
Obliczenia i wnioskowanie
w systemie Coq

Małgorzata Biernacka

Instytut Informatyki UWr

Wykład 2
05.03.2013

1

Pewne pojęcia podstawowe

I dowód formalny
I logika konstruktywna
I izomorfizm Curry’ego-Howarda, czyli odpowiedniość między systemem

wnioskowania a systemem typów (typy-formuły, termy-dowody,
obliczenie-normalizacja)

I dowodzenie – znajdowanie (jakiegokolwiek) termu-dowodu danego
typu (zwykle za pomocą taktyk, ale niekoniecznie)

I programowanie – konstruowanie (konkretnego) termu-programu
(zwykle “wprost”, ale niekoniecznie)

2

System Coq

I implementuje (i rozszerza) rachunek konstrukcji z definicjami
indukcyjnymi: Calculus of Constructions, Th. Coquand 1984, Calculus
of Inductive Constructions, Ch. Paulin 1991 (w skrócie CIC lub pCIC)

I implementacja w języku OCaml
I narzędzia:

coqc - kompilator (.v → .vo)
coqtop - interpreter
coqide - interfejs graficzny
coqchk - narzędzie do weryfikacji dowodów
coqdoc, coqdep, coq makefile etc.

I Coq jest intensywnie rozbudowywany i rozszerzany

3

Bezpieczeństwo i poprawność systemu

I poprawność implementacji
jądro Coqa – typechecker dla pCIC zaimplementowany niezależnie od
reszty systemu, w stylu czysto funkcyjnym
Coq spełnia kryterium de Bruijna: każdy dowód jest weryfikowalny w
minimalnym podsystemie – jądrze Coqa
poprawność względna – w pewnym momencie zakładamy poprawność:
implementacji jądra Coqa, kompilatora OCamla i poprawność działania
komputera

I niesprzeczność systemu logicznego
pCIC jest niesprzeczny
aksjomaty użytkownika mogą powodować, że system staje się sprzeczny
bezpieczne aksjomaty (EM, PI, AC, FE)

4

Język Gallina

I język specyfikacji Coqa
I obejmuje termy rachunku konstrukcji pCIC
I wszystkie termy są typowane
I “termy” i “typy” należą do tej samej kategorii syntaktycznej termów
I w języku Gallina zapisujemy programy, specyfikacje, dowody, formuły
I system typów ↔ system wnioskowania (izomorfizm C-H)

5

Sorty: Set, Prop i Type

I sorty są termami Galliny
I każdy term ma typ
I każdy typ należy do pewnego sortu
I Set jest sortem “obliczeniowym”, uniwersum typów

danych/specyfikacji programów (obiekty sortu Set są typami
programów)

I Prop jest sortem “logicznym”, uniwersum formuł logicznych (obiekty
sortu Prop są typami dowodów)

I specyfikacje i formuły logiczne są termami
I Type jest sortem Set i Prop (naprawdę hierarchia Typei)

6

Podstawowe konstrukcje języka Gallina

identyfikatory zmiennych i stałych x

sorty Set, Prop, Type

produkt zależny forall x : t, u

λ− abstrakcja fun x : t ⇒ u
aplikacja t u

konstrukcja let let x := t in u

definicje rekurencyjne fix . . . , cofix . . .

dopasowanie wzorca match . . . with . . . end

7

Podstawowe konstrukcje języka Gallina, c.d.

I konstrukcje forall x : t, u, fun x : t ⇒ u wiążą zmienną x w termie
u

I pojęcie zmiennej związanej, zmiennej wolnej, α-równoważności i
podstawienia jak w rachunku lambda

I forall x : t, u reprezentuje kwantyfikator ogólny albo produkt zależny
I jeśli zmienna x nie występuje w termie u, produkt forall x : t, u

zapisujemy jako t → u
I t → u oznacza albo typ funkcyjny albo logiczną implikację

8

Reguły typowania dla sortów

WF (E ; Γ)

E ; Γ ` Set : Typei
WF (E ; Γ)

E ; Γ ` Prop : Typei

WF (E ; Γ) i < j
E ; Γ ` Typei : Typej

9

Reguły typowania dla identyfikatorów

WF (E ; Γ) x : T ∈ Γ lub x := t : T ∈ Γ
E ; Γ ` x : T

WF (E ; Γ) c : T ∈ E lub c := t : T ∈ E
E ; Γ ` c : T

10

Reguły typowania dla produktu zależnego

WF (E ; Γ) ` T : s s ∈ {Set, Prop, Type} E ; Γ, x : T ` U : Prop

E ; Γ ` forall x : T ,U : Prop

WF (E ; Γ) ` T : s s ∈ {Set, Prop} E ; Γ, x : T ` U : Set

E ; Γ ` forall x : T ,U : Set

WF (E ; Γ) ` T : Typei i ≤ k E ; Γ, x : T ` U : Typej j ≤ k
E ; Γ ` forall x : T ,U : Typek

I Prop jest niepredykatywny
I Set jest predykatywny

11

Reguły typowania dla abstrakcji, aplikacji i
definicji lokalnej

E ; Γ ` forall x : T ,U : s s ∈ S E ; Γ, x : T ` t : U
E ; Γ ` fun x : T ⇒ t : forall x : T ,U
E ; Γ ` t : forall x : U,T E ; Γ ` u : U

E ; Γ ` t u : T [x 7→ u]
E ; Γ ` t : T E ; Γ, x := t : T ` u : U
E ; Γ ` let x := t in u : U[x 7→ T]

12

Język komend Vernacular

I deklaracje lokalne i globalne
I definicje lokalne i globalne
I definicje indukcyjne
I twierdzenia, lematy
I dowody
I polecenia pomocnicze

13

Deklaracje i definicje globalne (Set)

I globalna deklaracja

Parameter x : bool.

> x is assumed

I globalna definicja

Definition square := fun x => x*x.

> square is defined

Definition cube (x:nat) : nat := x*x*x.

> cube is defined

14

Deklaracje i definicje lokalne (Set)
I używane wewnątrz sekcji (mechanizm bloków)
I lokalna deklaracja

Section Trojmian.

Variables a b c d: nat.

Definition wartosc x := a*x*x + b*x + c.

End Trojmian.

Print wartosc.
> wartosc = fun a b c x : nat => a * x * x + b * x + c
: nat -> nat -> nat -> nat -> nat

I lokalna definicja

Let s := a+b.

Definition kw_sumy := s*s.
15

Deklaracje i definicje lokalne (Prop)

I lokalna deklaracja

Hypothesis h : False. (* odpowiednik Variable *)

16

Deklaracje i definicje globalne (Prop)

I globalna deklaracja

Axiom h:False. (* odpowiednik Parameter *)

I globalna definicja (Theorem, Lemma, Corollary, Fact, Remark)

Theorem nat_gt_0:
forall n:nat, n>=0.
Proof.
...
Qed.

17

Dowodzenie

I możemy definiować formuły logiczne i predykaty indukcyjne
I możemy dowodzić formuł
I formułą jest każdy term typu Prop
I dowód formuły A to term, którego typem jest A (C-H izo.)
I możemy dowód napisać wprost, lub skonstruować go interaktywnie za

pomocą taktyk
I problem szukania dowodu to problem szukania termu o danym typie

18

Dowodzenie
I cel – para złożona z (lokalnego) kontekstu typowania Γ oraz pewnego

dobrze uformowanego typu T w tym kontekście (w pewnym
środowisku E)

I dowód celu (Γ,T) – term t taki, że E ; Γ ` t : T
I taktyki realizują backward reasoning
I taktyka – komenda, która zastosowana do bieżącego celu g produkuje

ciąg nowych celów g1, . . . , gn na podstawie reguł typowania
(bottom-up)

I taktyka zawiera przepis na skonstruowanie termu-dowodu dla bieżącego
celu g mając termy-dowody dla celów g1, . . . , gn

I każdą komendę kończymy pojedynczą kropką
I początek dowodu dobrze jest zacząć komendą Proof
I koniec dowodu zapisujemy komendą Qed lub Save (powoduje

sprawdzenie typu i rozszerzenie środowiska)
I nazwa twierdzenia to identyfikator termu-dowodu

19

Rodzaje taktyk

I taktyki atomowe (bazowe)
I kombinacje taktyk bazowych
I taktyki implementujące heurystyki i procedury decyzyjne (procedury

języka taktyk)

20

Taktyki bazowe

I odpowiadają poszczególnym regułom typowania w pCIC
I taktyki odpowiadające regułom Var, Lam/Let, App:

assumption, exact id – aksjomat (identyfikator o danym typie jest już
w lokalnym kontekście lub w środowisku i chcemy go wykorzystać)
intro, intros, intro id, intros id1,...,idn – wprowadzenie
hipotezy lub hipotez (implikacja, produkt zależny, let)
apply id – aplikacja hipotezy lub twierdzenia zdefiniowanego w
bieżącym środowisku
assert id:form, cut form – odwrócenie modus ponens

I intro, assumption, apply są zupełne dla minimalnej logiki
intuicjonistycznej

I taktyki “strukturalne”:
clear id – usunięcie hipotezy id
move id after id – permutacja hipotez

21

Taktyki dla reguły typowania
identyfikatorów

x : T ∈ E ∪ Γ lub x := t : T ∈ E ∪ Γ
E ; Γ ` x : T

I taktyki: exact t, assumption

22

Apply dla reguły typowania aplikacji

E ; Γ ` t : forall x : U,T E ; Γ ` u : U
E ; Γ ` t u : T [x 7→ u]

Działanie:
I apply t próbuje zunifikować cel z konkluzją termu t i jeśli unifikacja

się powiedzie, generuje nowe podcele – odpowiadające przesłankom
typu t

23

Intro dla reguły typowania abstrakcji

E ; Γ ` forall x : T ,U : s s ∈ S E ; Γ, x : T ` t : U
E ; Γ ` fun x : T ⇒ t : forall x : T ,U

I taktyki: intro, intros, intro id, intros id1 . . . idn

24

Intro dla reguły typowania definicji lokalnej

E ; Γ ` t : T E ; Γ, x := t : T ` u : U
E ; Γ ` let x := t in u : U[x 7→ T]

25

Inne taktyki
I exact term – podanie termu term jako dowodu bieżącego celu
I contradiction – eliminacja fałszu (jeśli False jest w przesłankach,

możemy wywnioskować wszystko)
I reflexivity – dowodzi celów postaci t = u, jeśli t i u są

konwertowalne
I auto – heurystyka; automatycznie znajduje dowód za pomocą

kombinacji taktyk intros+assumption+apply, działa rekurencyjnie
I trivial – prostsza, nierekurencyjna wersja auto
I tauto – procedura decyzyjna dla tautologii intuicjonistycznego

rachunku zdań (oparta na rachunku sekwentów Dyckhoffa)
I intuition, intuition tac – korzysta z tauto i stosuje tac do

dowodzenia otrzymanych celów
I split – wprowadzenie koniunkcji, równoważności
I left, right – wprowadzenie alternatywy
I destruct id – eliminacja koniunkcji/alternatywy

26

Taktyki złożone (tacticals)

Taktyki złożone można uważać za funkcje na taktykach; stanowią termy
języka taktyk Ltac

I złożenie tac1;tac2 – zastosuj tac1 do bieżącego celu, a następnie
zastosuj tac2 do wszystkich podcelów wygenerowanych przez tac1

I alternatywa tac1 || tac2 – zastosuj tac1; tylko jeśli się nie uda, to
zastosuj tac2

I idtac, fail – używane w kombinacjach taktyk: idtac nie zmienia
celu, fail zawsze zawodzi

I try tac – spróbuj zastosować taktykę tac; jeśli się nie uda, to zostaw
cel bez zmian

27

Komendy przydatne przy interaktywnym
dowodzeniu

I Undo, Undo n – cofnij ostatni krok (taktykę) dowodu/ostanie n
kroków dowodu

I Show n – pokaż n-ty cel z bieżących
I Focus n – wybierz n-ty cel z bieżących
I Restart – zacznij dowód od nowa
I Admitted – porzuć dowodzenie twierdzenia i zadeklaruj je jako

aksjomat

28

