OBLICZENIA 1 WNIOSKOWANIE
W SYSTEMIE COQ

Matgorzata Biernacka
Instytut Informatyki UWr

Wyktad 2
05.03.2013

PEWNE POJECIA PODSTAWOWE

» dowdd formalny
> logika konstruktywna

» izomorfizm Curry'ego-Howarda, czyli odpowiednio$¢ miedzy systemem
wnioskowania a systemem typéw (typy-formuty, termy-dowody,
obliczenie-normalizacja)

» dowodzenie — znajdowanie (jakiegokolwiek) termu-dowodu danego
typu (zwykle za pomoca taktyk, ale niekoniecznie)

» programowanie — konstruowanie (konkretnego) termu-programu
(zwykle “wprost”, ale niekoniecznie)

SYSTEM CoQ

» implementuje (i rozszerza) rachunek konstrukgji z definicjami
indukcyjnymi: Calculus of Constructions, Th. Coquand 1984, Calculus
of Inductive Constructions, Ch. Paulin 1991 (w skrécie CIC lub pCIC)

» implementacja w jezyku OCaml

> narzedzia:

coqc - kompilator (.v — .vo)

coqtop - interpreter

coqide - interfejs graficzny

coqchk - narzedzie do weryfikacji dowoddéw
coqdoc, coqdep, coq_makefile etc.

» Coq jest intensywnie rozbudowywany i rozszerzany

BEZPIECZENSTWO I POPRAWNOSC SYSTEMU

» poprawno$¢ implementacji
m jadro Coqa — typechecker dla pCIC zaimplementowany niezaleznie od
reszty systemu, w stylu czysto funkcyjnym
m Coq spetnia kryterium de Bruijna: kazdy dowdd jest weryfikowalny w
minimalnym podsystemie — jadrze Coqa
m poprawno$¢ wzgledna — w pewnym momencie zaktadamy poprawno$é:

implementacji jadra Coqa, kompilatora OCamla i poprawnos¢ dziatania
komputera

> niesprzeczno$¢ systemu logicznego
m pCIC jest niesprzeczny

m aksjomaty uzytkownika moga powodowad, ze system staje sie sprzeczny
m bezpieczne aksjomaty (EM, PI, AC, FE)

JEZYK (GALLINA

» jezyk specyfikacji Coqa
» obejmuje termy rachunku konstrukgji pCIC
» wszystkie termy sg typowane

> “termy” i “typy” naleza do tej samej kategorii syntaktycznej termoéw
» w jezyku Gallina zapisujemy programy, specyfikacje, dowody, formuty

» system typdw > system wnioskowania (izomorfizm C-H)

SORTY: SET, PrROP I TYPE

> sorty s3 termami Galliny
» kazdy term ma typ
» kazdy typ nalezy do pewnego sortu

» Set jest sortem “obliczeniowym”, uniwersum typdéw
danych/specyfikacji programéw (obiekty sortu Set sg typami
programéw)

» Prop jest sortem “logicznym”, uniwersum formut logicznych (obiekty
sortu Prop s3 typami dowodéw)

» specyfikacje i formuty logiczne s3 termami

» Type jest sortem Set i Prop (naprawde hierarchia Type;)

PODSTAWOWE KONSTRUKCJE JEZYKA (GALLINA

identyfikatory zmiennych i statych
sorty

produkt zalezny

A — abstrakcja

aplikacja

konstrukcja let

definicje rekurencyjne

dopasowanie wzorca

X
Set, Prop, Type
forall x: t,u
funx:t = u
tu
let x:=tinu
fix...,cofix...

match...with...end

PODSTAWOWE KONSTRUKCJE JEZYKA GALLINA, C.D.

v

konstrukcje forall x: t,u, fun x : t = u wigza zmienng x w termie
u

> pojecie zmiennej zwigzanej, zmiennej wolnej, x-réwnowaznosci i
podstawienia jak w rachunku lambda

» forall x: t,u reprezentuje kwantyfikator ogdlny albo produkt zalezny

> jesli zmienna x nie wystepuje w termie u, produkt forall x : t,u
zapisujemy jako t — u

» t — u oznacza albo typ funkcyjny albo logiczna implikacje

REGUEY TYPOWANIA DLA SORTOW

WF(E; T) WF(E; T)

E; ' Set: Type; E; I'=Prop: Type;

WF(E;T) i<j
E; 't Type; : Type;

REGULY TYPOWANIA DLA IDENTYFIKATOROW

WF(E;T) x: TeTlubx:=t:TeT
E;TkEx:T

WF(E;T) c:TeElubc:=t:TeE
E;Tkc:T

10

REGULY TYPOWANIA DLA PRODUKTU ZALEZNEGO

WF(E;T)FT:s se&{Set,Prop,Type} E;T,x:THF U:Prop
E;T'Fforall x: T,U:Prop

WF(E;T)FT:s se{Set,Prop} E; I x:THk U:Set
E;T'+forallx: T,U:Set

WF(E;) T:Type; i<k E;Lx:THU:Type; j<k
E;T'Fforall x: T,U:Type,

» Prop jest niepredykatywny
> Set jest predykatywny

11

REGULY TYPOWANIA DLA ABSTRAKCJI, APLIKACJI 1
DEFINICJI LOKALNEJ

E;Tkforallx: T,U:s s€S E;x:Tkt:U
E;TkHfunx: T = t:forallx: T,U

E;TkFt:forallx:U, T E;TtFu:U
E;Tktu:Tlx— u

E;THt: T E;LOx:=t:TkFru:U
E;Thletx:=tinu:Ulx— T]

12

JEZYK KOMEND VERNACULAR

v

deklaracje lokalne i globalne

\4

definicje lokalne i globalne

v

definicje indukcyjne

v

twierdzenia, lematy

v

dowody

v

polecenia pomocnicze

13

DEKLARACJE I DEFINICJE GLOBALNE (Set)

> globalna deklaracja

Parameter x : bool.

> x is assumed

» globalna definicja

Definition square := fun x => x*x.

> square is defined

Definition cube (x:nat) : nat := x*x*x.

> cube is defined

14

DEKLARACJE I DEFINICJE LOKALNE (Set)

» uzywane wewnatrz sekcji (mechanizm blokéw)
» lokalna deklaracja

Section Trojmian.

Variables a b ¢ d: nat.

Definition wartosc x := a*x*x + b*x + cC.

End Trojmian.

Print wartosc.

> wartosc = fun a b c x : nat => a * x * x + b * x + ¢

: nat -> nat -> nat -> nat -> nat

» lokalna definicja

Let s := a+tb.

Definition kw_sumy := s*s.

DEKLARACJE I DEFINICJE LOKALNE (Prop)

» lokalna deklaracja

Hypothesis h : False. (* odpowiednik Variable *)

16

DEKLARACJE I DEFINICJE GLOBALNE (Prop)

> globalna deklaracja

Axiom h:False. (* odpowiednik Parameter x*)

» globalna definicja (Theorem, Lemma, Corollary, Fact, Remark)

Theorem nat_gt_O:
forall n:nat, n>=0.
Proof.

ed.

17

DOWODZENIE

» mozemy definiowaé formuty logiczne i predykaty indukcyjne
» mozemy dowodzi¢ formut

» formuta jest kazdy term typu Prop

» dowdd formuty A to term, ktérego typem jest A (C-H izo.)

» mozemy dowdd napisa¢ wprost, lub skonstruowac go interaktywnie za
pomoca taktyk

» problem szukania dowodu to problem szukania termu o danym typie

18

DOWODZENIE

>

cel — para ztozona z (lokalnego) kontekstu typowania I" oraz pewnego
dobrze uformowanego typu T w tym kontekscie (w pewnym
$rodowisku E)

dowdd celu (I T) —term t taki, ze E; TH&t: T
taktyki realizujg backward reasoning

taktyka — komenda, ktéra zastosowana do biezacego celu g produkuje
ciag nowych celéw gi,..., g, na podstawie regut typowania
(bottom-up)

taktyka zawiera przepis na skonstruowanie termu-dowodu dla biezacego
celu g majac termy-dowody dla celéw g1, ..., g,

kazda komende konczymy pojedynczg kropka
poczatek dowodu dobrze jest zaczaé komenda Proof

koniec dowodu zapisujemy komenda Qed lub Save (powoduje
sprawdzenie typu i rozszerzenie Srodowiska)

nazwa twierdzenia to identyfikator termu-dowodu

19

RODZAJE TAKTYK

» taktyki atomowe (bazowe)
» kombinacje taktyk bazowych

» taktyki implementujace heurystyki i procedury decyzyjne (procedury
jezyka taktyk)

20

TAKTYKI BAZOWE

» odpowiadaja poszczegdlnym regutom typowania w pCIC
» taktyki odpowiadajace regutom Var, Lam/Let, App:
m assumption, exact id — aksjomat (identyfikator o danym typie jest juz
w lokalnym kontekscie lub w $rodowisku i chcemy go wykorzystac)
® intro, intros, intro id, intros idj,...,id, — wprowadzenie
hipotezy lub hipotez (implikacja, produkt zalezny, let)
m apply id — aplikacja hipotezy lub twierdzenia zdefiniowanego w
biezacym Srodowisku
m assert id:form, cut form — odwrdcenie modus ponens
> intro, assumption, apply s3 zupetne dla minimalnej logiki
intuicjonistycznej
» taktyki “strukturalne”:
m clear id — usuniecie hipotezy id
m move id after id — permutacja hipotez

21

TAKTYKI DLA REGUEY TYPOWANIA
IDENTYFIKATOROW

x: TeEUT lub x=t: TeEUT

E;TkEx:T

> taktyki: exact t, assumption

22

APPLY DLA REGULY TYPOWANIA APLIKACJI

E;T+t:forallx: U, T E;TFu:U
E;Tktu:Tix+— u

Dziatanie:

> apply t prébuje zunifikowaé cel z konkluzja termu t i jesli unifikacja
sie powiedzie, generuje nowe podcele — odpowiadajace przestankom
typu t

23

INTRO DLA REGULY TYPOWANIA ABSTRAKCJI

E;Tkforallx: T,U:s s€S E;Ox:Tkt:U

E;TkFfunx: T = t:forallx:T,U

» taktyki: intro, intros, intro id, intros id; ... id,

24

INTRO DLA REGULY TYPOWANIA DEFINICJI LOKALNEJ

E;THt: T E;Cx=t:Tkru:U
E;Tkrletx:=tinu:Ulx— T]

25

INNE TAKTYKI

exact term — podanie termu term jako dowodu biezacego celu

contradiction — eliminacja fatszu (jesli False jest w przestankach,
mozemy wywnioskowaé wszystko)

reflexivity — dowodzi celéw postaci t = u, jedli t i u sa
konwertowalne

auto — heurystyka; automatycznie znajduje dowdd za pomoca
kombinacji taktyk intros+assumption+apply, dziata rekurencyjnie

trivial — prostsza, nierekurencyjna wersja auto

tauto — procedura decyzyjna dla tautologii intuicjonistycznego
rachunku zdan (oparta na rachunku sekwentéw Dyckhoffa)

intuition, intuition tac — korzysta z tauto i stosuje tac do
dowodzenia otrzymanych celéw

split — wprowadzenie koniunkgji, réwnowaznosci
left, right — wprowadzenie alternatywy

destruct id — eliminacja koniunkgcji/alternatywy

26

TAKTYKI ZLOZONE (tacticals)

Taktyki ztozone mozna uwazad za funkcje na taktykach; stanowia termy
jezyka taktyk Ltac

» zltozenie tacy;tacy — zastosuj taci do biezacego celu, a nastepnie
zastosuj tacy do wszystkich podceldow wygenerowanych przez taci

> alternatywa tacy || tacp — zastosuj tacy; tylko jedli sie nie uda, to
zastosuj tacy

» idtac, fail — uzywane w kombinacjach taktyk: idtac nie zmienia
celu, fail zawsze zawodzi

> try tac — sprébuj zastosowacl taktyke tac; jesli sie nie uda, to zostaw
cel bez zmian

27

KOMENDY PRZYDATNE PRZY INTERAKTYWNYM
DOWODZENIU

» Undo, Undo n — cofnij ostatni krok (taktyke) dowodu/ostanie n
krokéw dowodu

» Show n — pokaz n-ty cel z biezacych
» Focus n — wybierz n-ty cel z biezacych
» Restart — zacznij dowdd od nowa

» Admitted — porzu¢ dowodzenie twierdzenia i zadeklaruj je jako
aksjomat

28

