

Looking at semantics defined in section 2.1.1, we can come up with a way to translate any
concept to a first-order predicate formula. Atomic concepts and roles are respectively unary
and binary relations over �I , a concept description is then a predicate logic formula �

C

(x)
such that for every interpretation I, the set of elements satisfying it is equal to CI . The
atomic concept A is translated into the formula A(a). Concepts with intersection, sum and
negation are translated respectively to logical conjunction, alternative or negation. Assuming
that b is a new variable, the rest of the constructors are translated to formulae:

�9R.C(a) = 9b.R(a, b) ^ �
C

(a)

�8R.C(a) = 8b.R(a, b) ! �
C

(b)

�nRC

(a) = 8b1, ...bn+1.R(a, b1) ^ ... ^R(a, b
n+1) ^

^
�
C

(b
i

) !
_

i<j

b
i

= b
j

All translations except for the number restriction can be expressed in formulas using only
2 variables, which place them in a decidable subset of FOL. Number restriction however can
be translated to C2 - another subset of FOL with counting quantifiers. C2 has been shown
to be decidable [Graedel et al., 1997b; Pacholski et al., 1997] in NExpTime-complete.

It should be noted that formulas translated in such a ways are much longer and decision
procedures for them have higher complexity than necessary. In comparison, satisfiability of
ALCN formulas is PSpace-complete.

2.2 Terminologies

The concept language allows us to form complex descriptions of concepts to describe classes
of objects. To represent relations between concepts and roles in a structured way, we will
represent them using terminologies - sets of definitions by which we can introduce atomic
concepts as abbreviations or names for complex concepts.

2.2.1 TBox

As mentioned before, intentional knowledge is represented by TBoxes which contain a finite
set of concept definitions and equalities: C ⌘ D(R ⌘ S)

where C is a concept name and D is a concept description, such that no concept name
appears on the left-hand side of two di↵erent concept definitions in a TBox T.

4

A concept is called a defined concept if it appears on the left-hand side of a concept
definition and a primitive (base) concept otherwise.

We say that a concept name A directly uses a concept name B if there is a concept
definition A ⌘ C 2 TboxT and B occurs in C. Let uses mean the transitive closure of directly
uses. Then a TBox T contains a terminological cycle if there is a concept name that uses
itself. For example here is a TBox without terminological cycle; we will call it acyclic:

Woman ⌘ Person u Female

Man ⌘ Person u ¬Woman

Mother ⌘ Woman u 9hasChild.Person
Father ⌘ Man u 9child.Person
Parent ⌘ Mother t Father

Grandmother ⌘ Mother u 9hasChild.Parent

And here is an example of a TBox with a terminological cycle; we will call it cyclic:

Human ⌘ Adam t Eve t 9parent.Human

For acyclic TBoxes, the natural semantics is descriptive semantics: an interpretation I
satisfies a concept definition A ⌘ C if AI = CI , and I is a model of the TBox T if it satisfies
all concept definitions in T. Intuitively, acyclic TBoxes merely state that defined concepts are
abbreviations for certain compound concept descriptions. These compound concepts can be
made explicit by expanding the acyclic TBox T : exhaustively replace all concept names A
on the left-hand side of concept definitions A ⌘ C by their defining concept descriptions C.
After this expansion, the compound concept abbreviated by a defined concept can simply be
read o↵ from the corresponding concept definition. For example, the defined concept Father
abbreviates to the compound concept:

Person u ¬(Person u Female) u 9child.Person

To define semantics of cyclic boxes we need more terminology. A base interpretation for T
is an interpretation that interprets only the base symbols. Let J be such a base interpretation.
An interpretation I that interprets also the name symbols is an extension of J if it has the
same domain as J, i.e., �I = �J , and if it agrees with J for the base symbols. We say that
T is definitorial if every base interpretation has exactly one extension that is a model of T
. In other words, if we know what the base symbols stand for, and T is definitorial, then
the meaning of the name symbols is completely determined. Obviously, if a terminology is
definitorial, then every equivalent terminology is also definitorial. The question whether a
terminology is definitorial or not is related to the question whether or not its definitions are
cyclic.

It is easy to see that if terminology T is acyclic, then it is definitorial. If T’ is expanded
terminology of acyclic terminology T, then both terminologies have the same base and name
symbols. At each step of the iterative expansion, we are replacing symbols with equivalent
definition, so models of T and T’ are equal.

Suppose that J is an interpretation of base symbols. We extend it to an interpretation I
that covers also the name symbols by setting AI = CJ if A ⌘ C is the definition of A in T’.

5

Clearly I is a model of T’ and it is the only extension of J that is a model of T’. This shows
that T’ is definitorial. Moreover T is definitorial aswell since it is equivalent to T’.

Cyclic terminologies can be definitorial. Consider for instance the one consisting of the
axiom

A ⌘ 8R.B t 9R.(A u ¬A)

Since 9R.(A u ¬A) is equivalent to the bottom concept, that axiom is equivalent to the
acyclic axiom

A ⌘ 8R.B

Let us consider this cyclic terminology that is not definitorial:

Human0 ⌘ Animal u 8hasParent.Human0

Here Human’ is a name symbol and Animal and hasParent are base symbols. For an
interpretation where hasParent relates every animal to its progenitors, many extensions are
possible to interpret Human’ in a such a way that the axiom is satisfied: Human’ can, among
others, be interpreted as the set of all animals, as some species, or any other set of animals
with the property that for each animal it contains also its progenitors. That means that
unique extension does not exist and this terminology is not definitorial.

Example Suppose that we want to specify the concept of a “man who has only male
o↵spring,” for short Momo. In particular, such a man is a Mos, i.e. a “man who has only
sons.” A Mos can be defined without cycles as

Mos ⌘ Man u 8hasChild.Man.

For a Momo, however, we want to make a statement about the fillers of the transitive closure
of the role hasChild. Here a recursive definition of Momo seems to be natural. A man having
only male o↵spring is himself a man, and all his children are men having only male o↵spring:

Momo ⌘ Man u 8hasChild.Momo.

In order to achieve the desired meaning, we have to interpret this definition under an appro-
priate fixpoint semantics. We shall show below that greatest fixpoint semantics captures our
intuition here.

Fixpoint semantics Because in a terminology T, every name symbol A occurs exactly
once as a definition of a concept name in the form of A ⌘ C, we can view T as a mapping
that associates the concept description to a name symbol: T (A) = C. With this notation, an
interpretation I is a model of T i↵ AI = (T (A))I .

This equation reminds us of a fixpoint equation, and we will use this similarity to define
a family of mappings, such that an an interpretation is a model of T i↵ it is a fixpoint of such
a mapping.

Let T be a terminology and let J be a fixed base interpretation of T. By Ext
J

we denote
the set of all extensions of J. Let T

J

: Ext
J

! Ext
J

be the mapping that maps the extension
I to the extension T

J

(I) defined by ATJ (I) = (T (A))I for each name symbol A.
Now, I is a fixpoint of T

J

i↵ I = T
J

(I), i.e., i↵ AI = ATJ (I) for all name symbols. This
means that for every definition A ⌘ C in T , we have AI = ATJ (I) = (T (A))I = CI , which
means that I is a model of T . This proves the following result.

6

Proposition Let T be a terminology, I be an interpretation, and J be the restriction of I
to the base symbols of T. Then I is a model of T i↵ I is a fixpoint of T

J

.
According to the preceding proposition, a terminology T is definitorial i↵ every base

interpretation J has a unique extension that is a fixpoint of T
J

.

Example To see why cyclic terminologies are not definitorial, we will discuss as an example
the terminology TMomo that consists only of Axiom Momo. Consider the base interpretation
J defined by

�J = {Charles1, Charles2, ...} [{James1, ..., James
Last

}

ManJ = �J

hasChildJ = {(Charles
i

, Charles(i+1))|i � 1} [{(James
i

, James(i+1))|1 i Last}

This means that the Charles dynasty does not die out, whereas there is a last member of
the James dynasty.

We want to identify the fixpoints of TMomo

J

. Note that an individual without children, i.e.,
without fillers of hasChild, is always in the interpretation of 8hasChild.Momo, no matter
how Momo is interpreted.

Therefore, if I is a fixpoint extension of J , then James
Last

is in (8hasChild.Momo)I ,
and thus in MomoI . We can conclude that every James is a Momo. Let I1 be the extension
of J such that MomoI1 comprises exactly of the James dynasty. Then it is easy to check
that I1 is a fixpoint. If also some Charles is a Momo, then all the members of the Charles
dynasty before and after him must belong to the concept Momo. We can easily check that
the extension I2 that interprets Momo as the entire domain is also a fixpoint. There are no
other fixpoints.

To make cyclic terminology T definitorial, it is necessary to single out a single fixpoint of
the mapping T

J

if there is more than one. For that we will define a partial ordering � on the
extensions of J. We say that I � I 0 if AI ✓ AI

0
for every name symbol in T . In the above

example, Momo is the only name symbol. Since MomoI1 ✓ MomoI2 , we have I1 � I2. In
the Momo example, I1 is the least and I2 the greatest fixpoint of T

J

.

Existence of fixpoint models Least and greatest fixpoint models need not exist for every
terminology.

Example Consider the axiom
A ⌘ ¬A.

If I is a model of this axiom, then A
I

= �I\AI , which implies �
I

= ;, an absurd.
A terminology containing this axiom thus does not have any models and therefore also no

greatest (or least) fixed point models.
There are also cases where models (i.e. fixpoints) exist, but there is neither the least one

nor the greatest one. As an example, consider the terminology T with the single axiom

A ⌘ 8R.¬A

7

Let J be the base interpretation with �J = {a, b} and RJ = {(a, b), (b, a)}. Then there are
two fixpoint extensions I1, I2, defined by AI1 = {a} and AI2 = {b}. They are not comparable.

We can show that Ext
J

,� is a complete lattice and with T
J

being monotone, by Knaster-
Tarski theorem it has least and greatest fix point. There are a couple of ways to make a
terminology monotone. The simplest one is to eliminate negation from the language. A less
restrictive way is to only ensure that all cycles in the dependency graph have an even number
of edges .

2.2.2 ABox

The second component of a knowledge base is the world description or ABox. In the ABox,
one describes a specific state of a↵airs of an application domain in terms of concepts and
roles. Some of the concept and role atoms in the ABox may be defined names of the TBox.
In the ABox, one introduces individuals, by giving them names and one asserts properties
about these individuals. We denote individual names as r, q, s. Using concepts C and roles
R, one can make assertions of the following two kinds in an ABox:

C(r)

R(q, s)

.
By the first kind, called concept assertions, one states that r belongs to (the interpretation

of) C, by the second kind, called role assertions, one states that s is a filler of the role R for
q.

Example ABox:

MotherWithoutDaughter(MARY)

Father(PETER)

hasChild(MARY,PETER)

hasChild(PETER,HARRY)

hasChild(MARY,PAUL)

In a simplified view, an ABox can be seen as an instance of a relational database with
only unary or binary relations. However, contrary to the “closed-world semantics” of classical
databases, the semantics of ABoxes is an “open-world semantics,” since usually knowledge
representation systems used when knowledge in the KB is not complete.

While a database instance represents exactly one interpretation, namely the one where
classes and relations in the schema are interpreted by the objects and tuples in the instance,
an ABox represents many di↵erent interpretations, namely all its models. As a consequence,
absence of information in a database instance is interpreted as negative information, while
absence of information in an ABox only indicates lack of knowledge.

Semantics for ABoxes are done by extending interpretations to individual names. With
that extension, interpretation I = (�I , ·I) not only maps atomic concepts and roles to sets
and relations, but in addition maps each individual name r to an element rI 2 �I . We
assume that distinct individual names denote distinct objects. Therefore, this mapping has
to respect the unique name assumption (UNA), i.e. if r, q are distinct names, then rI 6= qI

8

. The interpretation I satisfies the concept assertion C(r) if rI 2 CI and it satisfies the role
assertion R(r, q) if (rI , qI) 2 RI . An interpretation satisfies the ABox A if it satisfies each
assertion in A. In this case we say that I is a model of the assertion or of the ABox. Finally,
I satisfies an assertion ↵ or an ABox A with respect to a TBox T if in addition to being a
model of ↵ or of A, it is a model of T. Thus, a model of A and T is an abstraction of a
concrete world where the concepts are interpreted as subsets of the domain as required by
the TBox and where the membership of the individuals to concepts and their relationships
with one another in terms of roles respect the assertions in the ABox.

3 Reasoning

3.1 Typical Inferences

We have successfully defined a way to represent the knowledge in a DL system. But the
purposes of knowledge based systems go beyond only storing concept definitions and assertions
and it is possible to perform specific kinds of reasoning on this data. Because a knowledge
base comprising TBox and ABox has semantics that makes it equivalent to a set of axioms
in first-order predicate logic, like any other set of axioms, it contains implicit knowledge that
can be made explicit through inferences. For example, from the previous TBox and Abox one
can conclude that Mary is a grandmother, although this knowledge is not explicitly stated as
an assertion.

When modeling a domain, we start by constructing a terminology T, by defining new
concepts, possibly in terms of others that have been defined before. During this process,
it is important to find out whether a newly defined concept makes sense or whether it is
contradictory. From a logical point of view, a concept makes sense for us if there is some
interpretation that satisfies the axioms of T (that is, a model of T) such that the concept
denotes a nonempty set in that interpretation. A concept with this property is said to be
satisfiable with respect to T and unsatisfiable otherwise.

Checking satisfiability of concepts is a key inference. As we shall see, a number of other
important inferences for concepts can be reduced to the (un)satisfiability. For instance, in
order to check whether a domain model is correct, or to optimize queries that are formulated
as concepts, we may want to know whether some concept is more general than another one:
this is the subsumption problem. A concept C is subsumed by a concept D if in every
model of T the set denoted by C is a subset of the set denoted by D. Algorithms that check
subsumption are also employed to organize the concepts of a TBox in a taxonomy according
to their generality.

Satisfiability : A concept C is satisfiable with respect to T if there exists a model I of T
such that CI is nonempty. In this case we say also that I is a model of C.

Subsumption : A concept C is subsumed by a concept D with respect to T if CI ✓ DI

for every model I of T. In this case we write C v
T

D or T |= C ✓ D.

Equivalence : Two concepts C and D are equivalent with respect to T if CI = DI for
every model I of T. In this case we write C ⌘

T

T or T |= C ⌘ D.

9

Disjointness : Two concepts C and D are disjoint with respect to T if CI \ DI = ;; for
every model I of T .

For example Person subsumes Woman, both woman and Parent subsume Mother and
Mother subsumes Grandmother. Moreover Woman and Man, and Father and Mother are
Disjoint.

Reduction to Unsatisfiability For concepts C, D we have
(i) C is subsumed by D , C t ¬D is unsatisfiable;
(ii) C and D are equivalent , both (C t ¬D) and (¬C tD) are unsatisfiable;
(iii) C and D are disjoint , C uD is unsatisfiable. The statements also hold with respect

to a TBox.
The reduction of subsumption can easily be understood if we recall that for sets M, N,

we have M ✓ N i↵ M\N = ;. The reduction of equivalence is correct because C and D are
equivalent if, and only if, C is subsumed by D and D is subsumed by C. Finally, the reduction
of disjointness is just a rephrasing of the definition.

Because of the above proposition, in order to obtain decision procedures for any of the four
inferences we have discussed, it is su�cient to develop algorithms that decide the satisfiability
of concepts, provided the language for which we can decide satisfiability supports conjunction
as well as negation of arbitrary concepts.

3.2 Tableau method

Early day DL systems did not allow for negation and for such DLs, subsumption of concepts
can usually be computed by so-called structural subsumption algorithms, i.e., algorithms that
compare the syntactic structure of (possibly normalized) concept descriptions.

Instead of directly testing subsumption of concept descriptions, tableau algorithms use
negation to reduce subsumption to (un)satisfiability of concept descriptions.

Before describing a tableau-based satisfiability algorithm for ALCN in more detail, we
illustrate the underlying ideas by two simple examples. Let A, B be concept names, and let
R be a role name.

As a first example, assume that we want to know whether (9R.A) u (9R.B) is subsumed
by 9R.(A uB). This means that we must check whether the concept description

C = (9R.A) u (9R.B) u ¬(9R.(A uB))

is unsatisfiable.
First, we push all negation signs as far as possible into the description, using de Morgan’s

rules and the usual rules for quantifiers. As a result, we obtain the description

C0 = (9R.A) u (9R.B) u (8R.(¬A t ¬B))

which is in negation normal form, i.e. negation occurs only in front of concept names.
Then, we try to construct a finite interpretation I such that CI

0 6= ;. This means that
there must exist an individual in �I that is an element of CI

0 .
The algorithm just generates such an individual, say b, and imposes the constraint b 2 CI

0

on it. Since C 0 is the conjunction of three concept descriptions, this means that b must
satisfy the following three constraints: b 2 (9R.A)I , b 2 (9R.B)I , and b 2 (8R.(¬A t ¬B))I .

10

From b 2 (9R.A)I we can deduce that there must exist an individual c such that (b, c) 2 RI

and c 2 AI . Analogously, b 2 (9R.B)I implies the existence of an individual d with (b, d) 2 RI

and d 2 BI . In this situation, one should not assume that c = d since this would possibly
impose too many constraints on the individuals newly introduced to satisfy the existential
restrictions on b. Thus:

For any existential restriction the algorithm introduces a new individual as role
filler, and this individual must satisfy the constraints expressed by the restriction.
Since b must also satisfy the value restriction (8R.(¬A t ¬B))I , and c, d were introduced
as R-fillers of b, we obtain the additional constraints c 2 (¬A t ¬B)I and d 2 (¬A t ¬B)I .
Thus:

The algorithm uses value restrictions in interaction with already defined role
relationships to impose new constraints on individuals. Now c 2 (¬At¬B)I means
that c 2 (¬A)I or c 2 (¬B)I , and we must choose one of these possibilities. If we assume
c 2 (¬A)I , this clashes with the other constraint c 2 AI , which means that this search
path leads to an obvious contradiction. Thus we must choose c 2 (¬B)I . Analogously, we
must choose d 2 (¬A)I in order to satisfy the constraint d 2 (¬A t ¬B)I without creating a
contradiction to d 2 BI . Thus:

For disjunctive constraints, the algorithm tries both possibilities in successive
attempts. It must backtrack if it reaches an obvious contradiction, i.e., if the same
individual must satisfy constraints that are obviously conflicting. In the example,
we have now satisfied all the constraints without encountering an obvious contradiction. This
shows that C0 is satisfiable, and thus (9R.A) t (9R.B) is not subsumed by 9R.(A u B).
The algorithm has generated an interpretation I as witness for this fact: �I = {b, c, d};
RI = {(b, c), (b, d)}; AI = {c} and BI = {d}.

For this interpretation, b 2 CI

0 . This means that b 2 ((9R.A) u (9R.B))I , but b /2
(9R.(A uB))I .

In our second example, we add a number restriction to the first concept of the above
example, i.e., we now want to know whether (9R.A)u(9R.B)u 1R is subsumed by 9R.(Au
B). Intuitively, the answer should now be “yes” since 1R in the first concept ensures that
the R-filler in A coincides with the R-filler in B, and thus there is an R-filler in A u B. The
tableau-based satisfiability algorithm first proceeds as above, with the only di↵erence that
there is the additional constraint b 2 (1R)I . In order to satisfy this constraint, the two
R-fillers c, d of b must be identified with each other. Thus:

If an at-most number restriction is violated then the algorithm must identify
di↵erent role fillers. In the example, the individual c = d must belong to both AI and
BI , which together with c = d 2 (¬A t ¬B)I always leads to a clash. Thus, the search for a
counterexample to the subsumption relationship fails, and the algorithm concludes that

3.2.1 Complexity

This algorithm is PSpace-complete since it is a non-deterministic algorithm using only poly-
nomial space, i.e., for every non-deterministic rule we may simply assume that the algorithm
chooses the correct alternative.

11

References

[1] D. L. McGuiness, D. Nardi, P. F. Patel-Schneider : THE DESCRIPTION LOGIC HAND-
BOOK: Theory, implementation, and applications.

[2] Franz Baader and Carsten Lutz : Description Logic from Handbook of Modal Logic

12

