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Preface

... beware of mathematicians, and all those who make empty prophecies.

St. Augustine, De Genesi ad Litteram libri duodecim.
Liber Secundus, 17, 37.

Prediction of individual sequences, the main theme of this book, has been studied in
various fields, such as statistical decision theory, information theory, game theory, machine
learning, and mathematical finance. Early appearances of the problem go back as far as
the 1950s, with the pioneering work of Blackwell, Hannan, and others. Even though the
focus of investigation varied across these fields, some of the main principles have been
discovered independently. Evolution of ideas remained parallel for quite some time. As
each community developed its own vocabulary, communication became difficult. By the
mid-1990s, however, it became clear that researchers of the different fields had a lot to
teach each other.

When we decided to write this book, in 2001, one of our main purposes was to investigate
these connections and help ideas circulate more fluently. In retrospect, we now realize that
the interplay among these many fields is far richer than we suspected. For this reason,
exploring this beautiful subject during the preparation of the book became a most exciting
experience — we really hope to succeed in transmitting this excitement to the reader. Today,
several hundreds of pages later, we still feel there remains a lot to discover. This book just
shows the first steps of some largely unexplored paths. We invite the reader to join us in
finding out where these paths lead and where they connect.

The book should by no means be treated as an encyclopedia of the subject. The selection
of the material reflects our personal taste. Large parts of the manuscript have been read
and constructively criticized by Gilles Stoltz, whose generous help we greatly appreci-
ate. Claudio Gentile and Andras Gyorgy also helped us with many important and useful
comments. We are equally grateful to the members of a seminar group in Budapest who
periodically gathered in Laci Gyorfi’s office at the Technical University and unmercifully
questioned every line of the manuscript they had access to, and to Gyorgy Ottucsak who
diligently communicated to us all these questions and remarks. The members of the group
are Andras Antos, Baldzs Csanad Csdji, Laci Gyorfi, Andras Gyorgy, Levente Kocsis,
Gyorgy Ottucsak, Marti Pintér, Csaba Szepesvari, and Kati Varga. Of course, all remaining
errors are our responsibility.

We thank all our friends and colleagues who, often without realizing it, taught us many
ideas, tricks, and points of view that helped us understand the subtleties of the material.

Xi



xii Preface

The incomplete list includes Peter Auer, Andrew Barron, Peter Bartlett, Shai Ben-David,
Stéphane Boucheron, Olivier Bousquet, Miklés Csuirds, Luc Devroye, Meir Feder, Paul
Fischer, Dean Foster, Yoav Freund, Claudio Gentile, Fabrizio Germano, Andras Gyorgy,
Laci Gyorfi, Sergiu Hart, David Haussler, David Helmbold, Marcus Hutter, Sham Kakade,
Adam Kalai, Baldzs Kégl, Jyrki Kivinen, Tamas Linder, Phil Long, Yishay Mansour,
Andreu Mas-Colell, Shahar Mendelson, Neri Merhav, Jan Poland, Hans Simon, Yoram
Singer, Rob Schapire, Kic Udina, Nicolas Vayatis, Volodya Vovk, Manfred Warmuth,
Marcelo Weinberger, and Michael ‘Il Lupo” Wolf.

We gratefully acknowledge the research support of the Italian Ministero dell’Istruzione,
Universita e Ricerca, the Generalitat de Catalunya, the Spanish Ministry of Science and
Technology, and the IST Programme of the European Community under the PASCAL
Network of Excellence.

Many thanks to Elisabetta Parodi-Dandini for creating the cover art, which is inspired
by the work of Alighiero Boetti (1940-1994).

Finally, a few grateful words to our families. Nicolo thanks Betta, Silvia, and Luca for
filling his life with love, joy, and meaning. Gdbor wants to thank Arrate for making the
last ten years a pleasant adventure and Dani for so much fun, and to welcome Frida to the
family.

Have as much fun reading this book as we had writing it!

Nicolo Cesa-Bianchi, Milano
Gabor Lugosi, Barcelona
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Introduction

1.1 Prediction

Prediction, as we understand it in this book, is concerned with guessing the short-term evo-
lution of certain phenomena. Examples of prediction problems are forecasting tomorrow’s
temperature at a given location or guessing which asset will achieve the best performance
over the next month. Despite their different nature, these tasks look similar at an abstract
level: one must predict the next element of an unknown sequence given some knowledge
about the past elements and possibly other available information. In this book we develop
a formal theory of this general prediction problem. To properly address the diversity of
potential applications without sacrificing mathematical rigor, the theory will be able to
accommodate different formalizations of the entities involved in a forecasting task, such as
the elements forming the sequence, the criterion used to measure the quality of a forecast,
the protocol specifying how the predictor receives feedback about the sequence, and any
possible side information provided to the predictor.

In the most basic version of the sequential prediction problem, the predictor — or fore-
caster — observes one after another the elements of a sequence yj, ys, ... of symbols. At
each time t = 1, 2, ..., before the tth symbol of the sequence is revealed, the forecaster
guesses its value y; on the basis of the previous ¢ — 1 observations.

In the classical statistical theory of sequential prediction, the sequence of elements,
which we call outcomes, is assumed to be a realization of a stationary stochastic process.
Under this hypothesis, statistical properties of the process may be estimated on the basis
of the sequence of past observations, and effective prediction rules can be derived from
these estimates. In such a setup, the risk of a prediction rule may be defined as the expected
value of some loss function measuring the discrepancy between predicted value and true
outcome, and different rules are compared based on the behavior of their risk.

This book looks at prediction from a quite different angle. We abandon the basic assump-
tion that the outcomes are generated by an underlying stochastic process and view the
sequence yi, yz, . ..as the product of some unknown and unspecified mechanism (which
could be deterministic, stochastic, or even adversarially adaptive to our own behavior). To
contrast it with stochastic modeling, this approach has often been referred to as prediction
of individual sequences.

Without a probabilistic model, the notion of risk cannot be defined, and it is not imme-
diately obvious how the goals of prediction should be set up formally. Indeed, several
possibilities exist, many of which are discussed in this book. In our basic model, the per-
formance of the forecaster is measured by the loss accumulated during many rounds of



2 Introduction

prediction, where loss is scored by some fixed loss function. Since we want to avoid any
assumption on the way the sequence to be predicted is generated, there is no obvious base-
line against which to measure the forecaster’s performance. To provide such a baseline,
we introduce a class of reference forecasters, also called experts. These experts make their
prediction available to the forecaster before the next outcome is revealed. The forecaster
can then make his own prediction depend on the experts’ “advice” in order to keep his
cumulative loss close to that of the best reference forecaster in the class.

The difference between the forecaster’s accumulated loss and that of an expert is called
regret, as it measures how much the forecaster regrets, in hindsight, of not having followed
the advice of this particular expert. Regret is a basic notion of this book, and a lot of
attention is payed to constructing forecasting strategies that guarantee a small regret with
respect to all experts in the class. As it turns out, the possibility of keeping the regrets small
depends largely on the size and structure of the class of experts, and on the loss function.
This model of prediction using expert advice is defined formally in Chapter 2 and serves
as a basis for a large part of the book.

The abstract notion of an “expert” can be interpreted in different ways, also depending on
the specific application that is being considered. In some cases it is possible to view an expert
as a black box of unknown computational power, possibly with access to private sources
of side information. In other applications, the class of experts is collectively regarded as a
statistical model, where each expert in the class represents an optimal forecaster for some
given “state of nature.” With respect to this last interpretation, the goal of minimizing regret
on arbitrary sequences may be thought of as a robustness requirement. Indeed, a small
regret guarantees that, even when the model does not describe perfectly the state of nature,
the forecaster does almost as well as the best element in the model fitted to the particular
sequence of outcomes. In Chapters 2 and 3 we explore the basic possibilities and limitations
of forecasters in this framework.

Models of prediction of individual sequences arose in disparate areas motivated by
problems as different as playing repeated games, compressing data, or gambling. Because
of this diversity, it is not easy to trace back the first appearance of such a study. But
it is now recognized that Blackwell, Hannan, Robbins, and the others who, as early as
in the 1950s, studied the so-called sequential compound decision problem were the pio-
neering contributors in the field. Indeed, many of the basic ideas appear in these early
works, including the use of randomization as a powerful tool of achieving a small regret
when it would otherwise be impossible. The model of randomized prediction is intro-
duced in Chapter 4. In Chapter 6 several variants of the basic problem of randomized
prediction are considered in which the information available to the forecaster is limited in
some way.

Another area in which prediction of individual sequences appeared naturally and found
numerous applications is information theory. The influential work of Cover, Davisson,
Lempel, Rissanen, Shtarkov, Ziv, and others gave the information-theoretic foundations
of sequential prediction, first motivated by applications for data compression and “uni-
versal” coding, and later extended to models of sequential gambling and investment. This
theory mostly concentrates on a particular loss function, the so-called logarithmic or self-
information loss, as it has a natural interpretation in the framework of sequential probability
assignment. In this version of the prediction problem, studied in Chapters 9 and 10, at each
time instance the forecaster determines a probability distribution over the set of possible
outcomes. The total likelihood assigned to the entire sequence of outcomes is then used to
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score the forecaster. Sequential probability assignment has been studied in different closely
related models in statistics, including bayesian frameworks and the problem of calibration
in various forms. Dawid’s “prequential” statistics is also close in spirit to some of the
problems discussed here.

In computer science, algorithms that receive their input sequentially are said to operate
in an online modality. Typical application areas of online algorithms include tasks that
involve sequences of decisions, like when one chooses how to serve each incoming request
in a stream. The similarity between decision problems and prediction problems, and the
fact that online algorithms are typically analyzed on arbitrary sequences of inputs, has
resulted in a fruitful exchange of ideas and techniques between the two fields. However,
some crucial features of sequential decision problems that are missing in the prediction
framework (like the presence of states to model the interaction between the decision maker
and the mechanism generating the stream of requests) has so far prevented the derivation
of a general theory allowing a unified analysis of both types of problems.

1.2 Learning

Prediction of individual sequences has also been a main topic of research in the theory
of machine learning, more concretely in the area of online learning. In fact, in the late
1980s—early 1990s the paradigm of prediction with expert advice was first introduced as a
model of online learning in the pioneering papers of De Santis, Markowski, and Wegman;
Littlestone and Warmuth; and Vovk, and it has been intensively investigated ever since. An
interesting extension of the model allows the forecaster to consider other information apart
from the past outcomes of the sequence to be predicted. By considering side information
taking values in a vector space, and experts that are linear functions of the side information
vector, one obtains classical models of online pattern recognition. For example, Rosenblatt’s
Perceptron algorithm, the Widrow-Hoff rule, and ridge regression can be naturally cast in
this framework. Chapters 11 and 12 are devoted to the study of such online learning
algorithms.

Researchers in machine learning and information theory have also been interested in the
computational aspects of prediction. This becomes a particularly important problem when
very large classes of reference forecasters are considered, and various tricks need to be
invented to make predictors feasible for practical applications. Chapter 5 gathers some of
these basic tricks illustrated on a few prototypical examples.

1.3 Games

The online prediction model studied in this book has an intimate connection with game
theory. First of all, the model is most naturally defined in terms of a repeated game
played between the forecaster and the “environment” generating the outcome sequence,
thus offering a convenient way of describing variants of the basic theme. However, the
connection is much deeper. For example, in Chapter 7 we show that classical minimax
theorems of game theory can be recovered as simple applications of some basic bounds for
the performance of sequential prediction algorithms. On the other hand, certain generalized
minimax theorems, most notably Blackwell’s approachability theorem can be used to define
forecasters with good performance on individual sequences.
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Perhaps surprisingly, the connection goes even deeper. It turns out that if all players in a
repeated normal form game play according to certain simple regret-minimizing prediction
strategies, then the induced dynamics leads to equilibrium in a certain sense. This interesting
line of research has been gaining terrain in game theory, based on the pioneering work of
Foster, Vohra, Hart, Mas-Colell, and others. In Chapter 7 we discuss the possibilities and
limitations of strategies based on regret minimizing forecasting algorithms that lead to
various notions of equilibria.

1.4 A Gentle Start

To introduce the reader to the spirit of the results contained in this book, we now describe
in detail a simple example of a forecasting procedure and then analyze its performance on
an arbitrary sequence of outcomes.

Consider the problem of predicting an unknown sequence y;, y, ... of bits y, € {0, 1}.
At each time ¢ the forecaster first makes his guess p, € {0, 1} for y,. Then the true bit y, is
revealed and the forecaster finds out whether his prediction was correct. To compute p, the
forecaster listens to the advice of N experts. This advice takes the form of a binary vector
(fies---» fnu), where fi, € {0, 1} is the prediction that expert i makes for the next bit y,.
Our goal is to bound the number of time steps ¢ in which p; # y;, that is, to bound the
number of mistakes made by the forecaster.

To start with an even simpler case, assume we are told in advance that, on this particular
sequence of outcomes, there is some expert i that makes no mistakes. That is, we know
that f;, = y, for some i and for all 7, but we do not know for which i this holds. Using
this information, it is not hard to devise a forecasting strategy that makes at most |[log, N |
mistakes on the sequence. To see this, consider the forecaster that starts by assigning a
weight w; =1 to each expert j =1, ..., N. At every time step ¢, the forecaster predicts
with p, = 1 if and only if the number of experts j with w; = 1 and such that f;, =1
is bigger than those with w; = 1 and such that f;, = 0. After y, is revealed, if p; # y;,
then the forecaster performs the assignment w; <— 0 on the weight of all experts k£ such
that fi, # y:. In words, this forecaster keeps track of which experts make a mistake and
predicts according to the majority of the experts that have been always correct.

The analysis is immediate. Let W, be the sum of the weights of all experts after the
forecaster has made m mistakes. Initially, m = 0 and Wy = N. When the forecaster makes
his mth mistake, at least half of the experts that have been always correct so far make their
first mistake. This implies that W,, < W,,_;/2, since those experts that were incorrect for
the first time have their weight zeroed by the forecaster. Since the above inequality holds
for all m > 1, we have W,, < W,/2™. Recalling that expert i never makes a mistake, we
know that w; = 1, which implies that W,, > 1. Using this together with W, = N, we thus
find that 1 < N /2™. Solving for m (which must be an integer) gives the claimed inequality
m < |log, N |.

We now move on to analyze the general case, in which the forecaster does not have any
preliminary information on the number of mistakes the experts will make on the sequence.
Our goal now is to relate the number of mistakes made by the forecaster to the number of
mistakes made by the best expert, irrespective of which sequence is being predicted.

Looking back at the previous forecasting strategy, it is clear that setting the weight of
an incorrect expert to zero makes sense only if we are sure that some expert will never
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make a mistake. Without this guarantee, a safer choice could be performing the assignment
wi < Bwy every time expert k makes a mistake, where 0 < 8 < 1 is a free parameter. In
other words, every time an expert is incorrect, instead of zeroing its weight we shrink it by a
constant factor. This is the only modification we make to the old forecaster, and this makes
its analysis almost as easy as the previous one. More precisely, the new forecaster compares
the total weight of the experts that recommend predicting 1 with those that recommend 0
and predicts according to the weighted majority. As before, at the time the forecaster makes
his mth mistake, the overall weight of the incorrect experts must be at least W,,_; /2. The
weight of these experts is then multiplied by 8, and the weight of the other experts, which
is at most W,,_;/2, is left unchanged. Hence, we have W,, < W,,_/2+ B W, _1/2. As
this holds for all m > 1, we get W,, < Wy(1 4 §)"/2™. Now let k be the expert that has
made the fewest mistakes when the forecaster made his mth mistake. Denote this minimal
number of mistakes by m*. Then the current weight of this expert is w; = ™", and thus we
have W,, > B™". This provides the inequality 8" < Wy(1 4+ )" /2". Using this, together
with Wy = N, we get the final bound

< Llogz N +m* logz(l/ﬂ)J .

2
10g2 m

For any fixed value of 8, this inequality establishes a linear dependence between the
mistakes made by the forecaster, after any number of predictions, and the mistakes made
by the expert that is the best after that same number of predictions. Note that this bound
holds irrespective of the choice of the sequence of outcomes.

The fact that m and m* are linearly related means that, in some sense, the performance
of this forecaster gracefully degrades as a function of the “misfit” m* between the experts
and the outcome sequence. The bound also exhibits a mild dependence on the number of
experts: the log, N term implies that, apart from computational considerations, doubling
the number of experts causes the bound to increase by a small additive term.

Notwithstanding its simplicity, this example contains some of the main themes developed
in the book, such as the idea of computing predictions using weights that are functions of
the experts’ past performance. In the subsequent chapters we develop this and many other
ideas in a rigorous and systematic manner with the intent of offering a comprehensive view
on the many facets of this fascinating subject.

1.5 A Note to the Reader

The book is addressed to researchers and students of computer science, mathematics,
engineering, and economics who are interested in various aspects of prediction and learning.
Even though we tried to make the text as self-contained as possible, the reader is assumed
to be comfortable with some basic notions of probability, analysis, and linear algebra. To
help the reader, we collect in the Appendix some technical tools used in the book. Some of
this material is quite standard but may not be well known to all potential readers.

In order to minimize interruptions in the flow of the text, we gathered bibliographical
references at the end of each chapter. In these references we intend to trace back the origin
of the results described in the text and point to some relevant literature. We apologize for any
possible omissions. Some of the material is published here for the first time. These results
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are not flagged. Each chapter is concluded with a list of exercises whose level of difficulty
varies between distant extremes. Some of the exercises can be solved by an easy adaptation
of the material described in the main text. These should help the reader in mastering the
material. Some others resume difficult research results. In some cases we offer guidance to
the solution, but there is no solution manual.

Figure 1.1 describes the dependence structure of the chapters of the book. This should
help the reader to focus on specific topics and teachers to organize the material of various
possible courses.

Introduction

Prediction with expert advice 9

Tight bounds for specific losses

Randomized prediction

Efficient forecasters for large classes of experts 9 0
Prediction with limited feedback

Prediction and playing games

Absolute loss prTe 8 9 @ @ 9 @
Logarithmic loss

10 Sequential investment

11 Linear pattern recognition @ @ 0
12 Linear classification

O 00NN B W=

Figure 1.1. The dependence structure of the chapters.
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Prediction with Expert Advice

The model of prediction with expert advice, introduced in this chapter, provides the foun-
dations to the theory of prediction of individual sequences that we develop in the rest of
the book.

Prediction with expert advice is based on the following protocol for sequential deci-
sions: the decision maker is a forecaster whose goal is to predict an unknown sequence
Y1, Y2... of elements of an outcome space ). The forecaster’s predictions py, s ...
belong to a decision space D, which we assume to be a convex subset of a vec-
tor space. In some special cases we take D = )/, but in general D may be different
from ).

The forecaster computes his predictions in a sequential fashion, and his predictive
performance is compared to that of a set of reference forecasters that we call experts.
More precisely, at each time ¢ the forecaster has access to the set { fEr t E€€& } of expert
predictions fr, € D, where £ is a fixed set of indices for the experts. On the basis of the
experts’ predictions, the forecaster computes his own guess p, for the next outcome y,.
After P, is computed, the true outcome y, is revealed.

The predictions of forecaster and experts are scored using a nonnegative loss function
£:DxY—R.

This prediction protocol can be naturally viewed as the following repeated game between
“forecaster,” who makes guesses Py, and “environment,” who chooses the expert advice
{fE.t : E e 5} and sets the true outcomes y;.

PREDICTION WITH EXPERT ADVICE

Parameters: decision space D, outcome space ), loss function ¢, set £ of expert
indices.

Foreachroundr =1,2,...

(1) the environment chooses the next outcome y, and the expert advice
{fe. € D : E € £}; the expert advice is revealed to the forecaster;

(2) the forecaster chooses the prediction p; € D;

(3) the environment reveals the next outcome y, € V;

(4) the forecaster incurs loss £(p;,y;) and each expert E incurs loss

U fEa yo)-
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The forecaster’s goal is to keep as small as possible the cumulative regret (or sim-
ply regret) with respect to each expert. This quantity is defined, for expert E, by the
sum

n
~

Ren =Y (6@, y) = (fes, ) = Lo — Le .

t=1

where we use Zn = Zf:l £(P;, y:) to denote the forecaster’s cumulative loss and Lk, =
Z:’Zl £(fE.r, yi) to denote the cumulative loss of expert E. Hence, Rg , is the difference
between the forecaster’s total loss and that of expert E after n prediction rounds. We also
define the instantaneous regret with respect to expert E at time ¢ by rg, = €(p;, y,) —
L(fEss yi), sothat Rp , = Zle rg... One may think about rz , as the regret the forecaster
feels of not having listened to the advice of expert E right after the 7th outcome y, has been
revealed.

Throughout the rest of this chapter we assume that the number of experts is finite,
E={1,2,...,N}, and use the index i = 1,..., N to refer to an expert. The goal of
the forecaster is to predict so that the regret is as small as possible for all sequences of
outcomes. For example, the forecaster may want to have a vanishing per-round regret, that s,
to achieve

. 1 - . n—oo
max R;, =o(n) orequivalently, —{L,— min L;,] — 0,
i=1,...N n 1...N

i=1,..,

where the convergence is uniform over the choice of the outcome sequence and the choice
of the expert advice. In the next section we show that this ambitious goal may be achieved
by a simple forecaster under mild conditions.

The rest of the chapter is structured as follows. In Section 2.1 we introduce the important
class of weighted average forecasters, describe the subclass of potential-based forecasters,
and analyze two important special cases: the polynomially weighted average forecaster
and the exponentially weighted average forecaster. This latter forecaster is quite cen-
tral in our theory, and the following four sections are all concerned with various issues
related to it: Section 2.2 shows certain optimality properties, Section 2.3 addresses the
problem of tuning dynamically the parameter of the potential, Section 2.4 investigates
the problem of obtaining improved regret bounds when the loss of the best expert is
small, and Section 2.5 investigates the special case of differentiable loss functions. Starting
with Section 2.6, we discover the advantages of rescaling the loss function. This sim-
ple trick allows us to derive new and even sharper performance bounds. In Section 2.7
we introduce and analyze a weighted average forecaster for rescaled losses that, unlike
the previous ones, is not based on the notion of potential. In Section 2.8 we return to
the exponentially weighted average forecaster and derive improved regret bounds based on
rescaling the loss function. Sections 2.9 and 2.10 address some general issues in the prob-
lem of prediction with expert advice, including the definition of minimax values. Finally,
in Section 2.11 we discuss a variant of the notion of regret where discount factors are
introduced.
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2.1 Weighted Average Prediction

A natural forecasting strategy in this framework is based on computing a weighted average
of experts’ predictions. That is, the forecaster predicts at time ¢ according to

N
~ Zi:l Wi,tflfi,t
Pr=——§N
D W1
where wy,_1, ..., wy,—1 > 0 are the weights assigned to the experts at time 7. Note that
P: € D, since it is a convex combination of the expert advice fi,,..., fy, € D and D

is convex by our assumptions. As our goal is to minimize the regret, it is reasonable to
choose the weights according to the regret up to time ¢ — 1. If R;,_; is large, then we
assign a large weight w; ,_; to expert i, and vice versa. As R;,_| = Z,_l —L;,_, this
results in weighting more those experts i whose cumulative loss L;,_ is small. Hence, we
view the weight as an arbitrary increasing function of the expert’s regret. For reasons that
will become apparent shortly, we find it convenient to write this function as the derivative
of a nonnegative, convex, and increasing function ¢ : R — R. We write ¢’ to denote this
derivative. The forecaster uses ¢’ to determine the weight w; ,_; = ¢'(R; ;_1) assigned to
the ith expert. Therefore, the prediction P, at time ¢ of the weighted average forecaster is
defined by

o N YR i

;= (weighted average forecaster).

27:1 ' (Rj—1)

Note that this is a legitimate forecaster as P, is computed on the basis of the experts’ advice
at time ¢ and the cumulative regrets up to time ¢ — 1.
We start the analysis of weighted average forecasters by a simple technical observation.

Lemma 2.1. If the loss function £ is convex in its first argument, then

N
sup > ri ¢ (Ri, 1) < 0.

ey i

Proof. Using Jensen’s inequality, forall y € ),

YL O R i\ _ Xl @ Rl y)

2('[.51’ y) = E ’ y =
YR ) Y R )

Rearranging, we obtain the statement. W

The simple observation of the lemma above allows us to interpret the weighted average
forecaster in an interesting way. To do this, introduce the instantaneous regret vector

N
r, =@, rN ) €ER
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and the corresponding regret vector R, = >/, r;. It is convenient to introduce also a
potential function ® : RV — R of the form

N
S(u) =y (Z d)(u,)) (potential function),
i=1

where ¢ : R — R is any nonnegative, increasing, and twice differentiable function, and v :
R — R is any nonnegative, strictly increasing, concave, and twice differentiable auxiliary
function.

Using the notion of potential function, we can give the following equivalent definition
of the weighted average forecaster

5 — YN VOR); fir
-
Y VOR,);

where VO(R,_); = dP(R,_)/9R;,_. We say that a forecaster defined as above is based
on the potential ®. Even though the definition of the weighted average forecaster is inde-
pendent of the choice of v (the derivatives v/’ cancel in the definition of p, above), the
proof of the main result of this chapter, Theorem 2.1, reveals that i plays an important role
in the analysis. We remark that convexity of ¢ is not needed to prove Theorem 2.1, and this
is the reason why convexity is not mentioned in the above definition of potential function.
On the other hand, all forecasters in this book that are based on potential functions and
have a vanishing per-round regret are constructed using a convex ¢ (see also Exercise 2.2).
The statement of Lemma 2.1 is equivalent to

supr, - VO(R,_;) <0 (Blackwell condition).

ney
The notation u - v stands for the the inner product of two vectors defined by u-v =
u1vy + - - - +unvy. We call the above inequality Blackwell condition because of its sim-
ilarity to a key property used in the proof of the celebrated Blackwell’s approachability
theorem. The theorem, and its connection to the above inequality, are explored in Sec-
tions 7.7 and 7.8. Figure 2.1 shows an example of a prediction satisfying the Blackwell
condition.

The Blackwell condition shows that the function @ plays a role vaguely similar to the
potential in a dynamical system: the weighted average forecaster, by forcing the regret
vector to point away from the gradient of ® irrespective to the outcome y,, tends to keep
the point R, close to the minimum of . This property, in fact, suggests a simple analysis
because the increments of the potential function ® may now be easily bounded by Taylor’s
theorem. The role of the function 1 is simply to obtain better bounds with this argument.

The next theorem applies to any forecaster satisfying the Blackwell condition (and thus
not only to weighted average forecasters). However, it will imply several interesting bounds
for different versions of the weighted average forecaster.

Theorem 2.1. Assume that a forecaster satisfies the Blackwell condition for a potential

Du) = ¢ (Zfil ¢(ul-)). Then, foralln = 1,2, ...,

1 n
P(R,) < ©(0) + 5 ;cm),
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0 1

Figure 2.1. An illustration of the Blackwell condition with N = 2. The dashed line shows the
points in regret space with potential equal to 1. The prediction at time ¢ changed the potential from
P(R;_) = 1to P(R,) = P(R,_; 4 r;). Though ®(R;) > ®(R,_), the inner product between r, and
the gradient VO(R,_) is negative, and thus the Blackwell condition holds.

where

C(r,) = sup ¥’ (Z o (u; )) Zd’”(“ )

ueRY i=1

Proof. We estimate ®(R;) in terms of ®(R,_) using Taylor’s theorem. Thus, we obtain

OR)) = PR, +T17)

=OR,_ )+ VOR, ) -1, +

Fithjt

NN g
ZZB 814]

i=1 j=I1

N =

(where £ is some vector in RV)

<R+ 5 ZZ Turd

where the inequality follows by the Blackwell condition. Now straightforward calculation
shows that

NN g
ZZ uiduj|g

i=1 j=1

N N N
=y (Z ¢><s,->) >3 E
i=1 j=1

"z,t”j,t

Titljt

Q.D

N N
v’ (Z ¢<s,-)> > "G,
i=1 i=1
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N N 2 N N
=y (Z P& ) (Z ¢>’(s,»)r,-,t) +y (Z ¢><s,~)) > '@,
i=1 i=1 i=1

i=1

=

N
<y’ (Z ) ) Zfb”(%'i)"iz,z (since v is concave)
i=1 i=1

<C(r)

where at the last step we used the definition of C(r;). Thus, we have obtained
D(R;) — D(R,;_;) < C(r;)/2. The proof is finished by summing this inequality for
t=1,....,n. N

Theorem 2.1 can be used as follows. By monotonicity of ¢ and ¢,

v <¢< max R; )) =¥ ( max $(R; n>> <V <Z¢<R,n>> = O(R,).

i=1,..N )]  \i=l,..,

Note that i is invertible by the definition of the potential function. If ¢ is invertible as well,
then we get

max Ri, <¢! (I/ffl(q)(Rﬂ))) ,

where ®(R,,) is replaced with the bound provided by Theorem 2.1. In the first of the two
examples that follow, however, ¢ is not invertible, and thus max;—;,_n R;, is directly
majorized using a function of the bound provided by Theorem 2.1.

.....

Polynomially Weighted Average Forecaster
Consider the polynomially weighted average forecaster based on the potential

N 2/p
®,(u) = (Z(u,-)i) = ||u+||i (polynomial potential),
where p > 2. Here u denotes the vector of positive parts of the components of u. The
weigths assigned to the experts are then given by

Z(Ri,tfl)i_l
IR+ 11577

and the forecaster’s predictions are just the weighted average of the experts predictions

N t—1 p—1
> (Z (EPs ys) = £ fiss ¥s) )) fir

s=1 +

wii1=V®O,(R, 1), =

o~ i=1

Pt =

t—1 p-l1

N
Z (Z E(Ds> y5) = U fiss ys)))

s=1 +

Corollary 2.1. Assume that the loss function £ is convex in its first argument and that it takes
values in [0, 1]. Then, for any sequence yi, 2, ... € YV of outcomes and for any n > 1, the
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regret of the polynomially weighted average forecaster satisfies

L, — nlun Li, <+/n(p — HN?r.

This shows that, for all p > 2, the per-round regret converges to zero at a rate O(1/./n)
uniformly over the outcome sequence and the expert advice. The choice p = 2 yields a
particularly simple algorithm. On the other hand, the choice p = 2In N (for N > 2), which
approximately minimizes the upper bound, leads to

Zn — 1}nn Li, <yne2InN —1)

i=

yielding a significantly better dependence on the number of experts N.

Proof of Corollary 2.1. Apply Theorem 2.1 using the polynomial potential. Then ¢(x) =
xf: and ¥ (x) = x¥?, x > 0. Moreover

/ 2 1 -
V@ = oy and ¢ = p(p— Dxl

By Holder’s inequality,

Z¢>”(u i =p(p - 1)Z<u 2,

N o r=2/r , 2/p
<pp—1) (Z (@) ) (Z |rl~,,|f’) :
i=1

i=1

Thus,

2/p
(qu(u )) D ¢ iy, <2p—1) (Z Iri ,|1>

and the conditions of Theorem 2.1 are satisfied with C (x;) < 2(p — 1) ||r; IIi. Since ©,(0) =
0, Theorem 2.1, together with the boundedness of the loss function, implies that

N 2/p n
(Z (Rl«,n)i> =®,(R,) < (p— DY _IIrl < n(p— HNP.
t=1

Finally, since

N 1/p
Ln — min Li,n - max R/n < (E ln
i=l1,...N

i=1

the result follows. W

Remark 2.1. We have defined the polynomial potential as ®,(u) = |luy |12, which corre-
sponds to taking v (x) = x?/7. Recall that y does not have any influence on the prediction, it
only has arole in the analysis. The particular form analyzed here is chosen by convenience,
but there are other possibilities leading to similar results. For example, one may argue that
it is more natural to take ¥ (x) = x'/?, which leads to the potential function ®(u) = |lu|| -
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Figure 2.2. Plots of the polynomial potential function ®,(u) for N =2 experts with exponents
p=2and p = 10.

We leave it as an exercise to work out a bound similar to that of Corollary 2.1 based on this
choice.

Exponentially Weighted Average Forecaster
Our second main example is the exponentially weighted average forecaster based on the
potential

N

1
D, (u) = ; In (Z e””") (exponential potential),

i=1

where 7 is a positive parameter. In this case, the weigths assigned to the experts are of the
form

eRii—1

Wir—1 = VO,(R,_1); = SN R
ijle j»

and the weighted average forecaster simplifies to

B = vazl eXp (’7 (Zt—l - Li,t—l)) fii _ Z,Nzl e ki fit
Y ep (T — L) X e

The beauty of the exponentially weighted average forecaster is that it only depends on the
past performance of the experts, whereas the predictions made using other general potentials
depend on the past predictions ps,s < t, as well. Furthermore, the weights that the forecaster
assigns to the experts are computable in a simple incremental way: let wy ,_y, ..., Wy —1
be the weights used at round ¢ to compute the prediction p, = Zf\lzl Wi —1fi:. Then, as
one can easily verify,

Wi t_le_’lz(fi,za)’t)

21}/_1 Wj t_le_rle(f/lr—lv)’t) ’

Wit =

A simple application of Theorem 2.1 reveals the following performance bound for the
exponentially weighted average forecaster.
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Figure 2.3. Plots of the exponential potential function ®,(u) for N = 2 experts with n = 0.5 and
n=2.

Corollary 2.2. Assume that the loss function £ is convex in its first argument and that it
takes values in [0, 1]. For any n and n > 0, and for all yy, ..., y, € Y, the regret of the
exponentially weighted average forecaster satisfies

~ . InN nn

L,— mn L;, <—+ —.

i=l,.,N n 2

Optimizing the upper bound suggests the choice 7 = /2In N/n. In this case the upper
bound becomes +/2n In N, which is slightly better than the best bound we obtained using
¢(x) = x¥{ with p = 21In N. In the next section we improve the bound of Corollary 2.2 by
a direct analysis. The disadvantage of the exponential weighting is that optimal tuning of
the parameter n requires knowledge of the horizon n in advance. In the next two sections
we describe versions of the exponentially weighted average forecaster that do not suffer
from this drawback.

Proof of Corollary 2.2. Apply Theorem 2.1 using the exponential potential. Then ¢(x) =
e™, Y(x) = (1/n)Inx, and

N N
W Db ) D @ wr?, < max r7 <.

i=1 i=1
Using ®,(0) = (In N)/n, Theorem 2.1 implies that

InN nn
max R;, < ®,(R,) < — + —
i=1,...N n 2

i=l,...,

as desired. H

2.2 An Optimal Bound

The purpose of this section is to show that, even for general convex loss functions, the
bound of Corollary 2.2 may be improved for the exponentially weighted average forecaster.
The following result improves Corollary 2.2 by a constant factor. In Section 3.7 we see that
the bound obtained here cannot be improved further.
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Theorem 2.2. Assume that the loss function £ is convex in its first argument and that it
takes values in [0, 1]. For any n and n > 0, and for all yy, ..., y, € Y, the regret of the
exponentially weighted average forecaster satisfies

- . InN nn
L, — mlnN Lip <—4+—.

8

i=1,..,

In particular, with n = /81In N /n, the upper bound becomes /(n/2)In N.

The proof is similar, in spirit, to that of Corollary 2.2, but now, instead of bounding the
evolution of (1/n)In (Zl e”R"-'), we bound the related quantities (1/7n) In(W,/W,_,), where

N N
W, = E Wit = E e i
i=1 i=1

for t > 1, and Wy = N. In the proof we use the following classical inequality due to
Hoeffding [161].

Lemma 2.2. Let X be a random variable witha < X < b. Then for any s € R,
2 b — 2
lnIE[esX] <sEX + u.

The proof is in Section A.1 of the Appendix.

Proof of Theorem 2.2. First observe that

W N
In—= =In e in ] —InN
v = (L)

> n ( max e_”L"v"> —InN

i=1,..., N
= —ni_r}linN Li,—InN. (2.1)
On the other hand, foreacht =1, ..., n,
w N o=t fi 30 p=nLis
In—— =1In Lizi 5
Wl‘—l Zj:l e*ﬂL_/‘.r—l

N —l(fir
Zi:l Wi_1€ ne(fiesyr)

N
Zj:l Wj,t—l

Now using Lemma 2.2, we observe that the quantity above may be upper bounded by

ZlNzl Wii—1fi N
-\ = n +§
D Wia—t
2

~ n
—n€(p, yi) + g,

=In

_nZ,N:I Wi —1€(fir, yi)
N
Zj:] Wii—1

IA

2
Ui

4+
8
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where we used the convexity of the loss function in its first argument and the definition of
the exponentially weighted average forecaster. Summing over ¢t = 1, ..., n, we get

Wn T 772
In — <—L,+ —n.
Wo = TR

0
Combining this with the lower bound (2.1) and solving for z,,, we find that

~ . InN n
L,< mn L;,+—+-n
i=l1,..,N 8

.....

as desired. H

2.3 Bounds That Hold Uniformly over Time

As we pointed out in the previous section, the exponentially weighted average forecaster
has the disadvantage that the regret bound of Corollary 2.2 does not hold uniformly over
sequences of any length, but only for sequences of a given length n, where n is the value
used to choose the parameter 1. To fix this problem one can use the so-called “doubling
trick.” The idea is to partition time into periods of exponentially increasing lengths. In each
period, the weighted average forecaster is used with a parameter n chosen optimally for
the length of the interval. When the period ends, the weighted average forecaster is reset
and then is started again in the next period with a new value for 5. If the doubling trick is
used with the exponentially weighted average forecaster, then it achieves, for any sequence

Y1, ¥2, ... € Y of outcomes and for any n > 1,
—~ 2
L,— min L;, < V2 L In N

in <
l..N 2-1V2

(see Exercise 2.8). This bound is worse than that of Theorem 2.2 by a factor of V2 / (ﬁ —1),
which is about 3.41.

Considering that the doubling trick resets the weights of the underlying forecaster
after each period, one may wonder whether a better bound could be obtained by a more
direct argument. In fact, we can avoid the doubling trick altogether by using the weighted
average forecaster with a time-varying potential. That is, we let the parameter 7 of the
exponential potential depend on the round number ¢. As the best nonuniform bounds for
the exponential potential are obtained by choosing n = /8(In N)/#, a natural choice for
a time-varying exponential potential is thus 7, = \/8(In N)/z. By adapting the approach
used to prove Theorem 2.2, we obtain for this choice of 1, a regret bound whose main term
is 2¢/(n/2)In N and is therefore better than the doubling trick bound. More precisely, we
prove the following result.

Theorem 2.3. Assume that the loss function £ is convex in its first argument and takes
values in [0, 1]. For all n > 1 and for all yi, ..., y, € Y, the regret of the exponentially
weighted average forecaster with time-varying parameter 1, = /8(In N)/t satisfies

—~ . n InN
L,— min L;,<2/—InN+, —.
i=l,.,N 2 8
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The exponentially weighted average forecaster with time-varying potential predicts with
D= Zf\':l fiwii—1/W,_1,where W,_| = Z[,-V:l w1 andw;,_ = e "L The poten-
tial parameter is chosen as 1, = /a(InN)/7, where a > 0 is determined by the analy-
sis. We use w;’tfl = ¢ M-1Lim1 to denote the weight w;,_;, where the parameter 7, is
replaced by n,_;. Finally, we use k, to denote the expert whose loss after the first ¢
rounds is the lowest (ties are broken by choosing the expert with smallest index). That is,
Ly, ; = min;<y L; ;. In the proof of the theorem, we also make use of the following technical
lemma.

Lemma 2.3. For all N > 2, for all B >« >0, and for all dy,...,dy >0 such that
S el > 1,
N —od; _
In =1 el Y
Z_/’:] e_ﬁ J o

Proof. We begin by writing

Zi\[:l e -1 ZINII e

In =1In
S e S e e

=—InE[“PP] <(B-—a)ED

by Jensen’s inequality, where D is a random variable taking value d; with probability
e’“d"/ 27=1 e foreachi = 1, ..., N. Because D takes at most N distinct values, its
entropy H (D) is at most In N (see Section A.2 in the Appendix). Therefore,

InN > H(D)
N N {
—ad; —ad,
=Ze i adi+ane ‘)N—
i—1 < =1 Yjoe

N

=aED + ane_"‘dk
k=1

> oE D,

where the last inequality holds because Z,N: e > 1. Hence ED < (InN)/a.As B > &
by hypothesis, we can substitute the upper bound on E D in the first derivation above and
conclude the proof. M

We are now ready to prove the main theorem.

Proof of Theorem 2.3. As in the proof of Theorem 2.2, we study the evolution of
In(W;/W;_1). However, here we need to couple this with In(wy,_, ;—1/Wy, ), including
in both terms the time-varying parameter 7,. Keeping track of the currently best expert, k;
is used to lower bound the weight In(wy, ,/ W;). In fact, the weight of the overall best expert
(after n rounds) could get arbitrarily small during the prediction process. We thus write the
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following:

lln Wit 1 1 W
Un W4 Ne+1 W,

_ < 1 1>ln W[ + 1 W]/(“[/W[/ 1 Wk,,l,tfl/Wtfl

Ne+1 Nt
(A) (B) ©)

—In——+ —1In y -
Wi, t Nt Wk,,r/Wz Nt W](“[/Wt

We now bound separately the three terms on the right-hand side. The term (A) is easily
bounded by noting that n,; < 1, and using the fact that , is the index of the expert with
the smallest loss after the first # rounds. Therefore, wy, ;/ W; must be at least 1/N. Thus we

have
1 1 W, 1 1
(A):( ——>ln ! 5( ——)lnN.
Ne41 Un Wit Ne+1 N

We proceed to bounding the term (B) as follows:

B — 11 wi W 1l Z,N:] e~ 1 Lis—Lig o)
()——H—W——n ST ———
Un Wk,,t/ t Uun Zj:le (L je =Lk

_ 11
Sm—mHlnN=< ——)lnN,
NeNe+1 Ne+1 Nt

where the inequality is proven by applying Lemma 2.3 with d; = L;; — Ly,,, ;. Note that

d; > 0 because k; is the index of the expert with the smallest loss after the first ¢ rounds

and Z,N=1 e idi > 1 asfori = k:+1 we have d; = 0. The term (C) is first split as follows:
1 Wk,,],z—l/Wz—l 1 Wi, _1,t—1 1 Wf/

(C)=—1In , =—1In . + —1In .
N Wk,,z/Wt/ Un Wit Ny W1

We treat separately each one of the two subterms on the right-hand side. For the first one,
we have

1 _ 1 _ﬂrLA,,l,r—l

T ' R SR

N Wk,,t Ne e Ml
For the second subterm, we proceed similarly to the proof of Theorem 2.2 by applying
Hoeffding’s bound (Lemma 2.2) to the random variable Z that takes the value £(f;;, y;)
with probability w; ,_;/W,_; foreachi =1,..., N:

’ N
l In Wt = i In Z Wir—1 e—fhf(f[,ny;)
Nt Wi Nt i1 W;_1
N w n
< _ i,t—lz ] +_t
= Z W,_, (firs y1) ]

i=1

~ n
< —(pr, y) + g’,

where in the last step we used the convexity of the loss £. Finally, we substitute back in the
main equation the bounds on the first two terms (A) and (B), and the bounds on the two
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subterms of the term (C). Solving for £(p;, y;), we obtain

~ vJalnN 1
£(pr, yi) < (Lk,,t - Lk,,l,t—l) + 3 ﬁ
Wit _ 1 Wi _1,t—1

In —In
ns W e Wiy

1 1
+2 — — )InN.
N1 Un

We apply the above inequality to eacht = 1, ..., n and sum up using > /_, £(p;, y1) = L.,
S (Lie = Liyyo—1) =minj—yy Li, Yy 1/3/t <24/n, and

n
1 Wi 1 w _ 1 w InN
Z ( o et Ly Whoa 1) <1 ko0 _ /
N1 W e W1 m Wy a

t=1

+

n

Z(] _l>_ n+1 1
my n) | a(nN) a(lnN)’

t=1

Thus, we can write the bound

. InN DInN [N
L, < min Li,l+—“/“”n +2\/(”+)n —\/n .
i N 4 a a

.....

Finally, by overapproximating and choosing @ = 8 to trade off the two main terms, we get

-~ . n InN
L,< min L;,+2,/=InN+,/—
i=1,.N " 2 8

as desired. W

2.4 An Improvement for Small Losses

The regret bound for the exponentially weighted average forecaster shown in Theorem 2.2
may be improved significantly whenever it is known beforehand that the cumulative loss
of the best expert will be small. In some cases, as we will see, this improvement may even
be achieved without any prior knowledge.

To understand why one can hope for better bounds for the regret when the cumulative
loss of the best expert is small, recall the simple example described in the introduction when
Y =D ={0,1}and £(p, y) = |p — y| € {0, 1} (this example violates our assumption that
D is a convex set but helps understand the basic phenomenon). If the forecaster knows in
advance that one of the N experts will suffer zero loss, that is, min;—;_y L;, = 0, then
he may predict using the following simple “majority vote.” At time ¢ = 1 predict p; = 0 if
and only if at least half of the N experts predict 0. After the first bit y; is revealed, discard
all experts with f; | # y;. At time t = 2 predict p, = 0 if and only if at least half of the N
remaining experts predict 0, discard all incorrectly predicting experts after y, is revealed,
and so on. Hence, each time the forecaster makes a mistake, at least half of the surviving
experts are discarded (because the forecaster always votes according to the majority of the
remaining experts). If only one expert remains, the forecaster does not make any further
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mistake. Thus, the total number of mistakes of the forecaster (which, in this case, coincides
with his regret) is at most |[log, N |.

In this section we show that regret bounds of the form O(In N) are possible for all
bounded and convex losses on convex decision spaces whenever the forecaster is given the
information that the best expert will suffer no loss. Note that such bounds are significantly
better than /(n/2)In N, which holds independently of the loss of the best expert.

For simplicity, we write L} = min;—; _ n L; ,. We now show that whenever L’ is known
beforehand, the parameter 1 of the exponentially weighted average forecaster can be chosen
so that his regret is bounded by ,/2L* In N + In N, which equals to In N when L} = 0 and
is of order +/nIn N when L is of order n. Our main tool is the following refinement of
Theorem 2.2.

Theorem 2.4. Assume that the loss function € is convex in its first argument and that it
takes values in [0, 1]. Then for any n > 0 the regret of the exponentially weighted average
forecaster satisfies

-~ L*+1InN

n < L
I —e™

It is easy to see that, in some cases, an uninformed choice of 7 can still lead to a good regret
bound.

Corollary 2.3. Assume that the exponentially weighted average forecaster is used with
n = 1. Then, under the conditions of Theorem 2.4,

~ e

This bound is much better than the general bound of Theorem 2.2 if L* < /n, but it may
be much worse otherwise.

We now derive a new bound by tuning » in Theorem 2.4 in terms of the total loss L} of
the best expert.

Corollary 2.4. Assume the exponentially weighted average forecaster is used with n =
In (1 +,/2In N)/L:), where L} > 0 is supposed to be known in advance. Then, under the
conditions of Theorem 2.4,

L,—L*<2L*InN +InN.

Proof. Using Theorem 2.4, we just need to show that, for our choice of 7,
InN L
% <L*+InN+ 2L InN. 2.2)
— e_
We start from the elementary inequality (e¢" — e~7)/2 = sinh(n) > n, which holds for all
n > 0. Replacing the 1 in the numerator of the left-hand side of (2.2) with this upper bound,
we find that (2.2) is implied by

NN 14e
1“ -+ ;en L <L:+InN +2L; InN.
— e e

The proof is concluded by noting that the above inequality holds with equality for our
choiceof n. W
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Of course, the quantity L is only available after the nth round of prediction. The lack
of this information may be compensated by letting n change according to the loss of the
currently best expert, similarly to the way shown in Section 2.3 (see Exercise 2.10). The
regret bound that is obtainable via this approach is of the form 2,/2L* In N + c¢In N, where
¢ > 1isaconstant. Note that, similarly to Theorem 2.3, the use of a time-varying parameter
n; leads to a bound whose leading term is twice the one obtained when 7 is fixed and chosen
optimally on the basis of either the horizon n (as in Theorem 2.2) or the loss L of the best
expert (as in Corollary 2.4).

Proof of Theorem 2.4. The proof is a simple modification of that of Theorem 2.2. The only
difference is that Hoeffding’s inequality is now replaced by Lemma A.3 (see the Appendix).
Recall from the proof of Theorem 2.2 that

Wit—1
—nL* lnN<1n— In =) In Yo
Z W ,Z] S

We apply Lemma A.3 to the random variable X, that takes value £( f; ;, y,) with probability
wi—1/ W, foreachi =1, ..., N.Note that by convexity of the loss function and Jensen’s
inequality, E X, > £(p;, y;) and therefore, by Lemma A.3,

e =€ fi.0s31)

N —nl(firs
Zi:l Wi 1€ ne(firsye)

N
Dt Wi

In

=InE[e] < ("= 1)EX, < (e7" — 1) LDy, o)

Thus,

N —ne(fiis31) R
—nL} 1nN<Zln Li- P <(e"=1)L,.
=1 Z/ 1 Wii—1

Solving for L, yields the result. W

2.5 Forecasters Using the Gradient of the Loss

Consider again the exponentially weighted average forecaster whose predictions are defined
by

N
-~ Dt Wii—1fis
D= >
it Wil
where the weight w; ,_; for experti atround ¢ is defined by w; ,_; = e L1 In this section

we introduce and analyze a different exponentially weighted average forecaster in which
the cumulative loss L;,_; appearing at the exponent of w;,_ is replaced by the gradient
of the loss summed up to time # — 1. This new class of forecasters will be generalized in
Chapter 11, where we also provide extensive analysis and motivation.

Recall that the decision space D is a convex subset of a linear space. Throughout this
section, we also assume that D is finite dimensional, though this assumption can be relaxed
easily. If £ is differentiable, we use V£(p, y) to denote its gradient with respect to the first
argument p € D.
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Define the gradient-based exponentially weighted average forecaster by

-~

S0 vexp (= U2 Ve 3 - i) fis
pr = .

S exp (=0 X2 VEBr 30+ i)

To understand the intuition behind this predictor, note that the weight assigned to expert i is
small if the sum of the inner products V&(ps, ys) - f;i.s has been large in the past. This inner
product is large if expert i’s advice f; ; points in the direction of the largest increase of the
loss function. Such a large value means that having assigned a little bit larger weight to this
expert would have increased the loss suffered at time s. According to the philosophy of the
gradient-based exponentially weighted average forecaster, the weight of such an expert has
to be decreased.

The predictions of this forecaster are, of course, generally different from those of the
standard exponentially weighted average forecaster. However, note that in the special case of
binary prediction with absolute loss (i.e., if D = [0, 1], Y = {0, 1} and £(x, y) = |x — y|),
a setup that we study in detail in Chapter 8, the predictions of the two forecasters are
identical (see the exercises).

‘We now show that, under suitable conditions on the norm of the gradient of the loss, the
regret of the new forecaster can be bounded by the same quantity that was used to bound
the regret of the standard exponentially weighted average forecaster in Corollary 2.2.

Corollary2.5. Assume that the decision space D is a convex subset of the euclidean unit ball
{g € RY : |lq|| < 1}, the loss function € is convex in its first argument and that its gradient
V¢ exists and satisfies ||VL|| < 1. For any n and n > 0, and for all y,,...,y, € Y, the
regret of the gradient-based exponentially weighted average forecaster satisfies

~ . InN nn
L,— min L;, <—+ —.
i=1,..., ’ 2
Proof. The weight vector w,_; = (W1, ..., wn 1) used by this forecaster has com-

ponents

t—1
Wi—i = exp <—n > VEGs ) - f) :

s=1

Observe that these weights correspond to the exponentially weighted average forecaster
based on the loss function ¢', defined at time ¢ by

U(q,y)=q -VUP,y), q¢€D.

By assumption, ¢’ takes values in [—1, 1]. Applying Theorem 2.2 after rescaling £ in [0, 1]
(see Section 2.6), we get

n n
max S B fu) Ve 30 = 3Gy~ min 3 C(fi w0
=L...N = pu— i=1,..., P

- InN npn
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The proof is completed by expanding £( f; ,, y,) around £(p;, y;) as follows:

Dy y1) — L fies ¥0) < (Pr = fisr) - VEDrs yo)s
which implies that

n n
L,~ min L, < lee’@, y)— min_ lewfi,,, y). m
t= t=

i=1,.., L.,

2.6 Scaled Losses and Signed Games

Up to this point we have always assumed that the range of the loss function £ is the
unit interval [0, 1]. We now investigate how scalings and translations of this range affect
forecasting strategies and their performance.

Consider first the case of a loss function £ € [0, M]. If M is known, we can run the
weighted average forecaster on the scaled losses £/M and apply without any modification
the analysis developed for the [0, 1] case. For instance, in the case of the exponentially
weighted average forecaster, Corollary 2.4, applied to these scaled losses, yields the regret
bound

L,—L'<2L*MInN +MInN.

The additive term M In N is necessary. Indeed, if £ is such that for all p € D there exist
p' € Dand y € Y such that £(p, y) = M and £(p’, y) = 0, then the expert advice can be
chosen so that any forecaster incurs a cumulative loss of at least M log N on some outcome
sequence with L} = 0.

Consider now the translated range [— M, 0]. If we interpret negative losses as gains, we
may introduce the regret G} — G, measuring the difference between the cumulative gain
G} = —L} = max;=;, n(—L; ) of the best expert and the cumulative gain 6,1 = —Zn of
the forecaster. As before, if M is known we can run the weighted average forecaster on
the scaled gains (—¢)/M and apply the analysis developed for [0, 1]-valued loss functions.
Adapting Corollary 2.4 we get a bound of the form

G*—G, <2G:MInN + MInN.

Note that the regret now scales with the largest cumulative gain G .

We now turn to the general case in which the forecasters are scored using a generic
payoff function h : D x Y — R, concave in its first argument. The goal of the forecaster is
to maximize his cumulative payoff. The corresponding regret is defined by

i=l,...,

r?axNz;h(ﬁ,z, i) — X;h(ﬁ,, ) =H* — H,.
= t=

If the payoff function 4 has range [0, M1, then it is a gain function and the forecaster plays
a gain game. Similarly, if /4 has range in [—M, 0], then it is the negative of a loss function
and the forecaster plays a loss game. Finally, if the range of 4 includes a neighborhood of
0, then the game played by the forecaster is a signed game.

Translated to this terminology, the arguments proposed at the beginning of this sec-
tion say that in any unsigned game (i.e., any loss game [—M, 0] or gain game [0, M]),
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rescaling of the payoffs yields a regret bound of order ./|H}|MInN whenever M
is known. In the case of signed games, however, scaling is not sufficient. Indeed, if
h € [-M, M], then the reduction to the [0, 1] case is obtained by the linear transformation
h+— (h+ M)/(2M). Applying this to the analysis leading to Corollary 2.4, we get the regret
bound

H* —H, < JAH + MM InN) +2MInN = O (M«/n 1nN) .

This shows that, for signed games, reducing to the [0, 1] case might not be the best thing
to do. Ideally, we would like to replace the factor # in the leading term with something like
|A(fi1, yi)l + -+ + |h(fin, yo)| for an arbitrary expert i. In the next sections we show that,
in certain cases, we can do even better than that.

2.7 The Multilinear Forecaster

Potential functions offer a convenient tool to derive weighted average forecasters. However,
good forecasters for signed games can also be designed without using potentials, as shown
in this section.

Fix a signed game with payoff function # : D x ) — R, and consider the weighted
average forecaster that predicts, at time ¢,

/ﬁ; _ Z,Nzl Wi,t—lfi,t ’
Wi

where W,_| = Zy;l w; 1. The weights w; ;_; of this forecaster are recursively defined
as follows

. 1 ifr =0
Y wiemt (L4 nh(fiy, yi))  otherwise,

where n > 0 is a parameter of the forecaster. Because w;, is a multilinear form of the
payoffs, we call this the multilinear forecaster.

Note that the weights Wi, ..., Wy, cCannot be expressed as functions of the regret
R; of components H; , H On the other hand, since (1 + nh) ~ ", the regret of the
multilinear forecaster can be bounded via a technique similar to the one used in the proof of
Theorem 2.2 for the exponentially weighted average forecaster. We just need the following
simple lemma (proof is left as exercise).

Lemma2.4. Forallz > —1/2,In(1 4+ z) > z — 2°.

The next result shows that the regret of the multilinear forecaster is naturally expressed in
terms of the squared sum of the payoffs of an arbitrary expert.

Theorem 2.5. Assume that the payoff function h is concave in its first argument and satisfies
he[—M,o00). Forany n and 0 < n < 1/(2M), and for all yi, ..., y, € Y, the regret of
the multilinear forecaster satisfies

~ InN
H;,—H, < ——i—n Zh(f,,,y,)2 foreachi =1,...,N.
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Proof. For any i =1,..., N, note that h(f;,, y,) > —M and n < 1/(2M) imply that
nh(fi:, y») > —1/2. Hence, we can apply Lemma 2.4 to nh(f;;, y.) and get
W, ‘
an =—InN —I—lnl_[(l + nh(fi;, y,))
0 =1
n

= —InN + Z ln(l + nh(fis, yt))

t=1

v

—InN + Y (h(fiir y0) = 0°h(firs 3)°)

t=1

—InN +nH;, — 772 Zh(fi,t, }’t)2~

t=1

On the other hand,

W, « W,
In— = Z In !
Wo = Wi

n N
= Zln <Z Dit (1 + nh(fis, yt))>
t=1 i=1

n N

<n Z Z’ﬁ’?’ h(fis, y:) (sinceIn(l +x) < x forx > —1)

=1 i=1
< nﬁ,, (since A(-, y) is concave).

Combining the upper and lower bounds of In(W, /W), and dividing by n > 0, we get the
claimed bound. W

Let Q% =h(fi1. y1)* + -+ h(fen, ya)* where k is such that Hy, = H} =
max;=i, . n H;,. If nis chosen using Q}, then Theorem 2.5 directly implies the following.

.....

Corollary 2.6. Assume the multilinear forecaster is run with

. 1 InN
n =min{ —, ,
M\ Q;

where Q% > 0 is supposed to be known in advance. Then, under the conditions of Theo-
rem?2.5,

H*—H <2,/0*InN +4MInN.

To appreciate this result, consider a loss game with 4 € [-M, O] and let L} = —max; H; ;.
As QF < ML?, the performance guarantee of the multilinear forecaster is at most a factor
of +/2 larger than that of the exponentially weighted average forecaster, whose regret in
this case has the leading term /2L*M In N (see Section 2.4). However, in some cases QO
may be significantly smaller than M L7, so that the bound of Corollary 2.6 presents a real
improvement. In Section 2.8, we show that a more careful analysis of the exponentially
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weighted average forecaster yields similar (though noncomparable) second-order regret
bounds.

It is still an open problem to obtain regret bounds of order ,/Q? In N without exploiting
some prior knowledge on the sequence yy, ..., y, (see Exercise 2.14). In fact, the analysis
of adaptive tuning techniques, such as the doubling trick or the time-varying 7, rely on
the monotonicity of the quantity whose evolution determines the tuning strategy. On the
other hand, the sequence Q7, O3, ... is not necessarily monotone as Qf and Q7 cannot
generally be related when the experts achieving the largest cumulative payoffs at rounds ¢
and ¢t + 1 are different.

2.8 The Exponential Forecaster for Signed Games

A slight modification of our previous analysis is sufficient to show that the exponentially
weighted average forecaster also is able to achieve a small regret in signed games. Like
the multilinear forecaster of Section 2.7, this new bound is expressed in terms of sums of
quadratic terms that are related to the variance of the experts’ losses with respect to the
distribution induced by the forecaster’s weights. Furthermore, the use of a time-varying
potential allows us to dispense with the need of any preliminary knowledge of the best
cumulative payoff H,.

We start by redefining, for the setup where payoff functions are used, the exponentially
weighted average forecaster with time-varying potential introduced in Section 2.3. Given a
payoff function #, this forecaster predicts with p; = Z,N: \ Jiuwii—1/W,_y, where W,_; =
27=1 Wit Wig—t = et Hy oy = h(fir, 1)+ -+ h(fii—1, Yi-1), and we assume
that the sequence 7y, 1, . . . of parameters is positive. Note that the value of 1; is immaterial
because H; o = 0 for all i.

Let X, X»,... be random variables such that X, = h(fi,, y,) with probability
wi—1/W;_ for all i and ¢. The next result, whose proof is left as an exercise, bounds
the regret of the exponential forecaster for any nonincreasing sequence of potential param-
eters in terms of the process Xy, ..., X,. Note that this lemma does not assume any
boundedness condition on the payoff function.

Lemma 2.5. Let h be a payoff function concave in its first argument. The exponentially
weighted average forecaster, run with any nonincreasing sequence 0y, 1z, . . . of parameters
satisfies, for any n > 1 and for any sequence y, ..., y, of outcomes,

H — i:l,, < ( 2 - i) InN + Z llnlE[e”’(X’_m')].
m —

Nn+1

Let

t

V=Y var(x,) = iE [(Xs - IEXS)z] .
s=1

s=1

Our next result shows that, with an appropriate choice of the sequence 1,, the regret of
the exponential forecaster at time 7 is at most of order 4/V,, In N. Note, however, that the
bound is not in closed form as V, depends on the forecaster’s weights w; , for all i and ¢.
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Theorem 2.6. Let h be a [—M, M 1-valued payoff function concave in its first argument.
Suppose the exponentially weighted average forecaster is run with

1 2(v/2—1) /InN
N, = min { —, (f ) 1 , t=2,3,....
2M e—2 V,_l

Then, for any n > 1 and for any sequence yi, ..., y, of outcomes,

H*—H, <4/V,InN +4MInN + (e — 2)M.
Proof. For brevity, write

2(V2-1)
e—2

C =

We start by applying Lemma 2.5 (with, say, n; = 1)

n = ( 2 — —) 1nN+Z InE enI(Xf —-EX, )]

Mn+1

)

HY —

< 2ma 2MlnN, V,InN } + ln]E n(X,—EX,)
e LA B s T el

(e — 2)x2 for all x < 1. We thus find that

Since n, < 1/2M), n,(X; —EX,) <1 and we may apply the inequality ¢* <1+ x +

. 1 n
HY — H, < 2max {ZM InN, 5‘/‘/" lnN} + (e — Z)Zn, var(X,).

t=1

Now denote by T the first time step ¢ when V, > M?. Using n, < 1/(2M) for all ¢ and
Vi < 2M?, we get

n n
D nvar(X) <M+ Y var(X)).

t=1 t=T+1

We bound the sum using n;, < C/(InN)/V,_; fort > 2 (note that, fort > T,V,_1 > Vy >
M? > 0). This yields

. Vz L
Z n, var(X,) < Cv/InN Z
t=T+1 t=T+1 v

Letv, = var(X,) =V, — V,_;.Since V, < V,_; + M? and V,_; > M?, we have

v = ST (7 ) £ (V2 ) (VT - V).

Therefore,

Zn,var<X)<Cm(F F) VN,

t=T+1
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Substituting our choice of C and performing trivial overapproximations concludes the
proof. W

Remark 2.2. The analyses proposed by Theorem 2.5, Corollary 2.6, and Theorem 2.6
show that the multilinear forecaster and the exponentially weighted average forecaster
work, with no need of translating payoffs, in both unsigned and signed games. In addition,
the regret bounds shown in these results are potentially much better than the invariant bound
M +/nIn N obtained via the explicit payoff transformation 4 +— (h + M)/(2M ) from signed
to unsigned games (see Section 2.6). However, none of these bounds applies to the case
when no preliminary information is available on the sequence of observed payoffs.

The main term of the bound stated in Theorem 2.6 contains V,,. This quantity is smaller
than all quantities of the form

n N w

Z Z V;/t 1 h(fi,tv ye) — Mt)2

=1 i=1 11
where wi, iz, ... is any sequence of real numbers that may be chosen in hindsight, as it
is not required for the definition of the forecaster. This gives us a whole family of upper
bounds, and we may choose for the analysis the most convenient sequence of ;.

To provide a concrete example, denote the effective range of the payoffs at time

t by R, =max;—y_n h(fi;, y) —min;—__n h(fj:, y;) and consider the choice u; =
min;— .y h(fje, y)+ R /2.

Corollary 2.7. Under the same assumptions as in Theorem 2.6,

n
HY—H, <2 [(InN)Y R} +4MInN + (e —2)M.
t=1

In a loss game, where h has the range [—M, 0], Corollary 2.7 states that the regret is
bounded by a quantity dominated by the term 2M +/nIn N. A comparison with the bound
of Theorem 2.3 shows that we have only lost a factor +/2 to obtain a much more general
result.

2.9 Simulatable Experts

So far, we have viewed experts as unspecified entities generating, at each round ¢, an
advice to which the forecaster has access. A different setup is when the experts them-
selves are accessible to the forecaster, who can make arbitrary experiments to reveal their
future behavior. In this scenario we may define an expert E using a sequence of func-
tions fg,: )" -1 5D, ¢t=1,2,...such that, at every time instant ¢, the expert predicts
according to fr;(y'~!). We also assume that the forecaster has access to these func-
tions and therefore can, at any moment, hypothesize future outcomes and compute all
experts’ future predictions for that specific sequence of outcomes. Thus, the forecaster
can “simulate” the experts’ future reactions, and we call such experts simulatable. For
example, a simulatable expert for a prediction problem where D = ) is the expert E such



30 Prediction with Expert Advice

that fz ,(y'"") = (y; +---+ y,_1)/(t — 1). Note that we have assumed that at time ¢ the
prediction of a simulatable expert only depends on the sequence y’~! of past observed out-
comes. This is not true for the more general type of experts, whose advice might depend on
arbitrary sources of information also hidden from the forecaster. More importantly, while
the prediction of a general expert, at time ¢, may depend on the past moves py, ..., p;_1 of
the forecaster (just recall the protocol of the game of prediction with expert advice), the val-
ues a simulatable expert outputs only depend on the past sequence of outcomes. Because
here we are not concerned with computational issues, we allow fg, to be an arbitrary
function of y'~! and assume that the forecaster may always compute such a function.

A special type of simulatable expert is a static expert. An expert E is static when its
predictions fz, only depend on the round index ¢ and not on y'~!. In other words, the
functions fr, are all constant valued. Thus, a static expert E is completely described
by the sequence fr 1, fE2, ... of its predictions at each round ¢. This sequence is fixed
irrespective of the actual observed outcomes. For this reason we use f = (fi, f2,...) to
denote an arbitrary static expert. Abusing notation, we use f also to denote simulatable
experts.

Simulatable and static experts provide the forecaster with additional power. It is then
interesting to consider whether this additional power could be exploited to reduce the
forecaster’s regret. This is investigated in depth for specific loss functions in Chapters 8
and 9.

2.10 Minimax Regret

In the model of prediction with expert advice, the best regret bound obtained so far, which
holds for all [0, 1]-valued convex losses, is +/(n/2)In N. This is achieved (for any fixed
n > 1) by the exponentially weighted average forecaster. Is this the best possible uniform
bound? Which type of forecaster achieves the best regret bound for each specific loss? To
address these questions in a rigorous way we introduce the notion of minimax regret. Fix
a loss function ¢ and consider N general experts. Define the minimax regret at horizon
n by

VN = sup inf sup sup inf  sup
(fitmfu)EDN PIED 1€V (fio. fy2)eDV P2ED 3,ey

sup inf sup ( 1 L(Pes yi) — minN Zlﬂ(f,;,, y,)) .
=

Frseees fu)€DV PrED 3, ey \ 1 =L,

An equivalent, but simpler, definition of minimax regret can be given using static experts.
Define a strategy for the forecaster as a prescription for computing, at each round ¢, the pre-

diction p, given the past¢ — 1 outcomes yi, ..., y,_; and the expert advice (fi 5, .., fn.s)
for s =1,...,¢t. Formally, a forecasting strategy P is a sequence pi, pPa2,... of
functions

PV x (DY) - D.

Now fix any class F of N static experts and let Z,,(P, F, y") be the cumulative loss on the
sequence y” of the forecasting strategy P using the advice of the experts in F. Then the
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minimax regret V™) can be equivalently defined as

VIV —inf sup sup max (L,(P.F.y)—=Y €(fir.v)].
P {]—':\]—‘\:N}y”ey"i=1 ..... N I:Z]

where the infimum is over all forecasting strategies P and the first supremum is over all
possible classes of N static experts (see Exercise 2.18).

The minimax regret measures the best possible performance guarantee one can have
for a forecasting algorithm that holds for all possible classes of N experts and all outcome
sequences of length n. An upper bound on V') establishes the existence of a forecasting
strategy achieving a regret not larger than the upper bound, regardless of what the class of
experts and the outcome sequence are. On the other hand, a lower bound on V) shows
that for any forecasting strategy there exists a class of N experts and an outcome sequence
such that the regret of the forecaster is at least as large as the lower bound.

In this chapter and in the next, we derive minimax regret upper bounds for several losses,
including V" <1InN for the logarithmic loss £(x, y) = —Ijy—1; Inx — I;,—g; In(1 — x),
wherex € [0, 1]and y € {0, 1},and V™) < /(n/2)In N forall [0, 1]-valued convex losses,
both achieved by the exponentially weighted average forecaster. In Chapters 3, 8, and 9 we
complement these results by proving, among other related results, that V") = In N for the
logarithmic loss provided that n > log, N and that the minimax regret for the absolute loss
£(x, y) = |x — y| is asymptotically +/(/2) In N, matching the upper bound we derived for
convex losses. This entails that the exponentially weighted average forecaster is minimax
optimal, in an asymptotic sense, for both the logarithmic and absolute losses.

The notion of minimax regret defined above is based on the performance of any forecaster
in the case of the worst possible class of experts. However, often one is interested in the best
possible performance a forecaster can achieve compared with the best expert in a fixed class.
This leads to the definition of minimax regret for a fixed class of (simulatable) experts as
follows. Fix some loss function ¢ and let F be a (not necessarily finite) class of simulatable
experts. A forecasting strategy P based on F is now just a sequence pi, P2, . . . of functions
P; : Y'I7! — D. (Note that p, implicitly depends on F, which is fixed. Therefore, as the
experts in F are simulatable, p; need not depend explicitly on the expert advice.) The
minimax regret with respect to J at horizon n is then defined by

V,(F) = inf sup (Zﬂ(ﬁr(y["),yr) —}ggzﬂ(ﬁ(y“'),yf)).
t=1

Py
yreyn —1

This notion of regret is studied for specific losses in Chapters 8 and 9.
Given a class F of simulatable experts, one may also define the closely related quantity

n

_ . o~ t—1 _ r—1 n
Un(F) = Sgplgf/yn (Zﬁ(m(y ), Yi) ;gf;ﬁ(fz(y ),yz)) do(y"™),

t=1

where the supremum is taken over all probability measures over the set ) of sequences of
outcomes of length n. U, (F) is called the maximin regret with respect to F. Of course, to
define probability measures over )", the set ) of outcomes should satisfy certain regularity
properties. For simplicity, assume that ) is a compact subset of R?. This assumption is
satisfied for most examples that appear in this book and can be significantly weakened if
necessary. A general minimax theorem, proved in Chapter 7, implies that if the decision
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space D is convex and the loss function ¢ is convex and continuous in its first argument,
then

Va(F) = Un(F).

This equality follows simply by the fact that the function

(Zﬁ(ﬁf(y’_l), i) — }gggﬁ(ﬁ(y"l), yz)> do(y™"

t=1

F(P, Q)= /

y”
is convex in its first argument and concave (actually linear) in the second. Here we
define a convex combination APV + (1 — A)P® of two forecasting strategies PV =
f)‘ﬁl), ﬁ;”, ..)and P® = (’ﬁ(lz), ’ﬁ;z) , ...) by a forecaster that predicts, at time ¢, according
to

APOGH + (1 = 0pP G Y.

We leave the details of checking the conditions of Theorem 7.1 to the reader (see Exer-
cise 2.19).

2.11 Discounted Regret

In several applications it is reasonable to assume that losses in the past are less significant
than recently suffered losses. Thus, one may consider discounted regrets of the form

n
Pin = § ,Bn—tri,n
t=1

where the discount factors f; are typically decreasing with ¢ and r; , = €(p;, y;) — £(fi.e» V1)
is the instantaneous regret with respect to expert i at round ¢. In particular, we assume that
Bo = 1 = B» = ---is a nonincreasing sequence and, without loss of generality, we let
Po = 1. Thus, at time ¢ = n, the actual regret r; , has full weight while regrets suffered in
the past have smaller weight; the more distant the past, the less its weight.

In this setup the goal of the forecaster is to ensure that, regardless of the sequence of
outcomes, the average discounted cumulative regret

n
=1 ﬂnft’i,t

is as small as possible. More precisely, one would like to bound the average discounted
regret by a function of » that converges to zero as n — 00. The purpose of this section is to
explore for what sequences of discount factors it is possible to achieve this goal. The case
when §, = 1 for all 7 corresponds to the case studied in the rest of this chapter. Other natural
choices include the exponential discount sequence 8; = a~' for some a > 1 or sequences
of the form 8, = (+ + 1)~ witha > 0.

First we observe that if the discount sequence decreases too quickly, then, except for
trivial cases, there is no hope to prove any meaningful bound.

Theorem 2.7. Assume that there is a positive constant ¢ such that for each n there
exist outcomes yi,y, €Y and two experts i # i’ such that i = argminj E(fjns Y1),
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i" = argmin; £(f; ., y2), and miny_y, o [6(fin, ¥) — L(firm D = ¢ If 3720 B < 00,
then there exists a constant C such that, for any forecasting strategy, there is a sequence of
outcomes such that

ma >C

forall n.

Proof. The lower bound follows simply by observing that the weight of the regrets at the
last time step ¢ = n is too large: it is comparable with the total weight of the whole past.
Formally,

n

max Zﬂn tFie > r?ax ,30'”1 n — Z(Pn, yn) - I’PIH E(ﬁ ns yn
.......... i=l,...N

=1
Thus,
n
T
sup max —Z’znl Priti
yreyni=looN Y1 By
> Sup‘ey(z(l?m y) mlnl 1,..., N e(_fl ns }’))

|
Nl
RS
o
=

C
2350 B

Next we contrast the result by showing that whenever the discount factors decrease suffi-
ciently slowly such that ) ;- B, = o0, it is possible to make the average discounted regret
vanish for large n. This follows from an easy application of Theorem 2.1. We may define
weighted average strategies on the basis of the discounted regrets simply by replacing r;
by 7i.: = Bu—:ri, in the definition of the weighted average forecaster. Of course, to use such
a predictor, one needs to know the time horizon n in advance. We obtain the following.

Theorem 2.8. Consider a discounted polynomially weighted average forecaster defined,
fort=1,...,n,by

o~ — ZzNzl ¢/(ZIS;11 ?},s)fi,s — ZIN:I ¢/(Z§;11 ,ansri,s)fi,s
Yin# (X)X ¢ (X A

where ¢'(x) = (p — 1)xP, with p = 2In N. Then the average discounted regret satisfies

‘max MSMZe]nNnt—[.
i=l,...N Zt 1ﬂn t t:llB"*’

(A similar bound may be proven for the discounted exponentially weighted average fore-
caster as well.) In particular, if )"~ B; = 00, then

Z; 1,Bn —tTit

- max =o(1).

’
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Proof. Clearly the forecaster satisfies the Blackwell condition, and foreach 7, [7; ;| < B,—;.
Then Theorem 2.1 implies, just as in the proof of Corollary 2.1,

i=l,...,

n
Ao n N 2
I{laXN Pin < V2eInN Z B
=1
and the first statement follows. To prove the second, just note that

;1—1 n2—t V Z?—l IBtz—l
V2elnNY———— = V2eInN*———

;1:1 ﬂnfl Z?:l /3[71

Sy

"1 Bi-1

=<

_ VN ) m

Z?:l Bi-1

It is instructive to consider the special case when 8, = (¢ + 1)™* for some 0 < a < 1.
(Recall from Theorem 2.7 that for @ > 1, no meaningful bound can be derived.) If a = 1,
Theorem 2.8 implies that

n
T C
vmaX Zt:ﬂl IB}’I thit S
i=L.oN >0 Bues logn

for a constant C > 0. This slow rate of convergence to zero is not surprising in view of
Theorem 2.7, because the series Z, 1/(¢t + 1) is “barely nonsummable.” In fact, this bound
cannot be improved substantially (see Exercise 2.20). However, for ¢ < 1 the convergence
is faster. In fact, an easy calculation shows that the upper bound of the theorem implies
that

O (1/logn) ifa=1
ry Buili 0 (n*™) if1/2<a<1
=N Yl Be | o (Vilogmyn) ifa =172
0 (1/y/n)  ifa <1/2.

Not surprisingly, the slower the discount factor decreases, the faster the average discounted
cumulative regret converges to zero. However, it is interesting to observe the “phase tran-
sition” occurring at @ = 1/2: for all @ < 1/2, the average regret decreases at a rate n~'/2,
a behavior quantitatively similar to the case when no discounting is taken into account.

2.12 Bibliographic Remarks

Our model of sequential prediction with expert advice finds its roots in the theory of
repeated games. Zero-sum repeated games with fixed loss matrix are a classical topic
of game theory. In these games, the regret after n plays is defined as the excess loss of
the row player with respect to the smallest loss that could be incurred had he known in
advance the empirical distribution of the column player actions during the » plays. In his
pioneering work, Hannan [141] devises a randomized playing strategy whose per-round
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expected regret grows at rate N/3nm /2, where N is the number of rows, m is the number
of columns in the loss matrix, and # is the number of plays. As shown in Chapter 7, our
polynomially and exponentially weighted average forecasters can be used to play zero-
sum repeated games achieving the regret /(n/2)In N. We obtain the same dependence on
the number n of plays Compared with Hannan’s regret, but we significantly improve the
dependence on the dimensions, N and m, of the loss matrix. A different randomized player
with a vanishing per-round regret can be also derived from the celebrated Blackwell’s
approachability theorem [28], generalizing von Neumann’s minimax theorem to vector-
valued payoffs. This result, which we re-derive in Chapter 7, is based on a mixed strategy
equivalent to our polynomially weighted average forecaster with p = 2. Exact asymptotical
constants for the minimax regret (for a special case) were first shown by Cover [68]. In our
terminology, Cover investigates the problem of predicting a sequence of binary outcomes
with two static experts, one always predicting 0 and the other always predicting 1. He shows
that the minimax regret for the absolute loss in this special case is (1 + o(1))s/n/2n).

The problem of sequential prediction, deprived of any probabilistic assumption, is
deeply connected with the information-theoretic problem of compressing an individual
data sequence. A pioneering research in this field was carried out by Ziv [317,318] and
Lempel and Ziv [197,317,319], who solved the problem of compressing an individual data
sequence almost as well as the best finite-state automaton. As shown by Feder, Merhav, and
Gutman [95], the Lempel-Ziv compressor can be used as a randomized forecaster (for the
absolute loss) with a vanishing per-round regret against the class of all finite-state experts, a
surprising result considering the rich structure of this class. In addition, Feder, Merhav, and
Gutman devise, for the same expert class, a forecaster with a convergence rate better than
the rate provable for the Lempel-Ziv forecaster (see also Merhav and Feder [213] for fur-
ther results along these lines). In Section 9 we continue the investigation of the relationship
between prediction and compression showing simple conditions under which prediction
with logarithmic loss is minimax equivalent to adaptive data compression. Connections
between prediction with expert advice and information content of an individual sequence
have been explored by Vovk and Watkins [303], who introduced the notion of predictive
complexity of a data sequence, a quantity that, for the logarithmic loss, is related to the
Kolmogorov complexity of the sequence. We refer to the book of Li and Vitanyi [198] for
an excellent introduction to the algorithmic theory of randomness.

Approximately at the same time when Hannan and Blackwell were laying down the
foundations of the game-theoretic approach to prediction, Solomonoff had the idea of
formalizing the phenomenon of inductive inference in humans as a sequential prediction
process. This research eventually led him to the introduction of a universal prior probabil-
ity [273-275], to be used as a prior in bayesian inference. An important “side product” of
Solomonoff’s universal prior is the notion of algorithmic randomess, which he introduced
independently of Kolmogorov. Though we acknowledge the key role played by Solomonoff
in the field of sequential prediction theory, especially in connection with Kolmogorov com-
plexity, in this book we look at the problem of forecasting from a different angle. Having
said this, we certainly think that exploring the connections between algorithmic randomness
and game theory, through the unifying notion of prediction, is a surely exciting research

plan.
The field of inductive inference investigates the problem of sequential prediction when

experts are functions taken from a large class, possibly including all recursive languages or
all partial recursive functions, and the task is that of eventually identifying an expert that
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is consistent (or nearly consistent) with an infinite sequence of observations. This learning
paradigm, introduced in 1967 by Gold [130], is still actively studied. Unlike the theory
described in this book, whose roots are game theoretic, the main ideas and analytical tools
used in inductive inference come from recursion theory (see Odifreddi [227]).

In computer science, an area related to prediction with experts is competitive analysis of
online algorithms (see the monograph of Borodin and El-Yaniv [36] for a survey). A good
example of a paper exploring the use of forecasting algorithms in competitive analysis is
the work by Blum and Burch [32].

The paradigm of prediction with expert advice was introduced by Littlestone and
Warmuth [203] and Vovk [297], and further developed by Cesa-Bianchi, Freund, Haus-
sler, Helmbold, Schapire, and Warmuth [48] and Vovk [298], although some of its main
ingredients already appear in the papers of De Santis, Markowski, and Wegman [260],
Littlestone [200], and Foster [103]. The use of potential functions in sequential prediction
is due to Hart and Mas-Colell [146], who used Blackwell’s condition in a game-theoretic
context, and to Grove, Littlestone, and Schuurmans [133], who used exactly the same
condition for the analysis of certain variants of the Perceptron algorithm (see Chapter 11).
Our Theorem 2.1 is inspired by, and partially builds on, Hart and Mas-Colell’s analysis of
A-strategies for playing repeated games [146] and on the analysis of the quasi-additive algo-
rithm of Grove, Littlestone, and Schuurmans [133]. The unified framework for sequential
prediction based on potential functions that we describe here was introduced by Cesa-
Bianchi and Lugosi [54]. Forecasting based on the exponential potential has been used in
game theory as a variant of smooth fictitious play (see, e.g., the book of Fudenberg and
Levine [119]). In learning theory, exponentially weighted average forecasters were intro-
duced and analyzed by Littlestone and Warmuth [203] (the weighted majority algorithm)
and by Vovk [297] (the aggregating algorithm). The trick of setting the parameter p of
the polynomial potential to 2In N is due to Gentile [123]. The analysis in Section 2.2 is
based on Cesa-Bianchi’s work [46]. The idea of doubling trick of Section 2.3 appears in
the articles of Cesa-Bianchi, Freund, Haussler, Helmbold, Schapire, and Warmuth [48] and
Vovk [298], whereas the analysis of Theorem 2.3 is adapted from Auer, Cesa-Bianchi,
and Gentile [13]. The data-dependent bounds of Section 2.4 are based on two sources:
Theorem 2.4 is from the work of Littlestone and Warmuth [203] and Corollary 2.4 is due
to Freund and Schapire [112]. A more sophisticated analysis of the exponentially weighted
average forecaster with time-varying 7, is due to Yaroshinski, El-Yaniv, and Seiden [315].
They show a regret bound of the order (1 + o(1)),/2L} In N, where o(1) — Ofor L} — oo.
Hutter and Poland [165] prove a result similar to Exercise 2.10 using follow-the-perturbed-
leader, a randomized forecaster that we analyze in Chapter 4.

The multilinear forecaster and the results of Section 2.8 are due to Cesa-Bianchi, Man-
sour, and Stoltz [57]. A weaker version of Corollary 2.7 was proven by Allenberg-Neeman
and Neeman [7].

The gradient-based forecaster of Section 2.5 was introduced by Kivinen and War-
muth [181]. The proof of Corollary 2.5 is due to Cesa-Bianchi [46]. The notion of simu-
latable experts and worst-case regret for the experts’ framework was first investigated by
Cesa-Bianchi et al. [48]. Results for more general loss functions are contained in Chung’s
paper [60]. Fudenberg and Levine [121] consider discounted regrets is a somewhat different
model than the one discussed here.

The model of prediction with expert advice is connected to bayesian decision theory. For
instance, when the absolute loss is used, the normalized weights of the weighted average
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forecaster based on the exponential potential closely approximate the posterior distribution
of a simple stochastic generative model for the data sequence (see Exercise 2.7). From this
viewpoint, our regret analysis shows an example where the Bayes decisions are robust in
a strong sense, because their performance can be bounded not only in expectation with
respect to the random draw of the sequence but also for each individual sequence.

2.1

2.2

2.3

24

2.5

2.13 Exercises

Assume that you have to predict a sequence Y, Y5, ... € {0, 1} of i.i.d. random variables with
unknown distribution, your decision space is [0, 1], and the loss function is £(p, y) = [p — y|.
How would you proceed? Try to estimate the cumulative loss of your forecaster and compare
it to the cumulative loss of the best of the two experts, one of which always predicts 1 and
the other always predicts 0. Which are the most “difficult” distributions? How does your
(expected) regret compare to that of the weighted average algorithm (which does not “know”
that the outcome sequence is i.i.d.)?

Consider a weighted average forecaster based on a potential function

N
D) =y (Z ¢(u[>> :
i=1

Assume further that the quantity C(r;) appearing in the statement of Theorem 2.1 is bounded
by a constant for all values of r, and that the function ¥ (¢ (1)) is strictly convex. Show that
there exists a nonnegative sequence &, — 0 such that the cumulative regret of the forecaster
satisfies, for every n and for every outcome sequence y”,

1
— < max R,-,n> <eg,.
n \i=l...N

Analyze the polynomially weighted average forecaster using Theorem 2.1 but using the poten-
tial function ®(u) = |ju, ||, instead of the choice ®,(u) = |lu, ||?, used in the proof of Corol-
lary 2.1. Derive a bound of the same form as in Corollary 2.1, perhaps with different constants.
Let Y = {0, 1}, D = [0, 1], and €(p, y) = |p — y|. Prove that the cumulative loss L of the
exponentially weighted average forecaster is always at least as large as the cumulative loss
min; <y L; of the best expert. Show that for other loss functions, such as the square loss
(P — y)?, this is not necessarily so. Hint: Try to reverse the proof of Theorem 2.2.
(Nonuniform initial weights) By definition, the weighted average forecaster uses uniform
initial weights w;o =1 for all i =1, ..., N. However, there is nothing special about this
choice, and the analysis of the regret for this forecaster can be carried out using any set of
nonnegative numbers for the initial weights.

Consider the exponentially weighted average forecaster run with arbitrary initial weights
Wi0s ..., Wno > 0,defined, forallz = 1,2, ..., by

~ 21N=1 Wit fia

Pr==E N w = wy e T ),

N
Zj:l W1

Under the same conditions as in the statement of Theorem 2.2, show that for every n and for
every outcome sequence y”,

1 In W,
>+ 0+77

“n,
Wi0 n 8

i=l,...,

~ 1
L, < min <Li_n + —1In
) . 7

where Wop = w9+ -+ +wno.
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2.6

2.7

2.8

2.9

2.10

2.11

2.12

Prediction with Expert Advice

(Many good experts) Sequences of outcomes on which many experts suffer a small loss are
intuitively easier to predict. Adapt the proof of Theorem 2.2 to show that the exponentially
weighted forecaster satistifies the following property: for every n, for every outcome sequence
y",and for all L > 0,

L,<L+ 1 In ﬁ + En
" n Np 8"

where N, is the cardinality of the set {l <i<N:L;,< L}.
(Random generation of the outcome sequence) Consider the exponentially weighted average
forecaster and define the following probabilistic model for the generation of the sequence
y" € {0, 1}", where we now view each bit y, as the realization of a Bernoulli random variable
Y,. An expert [ is drawn at random from the set of N experts. For each t =1, ..., n, first
X, € {0, 1} is drawn so that X, = 1 with probability f;,. ThenY, is set to X, with probability 8
and is set to 1 — X, with probability 1 — B, where 8 = 1/(1 + e~"). Show that the forecaster
weights w; /(W +---+wy,) and are equal to the posterior probability P[/ =i |Y, =
Y1y .-+, Y,—1 = y,_1] that expert i is drawn given that the sequence yi, ..., y,_; has been
observed.

(The doubling trick) Consider the following forecasting strategy (“‘doubling trick”): time is
divided in periods (2™, ... ,2"*!' — 1), wherem = 0, 1,2, ....Inperiod (2", ..., 2"+ — 1)
the strategy uses the exponentially weighted average forecaster initialized at time 2" with
parameter 1,, = 4/8(In N)/2™. Thus, the weighted average forecaster is reset at each time
instance that is an integer power of 2 and is restarted with a new value of 7. Using Theorem 2.2
prove that, for any sequence y, y2, ... € Y of outcomes and for any n > 1, the regret of this
forecaster is at most

(The doubling trick, continued) In Exercise 2.8, quite arbitrarily, we divided time into periods
of length 2", m = 1, 2, .. .. Investigate what happens if instead the period lengths are of the
form |[a™ ] for some other value of a > 0. Which choice of ¢ minimizes, asymptotically, the
constant in the bound? How much can you gain compared with the bound given in the text?

Combine Theorem 2.4 with the doubling trick of Exercise 2.8 to construct a forecaster that,
without any previous knowledge of L*, achieves, for all n,

L,—L:<2/2L:InN 4+cInN
whenever the loss function is bounded and convex in its first argument, and where ¢ is a

positive constant.

(Another time-varying potential) Consider the adaptive exponentially weighted average
forecaster that, at time ¢, uses

where ¢ is a positive constant. Show that whenever ¢ is a [0, 1]-valued loss function convex in
its first argument, then there exists a choice of ¢ such that

L,—L*<2/2L*InN +«InN,
where k > 0 is an appropriate constant (Auer, Cesa-Bianchi, and Gentile [13]). Hint: Follow

the outline of the proof of Theorem 2.3. This exercise is not easy.

Consider the prediction problem with Y = D = [0, 1] with the absolute loss £(p, y) = |p — y|.
Show that in this case the gradient-based exponentially weighted average forecaster coincides
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with the exponentially weighted average forecaster. (Note that the derivative of the loss does
not exist for p = y and the definition of the gradient-based exponentially weighted average
forecaster needs to be adjusted appropriately.)

Prove Lemma 2.4.

Use the doubling trick to prove a variant of Corollary 2.6 in which no knowledge about
the outcome sequence is assumed to be preliminarily available (however, as in the corollary,
we still assume that the payoff function 4 has range [-M, M] and is concave in its first
argument). Express the regret bound in terms of the smallest monotone upper bound on the
sequence O7F, 03, ... (see Cesa-Bianchi, Mansour, and Stoltz [57]).

Prove a variant of Theorem 2.6 in which no knowledge about the range [—M, M ] of the payoff
function is assumed to be preliminarily available (see Cesa-Bianchi, Mansour, and Stoltz [57]).
Hint: Replace the term 1/(2M) in the definition of n, with 270+ where k is the smallest
nonnegative integer such that max,—; __,—; max,—i .y [2(fis, ¥s)| < 2k,

Prove a regret bound for the multilinear forecaster using the update w;, = w; (1 + nr;,),
where r;, = h(f;., y.) — h(p;, y,) is the instantaneous regret. What can you say about the
evolution of the total weight W, = w,, + - - - + wy, of the experts?

Prove Lemma 2.5. Hint: Adapt the proof of Theorem 2.3.

Show that the two expressions of the minimax regret V™ in Section 2.10 are equivalent.
Consider a class F of simulatable experts. Assume that the set ) of outcomes is a compact
subset of R?, the decision space D is convex, and the loss function £ is convex and continuous
in its first argument. Show that V,,(F) = U,(F). Hint: Check the conditions of Theorem 7.1.
Consider the discount factors 8, = 1/(+ + 1) and assume that there is a positive constant ¢
such that for each n there exist outcomes y;, y» € Y and two experts i # i’ such that i =
argminj iy i = argminj £(fins y2)sand miny_y . [€(fin, ¥) — £(fir.ns )| = c. Show
that there exists a constant C such that for any forecasting strategy, there is a sequence of
outcomes such that

;1=n] ,Bn—{ri,r > C
=L N Y Bue logn

for all n.



3

Tight Bounds for Specific Losses

3.1 Introduction

In Chapter 2 we established the existence of forecasters that, under general circumstances,
achieve a worst-case regret of the order of +/nIn N with respect to any finite class of N
experts. The only condition we required was that the decision space D be a convex set
and the loss function £ be bounded and convex in its first argument. In many cases, under
specific assumptions on the loss function and/or the class of experts, significantly tighter
performance bounds may be achieved. The purpose of this chapter is to review various
situations in which such improvements can be made. We also explore the limits of such
possible improvements by exhibiting lower bounds for the worst-case regret.

In Section 3.2 we show that in some cases a myopic strategy that simply chooses
the best expert on the basis of past performance achieves a rapidly vanishing worst-
case regret under certain smoothness assumptions on the loss function and the class
of experts.

Our main technical tool, Theorem 2.1, has been used to bound the potential ®(R,)
of the weighted average forecaster in terms of the initial potential ®(0) plus a sum of
terms bounding the error committed in taking linear approximations of each ®(R;) for
t =1,...,n. In certain cases, however, we can bound ®(R,) directly by ®(0), without
the need of taking any linear approximation. To do this we can exploit simple geometrical
properties exhibited by the potential when combined with specific loss functions. In this
chapter we develop several techniques of this kind and use them to derive tighter regret
bounds for various loss functions.

In Section 3.3 we consider a basic property of a loss function, exp-concavity, which
ensures a bound of (InN)/n for the exponentially weighted average forecaster, where
n must be smaller than a critical value depending on the specific exp-concave loss. In
Section 3.4 we take a more extreme approach by considering a forecaster that chooses
predictions minimizing the worst-case increase of the potential. This “greedy” forecaster is
shown to perform not worse than the weighted average forecaster. In Section 3.5 we focus
on the exponential potential and refine the analysis of the previous sections by introducing
the aggregating forecasters, a family that includes the greedy forecaster. These forecasters,
which apply to exp-concave losses, are designed to achieve a regret of the form cIn N,
where c is the best possible constant for each loss for which such bounds are possible. In
the course of the analysis we characterize the important subclass of mixable losses. These
losses are, in some sense, the easiest to work with. Finally, in Section 3.7 we prove a lower
bound of the form 2(log N) for generic losses and a lower bound for the absolute loss

40
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that matches (constants included) the upper bound achieved by the exponentially weighted
average forecaster.

3.2 Follow the Best Expert

In this section we study possibly the simplest forecasting strategy. This strategy chooses, at
time ¢, an expert that minimizes the cumulative loss over the past  — 1 time instances. In
other words, the forecaster always follows the expert that has had the smallest cumulative
loss up to that time. Perhaps surprisingly, this simple predictor has a good performance
under general conditions on the loss function and the experts.

Formally, consider a class £ of experts and define the forecaster that predicts the same
as the expert that minimizes the cumulative loss in the past, that is,

-1
= fes if E= argminZZ(ngs, Vs)-
E'ef T
71 is defined as an arbitrary element of D. Throughout this section we assume that the
minimum is always achieved. In case of multiple minimizers, E can be chosen arbitrarily.
Our goal is, as before, to compare the performance of p with that of the best expert in
the class; that is, to derive bounds for the regret

Ln —inf L n = b4 Ap, — inf l . .
1 : E, ; l ( }’t) 1 - ; ] (fEt )’1)
Consider the hypothetical forecaster defined by

t
pi=fe. if E=argmin) €(fes. ).

E'eE =1

Note that p} is defined like 7,, with the only difference that p* also takes the losses suffered
at time ¢ into account. Clearly, p; is not a “legal” forecaster, because it is allowed to peek
into the future; it is defined as a tool for our analysis. The following simple lemma states
that p; “performs” at least as well as the best expert.

Lemma 3.1. For any sequence yi, ..., Yy, of outcomes,

n n
21: Up;y) < 21: €(p)y, y) =minLp .
t= 1=

Proof. The proof goes by induction. The statement is obvious for n = 1. Assume now
that

n—1 n—1
D Upry) =Y Py v
t=1 t=1
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Since by definition ' ¢(p* |, ) < Y/~ €(p¥, y,), the inductive assumption implies

n—1

n—1
D Pl v <D P -
t=1 t=1

Add £(p};, y,) to both sides to obtain the result. M

This simple property implies that the regret of the forecaster p may be upper bounded
as

Ly~ inf Lg, < ) (EBr y0) = €p} ).

t=1

By recalling the definitions of P, and p7, it is reasonable to expect that in some situations
D and p are close to each other. For example, if one can guarantee that for every ¢,

sup(€(pr, y) — Up;, y) < &
yey

for a sequence of real numbers &, > 0, then the inequality shows that

Ly~ infLg, < Zje 3.1)
In what follows, we establish some general conditions under which ¢, ~ 1/¢, which implies
that the regret grows as slowly as O (In n).
In all these examples we consider “constant” experts; that is, we assume that for each
E € £and y € Y, the loss of expert E is independent of time. In other words, for any fixed
v, L(fe1,y) = -+ = £(fE.n, y). To simplify notation, we write £(E, y) for the common
value, where now each expert is characterized by an element E € D.

Square Loss
As a first example consider the square loss in a general vector space. Assume that D = Y
is the unit ball {p : || p|| < 1} in a Hilbert space H, and consider the loss function

p,y)=Ilp-yI>, p,yeH.

Let the expert class £ contain all constant experts indexed by E € D. In this case it is easy
to determine explicitly the forecaster p. Indeed, because for any p € D,

= e =
:ZHP—%HZ::Z :Z)’;'—P
s=1 s=1 r=1

(easily checked by expanding the squares), we have

2
+

‘ 2

1 -1
r—1 :1yr Vs

r

Similarly,
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Then, for any y € D,

CPe,y) = LpE,y) = 150 — yIP = llpf — yII?
= (ﬁt _Pz*) : (ﬁt‘i‘l’t*_z)’)
< 4|5 - pf|

by boundedness of the set D. The norm of the difference can be easily bounded by writing

1 t—1 1 t 1 1 t—1 y
- . 1 _ 1 i
Pi p,——t_léys [S;ys <_;—1 I)S;ys t
so that, clearly, regardless of the sequence of outcomes, ||p; — p¥|| < 2/¢. We obtain

_ . 8
Z(pt’ )’)_Z(P,a)’) < ;

s

and therefore, by (3.1), we have

~ . ", 8
Ly —infLg, < ;7 <8(1+Inn),
where weused > 7, 1/t <1+ l" dx/x =1 4 Inn. Observe that this performance bound
is significantly smaller than the general bounds of the order of ./ obtained in Chapter 2.
Also, remarkably, the “size” of the class of experts is not reflected in the upper bound.
The class of experts in the example considered is not only infinite but can be a ball in an
infinite-dimensional vector space!

Convex Losses, Constant Experts
In the rest of this section we generalize the example of square loss described earlier by
deriving general sufficient conditions for convex loss functions when the class of experts
contains constant experts. For the simplicity of exposition we limit the discussion to the
finite-dimensional case, but it is easy to generalize the results.

Let D be a bounded convex subset of R?, and assume that an expert E is assigned to
each element of D so that the loss of expert E at time ¢ is £(E, y;). Using our convention

of denoting vectors by bold letters, we write p, = (P1.;, - - -, Pa.,) for the follow-the-best-
expert forecaster, and similarly p; = (pj,, ..., p;,) for the corresponding hypothetical

forecaster. We make the following assumptions on the loss function:

1. £ is convex in its first argument and takes its values in [0, 1];

2. foreach fixed y € ), €(-, y) is Lipschitz in its first argument, with constant B;

3. foreach fixed y € Y, £(-, y) is twice differentiable. Moreover, there exists a constant
C > 0 such that for each fixed y € ), the Hessian matrix

( 9*L(p, y))
pidp; ) 4xa
is positive definite with eigenvalues bounded from below by C;
4. forany yy, ..., y:, the minimizer p; is such that VW, (p}) = 0, where, foreachp € D,

1 t
Wip) =~ ) L. o).
s=1
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Theorem 3.1. Under the assumptions described above, the per-round regret of the follow-
the-best-expert forecaster satisfies

1 [~ 4B% (1 +1
Z (Ln _ inf LE”) < (——i—nn)
n EeE Cn

Proof. First, by a Taylor series expansion of W; around its minimum value p;, we have

9%
W) — ¥, (p}) = 5 ZZ (‘” —pi) P — Ph)

i=1 j=I1 8])1
(for some p € D)
C ~

_EHP,_PﬂZ,

where we used the fact that VW,(p}) = 0 and the assumption on the Hessian of the loss
function. On the other hand,

“I,t(ﬁz) - "I’t(p;k)
= (‘I’t—l(ﬁ;) - ‘I’t(p;k)) + (\Ijt(ﬁ[) - ‘I"t—l(ﬁ;))
< (Wea () — W) + (¥ ®) — Vi1 (@)

(by the definition of p,)
-1

1 _ Lo

=<3 é(ap;’: ¥) = €Bs, 30) + (€D, y0) = &pf 30)
2B |

= - ||Pz — P>

where at the last step we used the Lipschitz property of £(-, y). Comparing the upper and
lower bounds derived for W,(p,) — W, (p;), we see that foreveryr = 1,2, ...,

B —pi | = =
Therefore,

- " 1
Ly—inf Ly, <) (6@ y) — @) < ZBHP, p,H<— -

t=1 t=1

as desired. W

Theorem 3.1 establishes general conditions for the loss function under which the regret
grows at the slow rate of Inn. Just as in the case of the square loss, the size of the
class of experts does not appear explicitly in the upper bound. In particular, the upper
bound is independent of the dimension. The third condition basically requires that the
loss function have an approximately quadratic behavior around the minimum. The last
condition is satisfied for many smooth strictly convex loss functions. For example, if
Y =D and £(p,y) = ||p — yl|* for some « € (1, 2], then all assumptions are easily seen
to be satisfied. Other general conditions under which the follow-the-best-expert forecaster
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achieves logarithmic regret have been thoroughly studied. Pointers to the literature are
given at the end of the chapter.

3.3 Exp-concave Loss Functions

Now we return to the scenario of Section 2.1. Thus, we consider a finite class of N experts.
In this section we introduce a class of loss functions that enjoys some useful properties when
used in conjunction with the exponential potential ®,(u) = % In ( Z,['V=1 e ) A loss func-
tion £ is exp-concave for a certain n > 0 if the function F(z) = e~ is concave for all
y € Y. Exp-concavity is a stronger property than convexity of £ in the first argument (see the
exercises). The larger the value of 7, the more stringent the assumption of exp-concavity is.
The following result shows a key property of exp-concave functions. Recall that the expo-
nentially weighted average forecaster is defined by p, = Zf\': (Wii—1fis / Z?’Zl Wit
where w; ,_; = e i1,

Theorem 3.2. If the loss function £ is exp-concave for n > 0, then the regret of the expo-
nentially weighted average forecaster (used with the same value of n) satisfies, for all
Yis--esYn € y; ch(Rn) =< q)n(o)

Proof. 1t suffices to show that the value of the potential function can never increase; that
is, ®,(R;) < @, (R,_) or, equivalently,

N N
E e M1 oM < E e Mhi-1
i=1 i=1

This may be rewritten as

N
=1 Wii— —n€(fizs
exp(—nl(@Dy, y)) > izt Wi 1NeXp( ntun y’)). (3.2)
Z_i:l Wji—1
But this follows from the definition of P, the concavity of F(z), and Jensen’s in-
equality. M

The fact that a forecaster is able to guarantee ®,(R,) < ®,(0) immediately implies that
his regret is bounded by a constant independently of the sequence length n.

Proposition 3.1. If, for some loss function £ and for some n > 0, a forecaster satisfies
®,(R,) < ®,(0) for all yi, ..., y, €Y, then the regret of the forecaster is bounded by

—~ . InN
L,— min L;, <—.
' N

i=

.....

Proof. Using ®,(R,) < ®,(0) we immediately get

N

-~ . 1 , InN
Ly— min Lj,= max Ri, < —In) " = @,(R,) < D,(0) = et |

i=

J=1
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Figure 3.1. The relative entropy loss and the square loss plotted for D = ) = [0, 1].

Clearly, the larger the n, the better is the bound guaranteed by Proposition 3.1. For each
loss function ¢ there is a maximal value of » for which ¢ is exp-concave (if such an 7 exists
at all). To optimize performance, the exponentially weighted average forecaster should be
run using this largest value of 7.

For the exponentially weighted average forecaster, combining Theorem 3.2 with Propo-
sition 3.1 we get the regret bounded by (In N)/n for all exp-concave losses (where n may
depend on the loss), a quantity which is independent of the length n of the sequence of out-
comes. Note that, apart from the assumption of exp-concavity, we do not assume anything
else about the loss function. In particular, we do not explicitly assume that the loss function
is bounded. The examples that follow show that some simple and important loss functions
are exp-concave (see the exercises for further examples).

Relative Entropy Loss

Let D =) = [0, 1], and consider, the relative entropy loss £(p, y) = yIn(y/p) + (1 —
y) ln((l —y)/0 - ’ﬁ)). With an easy calculation one can check that for » = 1 the function
F(z) is concave for all values of y. Note that this is an unbounded loss function. A
special case of this loss function, for )V = {0, 1} and D = [0, 1], is the logarithmic loss
L(z,y) = —Ijy=1y Inz — Ij,—g) In(1 — z). The logarithmic loss function plays a central role
in several applications, and we devote a separate chapter to it (Chapter 9).

Square Loss

This loss function is defined by £(z, y) = (z — y)z, where D = ) = [0, 1]. Straightforward
calculation shows that F(z) is concave if and only if, for all z, (z — y)*> < 1/(2n). This is
clearly guaranteed if n < 1/2.

Absolute Loss
Let D = Y = [0, 1], and consider the absolute loss £(z, y) = |z — y|. It is easy to see that
F(z) is not concave for any value of 7. In fact, as is shown in Section 3.7, for this loss
function there is no forecaster whose cumulative excess loss can be bounded independently
of n.

Exp-concave losses also make it easy to prove regret bounds that hold for countably
many experts. The only modification we need is that the exponential potential ®,(R) =
%ln(zl{vzl ") be changed to ®,(R) = %ln (X2, qie™), where {g; : i =1,2...} is
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any probability distribution over the set of positive integers. This ensures convergence of
the series. Equivalently, ¢; represents the initial weight of expert i (as in Exercise 2.5).

Corollary 3.1. Assume that (£, n) satisfy the assumption of Theorem 3.2. For any countable
class of experts and for any probability distribution {q; : i = 1,2...} over the set of
positive integers, the exponentially weighted average forecaster defined above satisfies, for
alln > landforall yi,...,y, €Y,

—~ 1.1

L, <in (Li,,, + —1In —) .
z n g

Proof. The proof is almost identical to that of Theorem 3.2; we merely need to redefine
w; .~ in that proof as gie~ "1 This allows us to conclude that ®,(R,) < ®,(0). Hence,

foralli > 1,

o
ql_enRuz S E qjer]Rj.n — encbn(Rn) S e’](bn(o) — 1'
J=1

Solving for R; , yields the desired bound. W

Thus, the cumulative loss of the forecaster exceeds the loss of each expert by at most
a constant, but the constant depends on the expert. If we write the exponentially weighted
forecaster for countably many experts in the form

. Z,oil firexp <_77 (Li,t—l + % In %))
t = 9
> 2 exp (—n (Lj,t—l + %ln %))

then we see that the quantity %ln(l /qi) may be regarded as a “penalty” we add to the
cumulative loss of expert i at each time ¢. Corollary 3.1 is a so-called “oracle inequality,”
which states that the mixture forecaster achieves a cumulative loss matching the best
penalized cumulative loss of the experts (see also Section 3.5).

A Mixture Forecaster for Exp-concave Losses

We close this section by showing how the exponentially weighted average predictor can be
extended naturally to handle certain uncountable classes of experts. The class we consider is
given by the convex hull of a finite number of “base” experts. Thus, the goal of the forecaster
is to predict as well as the best convex combination of the base experts. The formal model
is described as follows: consider N (base) experts whose predictions, at time ¢, are given by
fireD,i=1,...,N,t=1,...,n. Wedenote by f; the vector (f1,, ..., fv.) of expert
advice at time ¢. The decision space D is assumed to be a convex set, and we assume that the
loss function ¢ is exp-concave for a certain value > 0. Define the regret of a forecaster,
with respect to the convex hull of the N base experts, by

n n
L,—inf Ly, =Y P, y)—infy &q-f,y),
aoa e ; Pe> y1) qu; (q-t, y)

where Zn is the cumulative loss of the forecaster, A denotes the simplex of N-vectors
q=1(q1,-..,qn), Withg; > 0, ZlNzl ¢; = 1, and q - f; denotes the element of D given by
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the convex combination Zf\': 1 i fi.r. Finally, L , denotes the cumulative loss of the expert
associated with q.

Next we analyze the regret (in the sense defined earlier) of the exponentially weighted
average forecaster defined by the “mixture”

fA Wq,t—lq . qu

b= fA wq,—1dq

)

where foreach q € A, wq,—| = exp(—n Zi;ll Uq - £, ys)). Just as before, the value of n
used in the definition of the weights is such that the loss function is exp-concave. Thus, the
forecaster calculates a weighted average over the whole simplex A, exponentially weighted
by the past performance corresponding to each vector q of convex coefficients. At this
point we are not concerned with computational issues, but in Section 9 we will see that the
forecaster can be computed easily in certain special cases. The next theorem shows that the
regret is bounded by a quantity of the order of N In(n/N). This is not always optimal; just
consider the case of the square loss and constant experts studied in Section 3.2 for which we
derived a bound independent of N. However, the bound shown here is much more general
and can be seen to be tight in some cases; for example, for the logarithmic loss studied
in Chapter 9. To keep the argument simple, we assume that the loss function is bounded,
though this condition can be relaxed in some cases.

Theorem 3.3. Assume that the loss function £ is exp-concave for n and it takes values in
[0, 1]. Then the exponentially weighted mixture forecaster defined above satisfies

~ . N  enn
L,—inf Ly, < —In—.
qeA n N

Proof. Defining, for all q, the regret

Rq,n = Ln - Lq.n

we may write R,, for the function q — Ry ,. Introducing the potential

®,R,) = f e"fardg
A

we see, by mimicking the proof of Theorem 3.2, that ®,(R,,) < ®,(0) = 1/(N!). It remains
to relate the excess cumulative loss to the value ®,(R,,) of the potential function.
Denote by q* the vector in A for which

Lq*,n = ;22 Lq,n-

Since the loss function is convex in its first argument (see Exercise 3.4), for any ' € A and
A€ (0,1),

L(l—A)q*+Aq’,n =(1- )‘-)Lq*,n + )\Lq’,n =(1- )\)Lq*,n + An,
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where we used the boundedness of the loss function. Therefore, for any fixed A € (0, 1),

/e”Rq.ndq
A
ze’]Ln/e_nLq.ndq
A
eﬂLn/ e*ﬂLq,ndq
{q:q=(1-M)q*+2rq".q’€A}

e”i" / efn(afA)Lq*,an)dq
{q:q=(1-M)q*+rq',q'eA}

(by the above inequality)

@, (R,)

v

v

— enLnefn((lf)\)Lq*.,,+)\n) dq

{q:q=(1-M)g*+1q',q'€A}

The integral on the right-hand side is the volume of the simplex, scaled by X and centered at
q*. Clearly, this equals A times the volume of A, thatis, A" /(N !). Using ®,(R,) < 1/(N)),
and rearranging the obtained inequality, we get

> -~ 1
Ln - lnf Lq,n f Ln - (1 - )\')Lq*,n f - ln)fN + AN.

qeA n
The minimal value on the right-hand side is achieved by A = N /nn, which yields the bound
of the theorem. W

3.4 The Greedy Forecaster

In several arguments we have seen so far for analyzing the performance of weighted average
forecasters, the key of the proof is bounding the increase of the value of the potential function
O (R,) on the regret at time ¢ with respect to the previous value ®(R;_;). In Theorem 2.1 we
do this using the Blackwell condition. In some cases special properties of the loss function
may be used to derive sharper bounds. For example, in Section 3.3 it is shown that for some
loss functions the exponential potential in fact decreases at each step (see Theorem 3.2).
Thus, one may be tempted to construct prediction strategies which, at each time instance,
minimize the worst-case increase of the potential. The purpose of this section is to explore
this possibility.

The first idea one might have is to construct a forecaster p that, at each time instant ¢,
predicts to minimize the worst-case regret, that is,

-~

p: = argmin sup max R;;
peD y’EyI:l ..... N

= argminsup max (Ri,—1 +€(pr, y)) — €(firr Y1)
peD  y,eY i=1,...N

It is easy to see that the minimum in P, exists whenever the loss function £ is bounded and

convex in its first argument. However, the minimum may not be unique. In such cases we

may choose a minimizer by any pre-specified rule. Unfortunately, this strategy, known as

fictitious play in the context of playing repeated games (see Chapter 7), fails to guarantee

a vanishing per-round regret (see the exercises).
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A next attempt may be to minimize, instead of max; <y R;,, a “smooth” version of the
same such as the exponential potential

N
®,(R)) = l In (Z enR’"’> .
g i=1

Note that if nmax;<y R;, is large, then ®,(R;) &~ max;<y R;,; but ®, is now a smooth
function of its components. The quantity 7 is a kind of smoothing parameter. For large
values of 7 the approximation is tighter, though the level curves of ®, become less smooth
(see Figure 2.3).

On the basis of the potential function ®, we may now introduce the forecaster p that, at
every time instant, greedily minimizes the largest possible increase of the potential function
for all possible outcomes y,. That is,

P: = argmin sup ®(R,_| + 1) (the greedy forecaster).
peD  yiey
Recall that the ith component of the regret vector r; is £(p, y;) — €(fi., y;). Note that, for
the exponential potential, the previous condition is equivalent to

N

~ . 1 o

P = argmin sup (Z(p, )+ —1In 2 :e ﬂL:.r) )
n

peD  y €y im1

In what follows, we show that the greedy forecaster is well defined, and, in fact, has
the same performance guarantees as the weighted average forecaster based on the same
potential function.

Assume that the potential function @ is convex. Then, because the supremum of convex
functions is convex, sup, .y ®(R,—; +1;) is a convex function of p if £ is convex in its
first argument. Thus, the minimum over p exists, though it may not be unique. Once again,
a minimizer may be chosen by any pre-specified rule. To compute the predictions p,, a
convex function has to be minimized at each step. This is computationally feasible in many
cases, though it is, in general, not as simple as computing, for example, the predictions of
a weighted average forecaster. In some cases, however, the predictions may be given in a
closed form. We provide some examples.

The following obvious result helps analyze greedy forecasters. Better bounds for certain
losses are derived in Section 3.5 (see Proposition 3.3).

Theorem 3.4. Let ® : RY — R be a nonnegative, twice differentiable convex function.
Assume that there exists a forecaster whose regret vector satisfies

PR)) < OR;_)) + ¢
for any sequencer’, ..., r, of regretvectors andforanyt =1, ..., n,where ¢, is a constant

depending on t only. Then the regret R, of the greedy forecaster satisfies

O(R,) < PO0)+ Y ¢

t=1

Proof. 1t suffices to show that, foreveryt =1, ..., n,

PR < PRi_1) + ¢



3.4 The Greedy Forecaster 51

By the definition of the greedy forecaster, this is equivalent to saying that there exists a
P: € D such that

sup ® Ry +1/) < PR,-1) + ¢4,

ney
where r; is the vector with components £(p;, y;) — £(fi:, y),i = 1, ..., N. The existence
of such a P, is guaranteed by assumption. M

The weighted average forecasters analyzed in Sections 2.1 and 3.3 all satisfy the con-
dition of Theorem 3.4, and therefore the corresponding greedy forecasters inherit their
properties proven in Theorems 2.1 and 3.2. Some simple examples of greedy forecasters
using the exponential potential ®,, follow.

Absolute Loss

Consider the absolute loss £(p, y) = [p — y| in the simple case when Y = {0, 1} and
D = [0, 1]. Consider the greedy forecaster based on the exponential potential ®,. Since
y; is binary valued, determining p; amounts to minimizing the maximum of two convex
functions. After trivial simplifications we obtain

N N

Br = argminmax { 3 NP0 0-Lirt) 37 (-t DL |

pel0.1] i=1 i=1

(Recall that L; , = €(f;.1, y1) + - - -+ €(fi+, y;) denotes the cumulative loss of expert i at
time ¢.) To determine the minimum, just observe that the maximum of two convex functions
achieves its minimum either at a point where the two functions are equal or at the minimum
of one of the two functions. Thus, P either equals 0 or 1, or

11 3V emnbientfinh)
-+ —In==
2 277 ijyzl e"?L/.z—l_ﬂ[(fj,,,O)

depending on which of the three values gives a smaller worst-case value of the potential
function. Now it follows by Theorems 3.4 and 2.2 that the cumulative loss of this greedy
forecaster is bounded as

~ . InN nn
L,— mn L;, <—+ —.
i=1,..,N n 8

Square Loss

Consider next the setup of the previous example with the only difference that the loss
function now is £(, y) = (p — y)°. The calculations may be repeated the same way, and,
interestingly, it turns out that the greedy forecaster P, has exactly the same form as before;
that is, it equals either O or 1, or

ZN =nLi—1—ne(fir1)
i=1¢

s+ 5-In=;
2 2 Y emnhim it

depending on which of the three values gives a smaller worst-case value of the potential
function. In Theorem 3.2 it is shown that special properties of the square loss imply that
if the exponentially weighted average forecaster is used with n = 1/2, then the potential
function cannot increase in any step. Theorem 3.2, combined with the previous result shows
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that if » = 1/2, then the greedy forecaster satisfies

-~

L, — minN Li, <2InN.

i=l,...,

Logarithmic Loss

Again let ) ={0,1} and D =[0, 1], and consider the logarithmic loss £(p,y) =
—Ijy=1;Inp — Ijy—0; In(1 — p) and the exponential potential. It is interesting that in this
case, for n = 1, the greedy forecaster coincides with the exponentially weighted average
forecaster (see the exercises).

3.5 The Aggregating Forecaster

The analysis based on exp-concavity from Section 3.3 hinges on finding, for a given loss,
some 7 > 0 such that the exponential potential ®,(R,) remains bounded by the initial
potential ®,(0) when the predictions are computed by the exponentially weighted average
forecaster. If such an 5 is found, then Proposition 3.1 entails that the regret remains
uniformly bounded by (In N)/n. However, as we show in this section, for all losses for
which such an 7 exists, one might obtain an even better regret bound by finding a forecaster
(not necessarily based on weighted averages) guaranteeing ®,(R,) < ®,(0) for a larger
value of n than the largest n that the weighted average forecaster can afford. Thus, we
look for a forecaster whose predictions P, satisfy ®,(R,_1 +17) < &,(R,_) irrespective
of the choice of the next outcome y, € ) (recall that, as usual, r, = (ry, ..., ry,), Where
rio = (D, y1) — €(fir» ¥1))- It is easy to see that this is equivalent to the condition

N
A 1 ,
€Pr.y) < —=1In (Ze"“fw—‘”q,- ,1) forall y, € Y.
. ,

i=1

The distributionq; ,_, ..., gn — is defined via the weights associated with the exponential
potential. That is, ¢; ;| = e~ "Fi1 /(Ziv=1 e"’LiJ*'). To allow the analysis of losses for

which no forecaster is able to prevent the exponential potential from ever increasing,
we somewhat relax the previous condition by replacing the factor 1/n with w(n)/n. The
real-valued function w is called the mixability curve for the loss ¢, and it is formally
defined as follows. For all n > 0, u(n) is the infimum of all numbers ¢ such that for all

N, for all probability distributions (g, ..., gn), and for all choices of the expert advice
fi, ..., fn € D, there exists a p € D such that
c N :
€p,y) < —=In <Z e—"’f<ff~y>q,.) forall y € . (3.3)
n i=1

Using the terminology introduced by Vovk, we call aggregating forecaster any forecaster
that, when run with input parameter n, predicts using p, which satisfies (3.3), with ¢ = u(n).

The mixability curve can be used to obtain a bound on the loss of the aggregating
forecaster for all values n > 0.

Proposition 3.2. Let . be the mixability curve for an arbitrary loss function £. Then, for
all n > 0, the aggregating forecaster achieves

Zn <wu(m min L;,+ MlnN
i=l,...N n

foralln > 1andforall yy,...,y, €.
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Proof. LetW, = Z,N: 1 e "Lt Then, by definition of mixability, for each ¢ there exists a
7P: € D such that

N —nLi—1 o= fits30) 1%
LPr,yi) < _M(’?) III(Zl_le ¢ ) = __IJ«(U) In (—[ ) .
n

27:1 e ML n Wiy
Summing the leftmost and rightmost members of this inequality fort =1, ..., n we get
~ LW
L, < —Mln l_[ !
n =1 Wiy
wem) W
= —— 1IN —
n Wo
N —nLjy
wu(n) 1 (Zjl e )
=— n
n N
< (nLi, +InN)

for any experti =1,...,N. N

In the introduction to Chapter 2 we described the problem of prediction with expert
advice as an iterated game between the forecaster and the environment. To play this game,
the environment must use some strategy for choosing expert advice and outcome at each
round based on the forecaster’s past predictions. Fix such a strategy for the environment
and fix a strategy for the forecaster (e.g., the weighted average forecaster). For a pair
(a, b) € R2, say that the forecaster wins if his strategy achieves

o~

.....

for all n, N > 1; otherwise the environment wins (suppose that the number N of experts is
chosen by the environment at the beginning of the game).

This game was introduced and analyzed through the notion of mixability curve in the
pioneering work of Vovk [298]. Under mild conditions on D, ), and £, Vovk shows the
following result:

¢ Foreachpair(a, b) € Ri the game is determined. That is, either there exists a forecasting
strategy that wins irrespective of the strategy used by the environment or the environment
has a strategy that defeats any forecasting strategy.

¢ The forecaster wins exactly for those pairs (a, b) € Ri such that there exists some > 0
satisfying u(n) < a and pu(n)/n < b.

Vovk’s result shows that the mixability curve is exactly the boundary of the set of all pairs
(a, b) such that the forecaster can always guarantee that Z,, <aminj<y Li, +bInN. It
can be shown, under mild assumptions on ¢, that « > 1. The largest value of n for which
u(n) = 1 is especially relevant to our regret minimization goal. Indeed, for this n we can
get the strong regret bounds of the form (In N)/7.

We call n-mixable any loss function for which there exists an 7 satisfying u(n) = 1 in
the special case D = [0, 1] and ) = {0, 1} (the choice of 0 and 1 is arbitrary; the theorem
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can be proven for any two real numbers a, b, with a < b). The next result characterizes
mixable losses.

Theorem 3.5 (Mixability Theorem). LetD = [0, 1], Y = {0, 1}, and choose a loss function
L. Consider the set S C [0, 11? of all pairs (x, y) such that there exists some p € [0, 1]
satisfying £(p,0) < x and £(p, 1) < y. For each n > 0, introduce the homeomorphism
H, : [0, 117 = [e7", 1]? defined by Hy(x,y)=(e™™,e ™). Then £ is n-mixable if and
only if the set H,(S) is convex.

Proof. We need to find, for some n > 0, for all y € {0, 1}, for all probability distributions
q1, - --,qn, and for any expert advice fi, ..., fy € [0, 1], anumber p € [0, 1] satisfying

N
1
Up,y) < - In (Z e—nf(f,-,wqi) .

i=1
This condition can be rewritten as

N
e Py > Zefné(ff,y)qi

i=1

and, recalling that y € {0, 1}, as

N N
e 2 37 UG, and D 2 37 DG,
i=1 i=1

The condition says that a prediction p must exist so that each coordinate of
H, (E( p,0), £(p, 1)) is not smaller than the corresponding coordinate of the convex com-
bination YN | H, (€(f;. 0), £(f;, D))gi. If H,(S) is convex, then the convex combination
belongs to H,/(S). Therefore such a p always exists by definition of S (see Figure 3.2). This
condition is easily seen to be also necessary. W

Remark 3.1. Assume that £y(p) = €(p, 0) and £,(p) = £(p, 1) are twice differentiable so
that £0(0) = €,(1) = 0, £;,(p) > 0,£7(p) < Oforall0 < p < 1. Then, foreachn > 0, there
exists a twice differentiable function h,, such that y, (p) = h, (x,(p)) and, by Theorem 3.5,
£ is n-mixable if and only if 4, is concave. Using again the assumptions on £, the concavity
of h, is equivalent to (see Exercise 3.11)

n< in G(P)Ei(p) = L(PIEL(P)
~0<p=<1 (PG (D) (6 () — £o(p))

Remark 3.2. We can extend the mixability theorem to provide a condition sufficient for
mixability in the cases where D = ) = [0, 1]. To do this, we must verify that ¢ =770 >
SN e tUi0g and e D > YV entliDg, together imply that e P >
SNV e UiNg, forall 0 < y < 1. This implication is satisfied whenever

N
e NPy _ Ze—nﬁ(ﬁ,y)qi (3.4)
i=1

is a concave function of y € [0, 1] for each fixed p € [0, 1], f;,and ¢;,i =1..., N.
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H,(S)

0 e’
0 1 e 1
(a) (b)

Figure 3.2. Mixability for the square loss. (a) Region S of points (x,y) satisfying (p —
0 <x and (p —1)*> <y for some p € [0, 1]. (b) Prediction p must correspond to a point
H} = H,(t(p,0), £(p, 1)) to the north-east of f = >N, H,(£(f;, 0), £(f;, 1))g;. Note that f is in
the convex hull (the shaded region) whose vertices are in H,,(S). Therefore, if H,(S) is convex, then
f € H,(S), and finding such a p is always possible by definition of S.

The next result proves a simple relationship between the aggregating forecaster and the
greedy forecaster of Section 3.4.

Proposition 3.3. For any n-mixable loss function £, the greedy forecaster using the expo-
nential potential ®, is an aggregating forecaster.

Proof. 1If a loss £ is mixable, then for each ¢ and for all y, € ) there exists p, € D
satisfying
ZN ! e*nLiJ—I*UK(fim)’r)

=

N —nL ., _
Z,‘:le (il

R 1
L(pr, y1) < —; In

Such a p, may then be defined by

ZN e_nLiJ—l_nz(ff.ny:‘)
i=1

N —nL.. _
Dy e i

N
1
= argmin sup (E(p, v + ;ane”L”> )

peD  y €y i—1

p: = argmin sup | £(p, y;) + —In
peD  y €Y n

which is exactly the definition of the greedy forecaster using the exponential potential. M

Oracle Inequality for Mixable Losses

The aggregating forecaster may be extended, in a simple way, to handle countably infinite
classes of experts. Consider a sequence f1, f>,...of experts such that, at time 7, the
prediction of expert f; is f;, € D. The goal of the forecaster is to predict as well as any of
the experts f;. In order to do this, we assign, to each expert, a positive number 7; > 0 such
that Y 2 7; = 1. The numbers 7; may be called prior probabilities.
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Assume now that the decision space D is a compact metric space and the loss function £
is continuous. Let ¢ be the mixability curve of £. By the definition of u, for every y; € ),
every sequence ¢, ¢z, . . . of positive numbers with } ", ¢; = 1, and N > 0, there exists a
™) e D such that

N N
E('I‘,‘(N)’ V) < _M(’)) In (Z e Nty 1\?1 ) < _M(’?) In (Z e”‘(f"’”)q,») )

U i=1 Zj:l qj n i=1
Because D is compact, the sequence {$""’} has an accumulation point € D. Moreover,

by the continuity of ¢, this accumulation point satisfies

~ () >
Up,y) = —Tln (Ze naﬁ,_‘,)qi) .

i=1
In other words, the aggregating forecaster, defined by P, satisfying
mm) 3%,y e Mhiami =ty
Zji] T e~ Lji-1

is well defined. Then, by the same argument as in Corollary 3.1, for all > 0, we obtain

LPpey) < —

-~ 1
L, < u(y) min (L,-,n + —1n—>
i=1,2,.. n TT;

foralln > 1 and forall y;,...,y, € V.
By writing the forecaster in the form

o0 1 1
() Zi:l exp <_7) <Li,z—l + ; In n'_) —nl(fis, Yt)>
In

1

00 1 1
ijl exp (—n <L_;_;_1 + —In —))

n w;

LPpey) < —

we see that the quantity % In(1/7;) may be regarded as a “penalty” added to the cumulative
loss of expert i at each time ¢. The performance bound for the aggregating forecaster is a
so-called “oracle inequality,” which states that it achieves a cumulative loss matching the
best penalized cumulative loss of the experts.

3.6 Mixability for Certain Losses

In this section, we examine the mixability properties of various loss functions of special
importance.

The Relative Entropy Loss Is 1-Mixable
Recall that this loss is defined by

1 —
y’ where p, y € [0, 1].

l—p

Let us first consider the special case when y € {0, 1} (logarithmic loss). It is easy to

see that the conditions of the mixability theorem are satisfied with n = 1. Note that for

y
ﬁ(p,y)=yln;+(1—y)ln
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this choice of 7, the unique prediction P satisfying definition (3.3) of the aggregating
forecaster with ¢ = 1 is exactly the prediction of the exponentially weighted average
forecaster. Therefore, in the case of logarithmic loss, this approach does not offer any
advantage with respect to the analysis based on exp-concavity from Section 3.3. Also
recall from Section 3.4 that for n = 1 the exponentially weighted average forecaster is
the unique greedy minimizer of the potential function. Thus, for the logarithmic loss, this
predictor has various interesting properties. Indeed, in Chapter 9 we show that when the
set of experts is finite, the exponentially weighted average forecaster is the best possible
forecaster.

Returning to the relative entropy loss, the validity of (3.3) forc =1,n=1,and p =
Z,N: , fiqi (i.e., when P is the weighted average prediction) is obtained directly from the
exp-concavity of the function F(z) = e~7*Y), which we proved in Section 3.3. Therefore,
the exponentially weighted average forecaster with n = 1 satisfies the conditions of the
mixability theorem also for the relative entropy loss. Again, on the other hand, we do not
get any improvement with respect to the analysis based on exp-concavity.

The Square Loss Is 2-Mixable

For the square loss £(p, y) = (p — y)%, p,y € [0, 1], we begin again by assuming y €
{0, 1}. Then the conditions of the mixability theorem are easily verified with n = 2. With a
bit more work, we can also verify that function (3.4) is concave in y € [0, 1] (Exercise 3.12).
Therefore, the conditions of the mixability theorem are satisfied also when D = Y = [0, 1].
Note that, unlike in the case of the relative entropy loss, here we gain a factor of 4 in the regret
bound with respect to the analysis based on exp-concavity. This gain is real, because it can
be shown that the conditions of the mixability theorem cannot be satisfied, in general, by the
exponentially weighted average forecaster. Moreover, it can be shown that no prediction of
the form p = g( Y_I, fiqi) satisfies (3.3) with ¢ = 1 and = 2 no matter which function
g is picked (Exercise 3.13).

We now derive a closed-form expression for the prediction p; of the aggregating fore-
caster. Since the square loss is mixable, by Proposition 3.3 the greedy forecaster is an
aggregating forecaster. Recalling from Section 3.4 the prediction of the greedy forecaster
for the square loss, we get

0 ifr, <O
pr=43r if0<r <1
1 ifr,>1

where

N =nLim1=nt(fis, )

1 1 N e Li-1=nt(fi,
rn=-+--In Z;;I .
20 2p 0 Yy et 0)

The Absolute Loss Is Not Mixable

The absolute loss, defined by £(p,y) = |p — y| for p,y € [0, 1], does not satisfy the
conditions of the mixability theorem. Hence, we cannot hope to find > 0 such that u(n) =
1. However, we can get a bound for the loss for all > 0 by applying Proposition 3.2. To do
this, we need to find the mixability function for the absolute loss, that is, the smallest function
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u Ry — R, such that, for all distributions ¢, ..., gy, for all fi,..., fy € [0, 1], and
for all outcomes y, there exists a p € [0, 1] satisfying

N
=yl =< _@m (Ze—”'ﬁ—yq,). (3.5)

Here we only consider the simple case when y € {0, 1} (prediction of binary outcomes). In
this case, the prediction p achieving mixability is expressible as a (nonlinear) function of
the exponentially weighted average forecaster. In the more general case, when y € [0, 1],
no prediction of the form = g(Y_I", fiq:) achieves mixability no matter how function g
is chosen (Exercise 3.14).

Using the linear interpolation e™™ < 1 — (1 - e’”) x, which holds for all > 0 and
0<x <1, we get

n

N
S (1—2(1—e‘")|ﬁ—quf) (3.6)
i=1
N
> fai—y ) ,
i=1

where in the last step we used the assumption y € {0, 1}. Hence, using the notation r =
Z,I-V:] fiqi, it is sufficient to prove that

N
_nm) <Z e—n|fl-—yql,)

= _M('?) In (1 — (1 — e_")

L—(1—eMr—yl)

|ﬁ—y|s—$1n(

or equivalently, using again the assumption y € {0, 1},

w(m)

1+—1n(1—(1—e_'7)(1—r))5’13<—M1 (
n

n(l—(1—er). (3.7)

By setting » = 1/2 in inequality (3.7), we get

4 /L;n) In (1 +2e'7) - _u;n) In (1 +2e”> ’ (3.8)

which is satisfied only by the assignment

n/2

) = In(2/(1+e )

Note that for this assignment, (3.8) holds with equality. Simple calculations show that the
choice of u above satisfies (3.7) for all 0 < r < 1. Note further that for f1, ..., fy € {0, 1}
the linear approximation (3.6) is tight. If in addition r = ZIN:I figi = 1/2, then there
exists only one function p such that (3.5) holds. Therefore, u is indeed the mixability
curve for the absolute loss with binary outcomes. It can be proven (Exercise 3.15) that
this function is also the mixability curve for the more general case when y € [0, 1]. In
Figure 3.3 we show, as a function of r, the upper and lower bounds (3.7) on the prediction p
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0 1

Figure 3.3. The two dashed lines show, as a function of the weighted average r, the upper and lower
bounds (3.7) on the mixability-achieving prediction p for the absolute loss when = 2; the solid line
in between is a mixability-achieving prediction P obtained by taking the average of the upper and
lower bounds. Note that, in this case, p can be expressed as a (nonlinear) function of the weighted
average.

achieving mixability and the curve p = p(r) obtained by taking the average of the upper and
lower bounds. Comparing the regret bound for the mixability-achieving forecaster obtained
via Proposition 3.2 with the bound of Theorem 2.2 for the weighted average forecaster,
one sees that the former has a better dependence on 5 than the latter. However, as we
show in Section 3.7 the bound of Theorem 2.2 is asymptotically tight. Hence, the benefit
of using the more complicated mixability-achieving forecaster vanishes as n grows to
infinity.

The relationships between the various losses examined so far are summarized in
Figure 3.4.

3.7 General Lower Bounds

We now address the question of the tightness of the upper bounds obtained so far in this
and the previous chapters. Our purpose here is to derive lower bounds for the worst-case
regret. More precisely, we investigate the behavior of the minimax regret V™). Recall from
Section 2.10 that, given a loss function ¢, V,*) is defined as the regret of the best possible
forecasting strategy for the worst possible choice of n outcomes and advice f;, for N
experts, wherei = 1,...,Nandt =1, ...,n.

The upper bound of Theorem 2.2 shows that if the loss function is bounded between
0 and 1 then V™) < \/(n/2)InN. On the other hand, the mixability theorem proven
in this chapter shows that for any mixable loss ¢, the significantly tighter upper bound
V™) < ¢, In N holds, where ¢, is a parameter that depends on the specific mixable loss.
(See Remark 3.1 for an analytic characterization of this parameter.) In this section we
show that, in some sense, both of these upper bounds are tight. The next result shows
that, apart from trivial and uninteresting cases, the minimax loss is at least proportional to
the logarithm of the number N of experts. The theorem provides a lower bound for any
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_ - Exp-concave

, . " Mixable

Figure 3.4. A Venn diagram illustrating the hierarchy of losses examined so far. The minimax
regret for bounded and convex losses is O(«/ nlnN), and this value is achieved by the weighted
average forecaster. Mixable losses, which are not always bounded, have a minimax regret of the form
cIn N. This regret is not necessarily achieved by the weighted average forecaster. Exp-concave losses
are those mixable losses for which the weighted average forecaster does guarantee a regret cIn N.
Such losses are properly included in the set of mixable losses in the following sense: for certain
values of 7, some losses are n-mixable but not exp-concave (e.g., the square loss). The minimax
regret for bounded losses that are not necessarily convex is studied in Chapter 4 using randomized
forecasters.

loss function. When applied to mixable losses, this lower bound captures the logarithmic
dependence on N, but it does not provide a matching constant.

Theorem 3.6. Fix any loss function €. Then V,fﬁl(zgz y) = logy N V@ forall N > 2 and
alln > 1.

Proof. Without loss of generality, assume that there are N = 2" experts for some M > 1.

For any m < N /2, we say that the expert advice f,,..., fy at time ¢ is m-coupled if
fiit = fmyiy foralli =1,..., m. Similarly, we say that the expert advice at time ¢ is
m-simple if f,, =---= fyu,and fyy1, = - = fom,. Note that these definitions impose

no constraints on the advice of experts with index i > 2m. We break time in M stages of
n time steps each. We say that the expert advice is m-simple (m-coupled) in stage s if it
is m-simple (m-coupled) on each time step in the stage. We choose the expert advice so
that

1. the advice is 2'V‘l-simple foreach stages = 1,..., M;
2. foreachs =1,..., M — 1, the advice is 2°-coupled in all time steps up to stage s
included.
Note that we can obtain such an advice simply by choosing, at each stage s = 1,..., M,

an arbitrary 2°~!-simple expert advice for the first 2° experts, and then copying this advice
onto the remaining experts (see Figure 3.5).
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=== ------ 0------ 0---
2--- ) ---o-- 0------ 0---
3---Q ------ 1------ 0---
R IREEEEE 1------ 0---
5---0 ------ 0------ 1---
6---1------ 0------ 1---
To--Q ------ 1------ 1 ---
§--- 1 ------ 1------ 1----

Figure 3.5. An assignment of expert advice achieving the lower bound of Theorem 3.6 for N = 8
and n = 1. Note that the advice is 1-simple for s = 1, 2-simple for s = 2, and 4-simple for s = 3. In
addition, the advice is also 2-coupled for s = 1 and 4-coupled for s = 1, 2.

Consider an arbitrary forecasting strategy P. For any fixed sequence yi,..., yy on
which P is run, and for any pair of stages 1 <r <s < M, let

ns

R =Y (€@ y)—tlfir 30),

t=n(r—1)+1

where P, is the prediction computed by P at time 7.

For the sake of simplicity, assume that n = 1. Fix some arbitrary expert i and pick any
expert j (possibly equal to i). If i, j < 2™~ ori, j > 2~ then R,(yM) = Ri(y)'™") +
R (ym) because the advice at s = M is 2M=1_simple. Otherwise, assume without loss of
generality that i < 2M-1 and Jj > 2M-1 Since the adviceat s = 1,..., M — 1 is 2M-1L.
coupled, there exists k > 2"~ such that R;(y/~") = R;(y}'~"). In addition, since the
advice at = M is 2" ~'-simple, R ;(yy) = R (yum). We have thus shown that for any i and
Jj there always exists k such that R,~(y{”) = Rk(y{vlfl) + R;(ym). Repeating this argument,
and using our recursive assumptions on the expert advice, we obtain

M
R =D R (y),

s=1

where ji, ..., jy = j are arbitrary experts. This reasoning can be easily extended to the
case n > 1, obtaining

M
R (") = Z R, (Yts—1y1) -

s=1

Now note that the expert advice at each stage s = 1, ..., M is 2°~!-simple, implying that
we have a pool of at least two “uncommitted experts” at each time step. Hence, using the
fact that the sequence yy, ..., Y,y is arbitrary and

n
V™ —inf sup sup max Py yo) — U fir, ¥0)),
’ PoFri=ny yreyr i=to N;( o o 30)

where F are classes of static experts (see Section 2.10), we have, for each stage s,

s 2
Rj, ()’Z&—l)ﬁul) z Vn( )
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for some choices of outcomes y,, expert index jg, and static expert advice. To conclude the
proof note that, trivially, VA(IN) >R ®

Using a more involved argument, it is possible to prove a parametric lower bound that
asymptotically (for both N, n — 00) matches the upper bound c¢; In N, where ¢, is the best
constant achieved by the mixability theorem.

What can be said about V,fN ) for nonmixable losses? Consider, for example, the absolute
loss £(p, y) = |p — y|. By Theorem 2.2, the exponentially weighted average forecaster has
a regret bounded by +/(n/2)In N, which implies that, for all n and N,

V)
| —
J@/ 2N ~

The next result shows that, in a sense, this bound cannot be improved further. It also shows
that the exponentially weighted average forecaster is asymptotically optimal.

Theorem 3.7. If Y = {0, 1}, D = [0, 1] and £ is the absolute loss £(p, y) = |p — y|, then
v

sup ———— > 1
N A/ (n/2)In N

Proof. Clearly, V™ > sup. 171=n Va(F), where we take the supremum over classes of
N static experts (see Section 2.9 for the definition of a static expert). We start by lower
bounding V,,(F) for a fixed F. Recall that the minimax regret V,,(F) for a fixed class of
experts is defined as

Vu(F)=inf sup sup Y (1P — yil — | fi = ¥l),
Poyreto,ny rer 5

where the infimum is taken over all forecasting strategies P. Introducing i.i.d. symmetric

Bernoulli random variables Y1, ..., Y, (ie., P[Y, = 0] = P[Y, = 1] = 1/2), one clearly
has
Vu(F) = inf E sup > (1P — Y, = 1fi = Vi)
P reFig
=infEY [ =Y —E inf 3 |f, -Vl
=1 =1
(In Chapter 8 we show that this actually holds with equality.) Since the sequence Yy, ..., Y,

is completely random, for all forecasting strategies one obviously has EY"_, [p, — Y| =
n/2. Thus,

n . !
Vi(F)z 5 —E [}5; |fi — m}
n 1
== E - t Yt
[?‘iﬁ’r; <2 1 ')}

" /1
=E = — Jt t >
> (5 )



3.8 Bibliographic Remarks 63

where o, = 1 — 2Y; are i.i.d. Rademacher random variables (i.e., with P[o; = 1] = P[o; =
—1] = 1/2). We lower bound sup .| 7 _y V.(F) by taking an average over an appropriately
chosen set of expert classes containing N experts. This may be done by replacing each
expert f = (fi,..., fu) by a sequence of symmetric i.i.d. Bernoulli random variables.
More precisely, let {Z;;} be an N x n array of i.i.d. Rademacher random variables with
distribution P[Z; , = —1] = P[Z;, = 1] = 1/2. Then

\Y

2 /1
sup V,(F)> sup E|su <— — f) 0
f:mp:zv ]—':\]—'lpzN |:fe.I7-)'Z 2 )T

t=1

V
|
=
—
=
o
b
=
N
R
| I |

.....

I
|
=
-
Ls
oo
5
NE
N
I

By the central limit theorem, foreachi = 1,..., N, n=172 Z:’zl Z; ; converges to a standard
normal random variable. In fact, it is not difficult to show (see Lemma A.11 in the Appendix
for the details) that

lim E Ly E
e P e N ; Zia | =E| max Gl

.....

where G, ..., Gy are independent standard normal random variables. But it is well known
(see Lemma A.12 in the Appendix) that

and this concludes the proof. W

3.8 Bibliographic Remarks

The follow-the-best-expert forecaster and its variants have been thoroughly studied in a
somewhat more general framework, known as the sequential compound decision problem
first put forward by Robbins [244]; see also Blackwell [28,29], Gilliland [127], Gilliland
and Hannan [128], Hannan [141], Hannan and Robbins [142], Merhav and Feder [213],
van Ryzin [254], and Samuel [256,257]. In these papers general conditions may be found
that guarantee that the per-round regret converges to 0. Lemma 3.1 is due to Hannan [141].
The example of the square loss with constant experts has been studied by Takimoto and
Warmuth [284], who show that the minimax regret is Inn — Inlnn 4+ o(1).

Exp-concave loss functions were studied by Kivinen and Warmuth [182]. Theorem 3.3
is a generalization of an argument of Blum and Kalai [33]. The mixability curve of Sec-
tion 3.5 was introduced by Vovk [298, 300], and also studied by Haussler, Kivinen, and
Warmuth [151], who characterize the loss functions for which ®(In N) regret bounds are
possible. The characterization of the optimal 1 for mixable functions given in Remark 3.1
is due to Haussler, Kivinen, and Warmuth [151]. The examples of mixability are taken
from Cesa-Bianchi, Freund, Haussler, Helmbold, Schapire, and Warmuth [48], Haussler,
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Figure 3.6. The Hellinger loss.

Kivinen, and Warmuth [151], and Vovk [298, 300]. The mixability curve of Section 3.5
is equivalent to the notion of “extended stochastic complexity” introduced by Yaman-
ishi [313]. This notion generalizes Rissanen’s stochastic complexity [240,242].

In the case of binary outcomes ) = {0, 1}, mixability of a loss function £ is equivalent
to the existence of the predictive complexity for ¢, as shown by Kalnishkan, Vovk and
Vyugin [178], who also provide an analytical characterization of mixability in the binary
case. The predictive complexity for the logarithmic loss is equivalent to Levin’s version of
Kolmogorov complexity, see Zvonkin and Levin [320]. In this sense, predictive complexity
may be viewed as a generalization of Kolmogorov complexity.

Theorem 3.6 is due to Haussler, Kivinen, and Warmuth [151]. In the same paper, they
also prove a lower bound that, asymptotically for both N, n — oo, matches the upper
bound ¢, In N for any mixable loss £. This result was initially proven by Vovk [298] with a
more involved analysis. Theorem 3.7 is due to Cesa-Bianchi, Freund, Haussler, Helmbold,
Schapire, and Warmuth [48]. Similar results for other loss functions appear in Haussler,
Kivinen, and Warmuth [151]. More general lower bounds for the absolute loss were proved
by Cesa-Bianchi and Lugosi [51].

3.9 Exercises

3.1 Consider the follow-the-best-expert forecaster studied in Section 3.2. Assume that D = )Yis a
convex subset of a topological vector space. Assume that the sequence of outcomes is such that
lim, oo % >y =y for some y € V. Establish weak general conditions that guarantee that
the per-round regret of the forecaster converges to 0.

3.2 Let Y = D = [0, 1], and consider the Hellinger loss

z.y) = % ((f - )+ (m - ﬂ)z)

(see Figure 3.6). Determine the values of 5 for which the function F(z) defined in Section 3.3
is concave.
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Let Y = D be the closed ball of radius > 0, centered at the origin in R, and consider the
loss £(z, y) = ||z — y||*> (where | - || denotes the euclidean norm in R). Show that F(z) of
Theorem 3.2 is concave whenever < 1/(8r2).

Show that if for a y € ) the function F(z) = e " is concave, then £(z, y) is a convex
function of z.

Show that if a loss function is exp-concave for a certain value of > 0, then itis also exp-concave
for any n’ € (0, n).

In classification problems, various versions of the so-called hinge loss have been used. Typically,
Y ={—,1}, D=[-1, 1], and the loss function has the form £(p, y) = ¢(—yp), where ¢ is a
nonnegative, increasing, and convex cost function. Derive conditions for ¢ and the parameter n
under which the hinge loss is exp-concave.

(Discounted regret for exp-concave losses) Consider the discounted regret

Pin =Y Bui(LPir y0) = L(fiss 30))

t=1

defined in Section 2.11, where 1 = By > f; > ---is a nonincreasing sequence of discount
factors. Assume that the loss function ¢ is exp-concave for some 1 > 0, and consider the
discounted exponentially weighted average forecaster

Zzl'\]:l fi.t exXp (—7] 21;11 ﬂn—se(fi,s» _YA))
S exp (< T At e )
Show that the average discounted regret is bounded by

n

8 In N
max > ,_nl BuitTi < . )
i=1,...N E =1 ﬂn—/ n Zr:] ﬂ”_l

In particular, show that the average discounted regret is o(1) if and only if > - B, = 0.

o~

Pt

Show that the greedy forecaster based on “fictitious play” defined at the beginning of Section 3.4
does not guarantee that n~! max;<y R;, converge to 0 as n — oo for all outcome sequences.
Hint: It suffices to consider the simple example when )) = D = [0, 1], ¢(p, y) = |p — y|, and
N =2.

Show that for Y = {0, 1}, D = [0, 1] and the logarithmic loss function, the greedy forecaster
based on the exponential potential with n = 1 is just the exponentially weighted average fore-
caster (also with n = 1).

Show that (1) > 1 for all loss functions £ on D x ) satistying the following conditions: (1)
there exists p € D such that £(p, y) < oo for all y € V; (2) there exists no p € D such that
£(p,y)=0forall y € Y (Vovk [298]).

Show the following: Let C C R? be a curve with parametric equations x = x(¢) and y = y(¢),
which are twice differentiable functions. If there exists a twice differentiable function 4 such
that y(z) = h(x(¢)) for ¢ in some open interval, then

dy 2
4 and

dx
dt

dy
dx ~

Check that for the square loss £(p, y) = (p — y)?, p, y € [0, 1], function (3.4) is concave in y
if n < 1/2 (Vovk [300]).

Prove that for the square loss there is no function g such that the prediction p = g( vazl f;q[)
satisfies (3.3) with ¢ = 1. Hint: Consider N =2 and find fi, f>,q1,9> and f], f,.41. 9
such that fiq1 + f>q> = f{q| + f,¢5 but plugging these values in (3.3) yields a contradiction
(Haussler, Kivinen, and Warmuth [151]).
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3.14 Prove that for the absolute loss there is no function g for which the prediction p = g( Z,’.\l:l f,-q,-)
satisfies (3.5), where (n) is the mixability curve for the absolute loss. Hint: Set n = 1 and
follow the hint in Exercise 3.13 (Haussler, Kivinen, and Warmuth [151]).

3.15 Prove that the mixability curve for the absolute loss with binary outcomes is also the mixability
function for the case when the outcome space is [0, 1] (Haussler, Kivinen, and Warmuth [151]).
Warning: This exercise is not easy.

3.16 Find the mixability curve for the following loss: D is the probability simplex in RV, Y = [0, 1]V,
and £(p, y) = D - y (Vovk [298]). Warning: This exercise is not easy.
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Randomized Prediction

4.1 Introduction

The results of Chapter 2 crucially build on the assumption that the loss function £ is convex
in its first argument. While this assumption is natural in many applications, it is not satisfied
in some important examples.

One such example is the case when both the decision space and the outcome space
are {0, 1} and the loss function is £(p, y) = I, . In this case it is clear that for any
deterministic strategy of the forecaster, there exists an outcome sequence y" = (¥, ..., Y»)
such that the forecaster errs at every single time instant, that is, Z,, = n. Thus, except for
trivial cases, it is impossible to achieve Zn —min;—;  n L;, = o(n) uniformly over all
outcome sequences. For example, if N = 2 and the two experts’ predictions are f;, =0
and f,, = 1 for all ¢, then min;—; » L; , < n/2, and no matter what the forecaster does,

Znn_ i Linn > .
ma (£,07 = min Li,0") =

N =

One of the key ideas of the theory of prediction of individual sequences is that in such a
situation randomization may help. Next we describe a version of the sequential prediction
problem in which the forecaster has access, at each time instant, to an independent random
variable uniformly distributed on the interval [0, 1]. The scenario is conveniently described
in the framework of playing repeated games.

Consider a game between a player (the forecaster) and the environment. At each round
of the game, the player chooses an actioni € {1, ..., N}, and the environment chooses an
action y € Y (in analogy with Chapters 2 and 3 we also call “outcome” the adversary’s
action). The player’s loss £(i, y) at time ¢ is the value of a loss function ¢ : {1, ..., N} x
Y — [0, 1]. Now suppose that, at the #th round of the game, the player chooses a probability
distribution p, = (p1,, ..., pn.) over the set of actions and plays action i with probability
pi.- Formally, the player’s action /, at time ¢ is defined by

i—1 i
I, =i ifandonlyif U, € ij,t,ZPj,z
j=1 j=1

so that
P, =i|Uy,...,U—1]1= piy, i=1,...,N,

67
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where Uy, Us, ... are independent random variables, uniformly distributed in the interval
[0, 1]. Adopting a game-theoretic terminology, we often call an action a pure strategy and
a probability distribution over actions a mixed strategy. Suppose the environment chooses
action y, € ). The loss of the player is then £(/;, y;).

If Iy, I, ... is the sequence of forecaster’s actions and yi, y», ...is the sequence of
outcomes chosen by the environment, the player’s goal is to minimize the cumulative regret

n n

Ly— min Lip=3 &, y) = min > G y),
=1 =1

that is, the realized difference between the cumulative loss and the loss of the best pure

strategy.

Remark 4.1 (Experts vs. actions). Note that, unlike for the game of prediction with expert
advice analyzed in Chapter 2, here we define the regret in terms of the forecaster’s best
constant prediction rather than in terms of the best expert. Hence, as experts can be arbitrarily
complex prediction strategies, this game appears to be easier for the forecaster than the
game of Chapter 2. However, as our forecasting algorithms make assumptions neither on
the structure of the outcome space ) nor on the structure of the loss function ¢, we can
prove for the expert model the same bounds proven in this chapter. This is done via a
simple reduction in which we use {1, ..., N} to index the set of experts and define the loss
(i, y;) = £(fis> yr), where £ is the loss function used to score predictions in the expert
game.

Before moving on, we point out an important subtlety brought in by allowing the forecaster
to randomize. The actions y, of the environment are now random variables Y, as they may
depend on the past (randomized) plays I, ..., I,_; of the forecaster. One may even allow
the environment to introduce an independent randomization to determine the outcomes Y;,
but this is irrelevant for the material of this section; so, for simplicity, we exclude this
possibility. We explicitly deal with such situations in Chapter 7.

A slightly less powerful model is obtained if one does not allow the actions of the
environment to depend on the predictions /, of the forecaster. In this model, which we
call the oblivious opponent, the whole sequence yi, y,, ...of outcomes is determined
before the game starts. Then, at time ¢, the forecaster makes its (randomized) prediction /,
and the environment reveals the 7th outcome y,. Thus, in this model, the y,’s are nonrandom
fixed values. The model of an oblivious opponent is realistic whenever it is reasonable to
believe that the actions of the forecaster do not have an effect on future outcomes of the
sequence to be predicted. This is the case in many applications, such as weather forecasting
or predicting a sequence of bits of a speech signal for encoding purposes. However, there
are important cases when one cannot reasonably assume that the opponent is oblivious.
The main example is when a player of a game predicts the other players’ next move and
bases his action on such a prediction. In such cases the other players’ future actions may
depend on the action (and therefore on the forecast) of the player in any complicated way.
The stock market comes to mind as an obvious example. Such game-theoretic applications
are discussed in Chapter 7.

Formally, an oblivious opponent is defined by a fixed sequence yi, y,, ... of outcomes,
whereas a nonoblivious opponent is defined by a sequence of functions g, g, ..., with
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g {l1,...,N}"!' = Y, and each outcome ¥, is givenby Y, = g,(Iy, ..., I;—1). Thus Y, is
measurable with respect to the o -algebra generated by the random variables Uy, ..., U,_;.

Interestingly, any forecaster that is guaranteed to work well against an oblivious opponent
also works well in the general model against any strategy of a nonoblivious opponent, in a
certain sense. To formulate this fact, we introduce the expected loss

N
U, Y) B[, V) |Ur o Ui = B 0 Y) = Y 4G, Y pis.

i=1
Here the “expected value” E, is taken only with respect to the random variable /,. More
precisely, Z(p,, Y,;)is the conditional expectation of £(/;, Y,) given the past plays Iy, ..., I,
(we use E; to denote this conditional expectation). Since Y, = g;({y, ..., I,_1), the value
of Z(p,, Y,) is determined solely by Uy, ..., U,_;.

An important property of the forecasters investigated in this chapter is that the probability
distribution p, of play is fully determined by the past outcomes Y1, ..., ¥,_;; that s, it does
not explicitly depend on the past plays /i, . .., I,_;. Formally, p, : J'~! — D is a function
taking values in the simplex D of probability distributions over N actions.

Note that the next result, which assumes that the forecaster is of the above form, is in
terms of the cumulative expected loss Y ,_, £(p,, Y,), and not in terms of its expected value

E [ijz(p,, Yt)} =E [Z s, Y»} :
t=1 t=1

Exercise 4.1 describes a closely related result about the expected value of the cumulative
losses.

Lemma 4.1. Let B, C be positive constants. Consider a randomized forecaster such that,
foreveryt =1,...,n,p, is fully determined by the past outcomes yi, ..., y;—i. Assume
the forecaster’s expected regret against an oblivious opponent satisfies

n n
sup E[ZE(Z,,y,)—CZE(i,y,)] < B, i=1,...,N.
t=1

yreyn P

If the same forecaster is used against a nonoblivious opponent, then
n n
> Up,.Y)—-CY €i.Y)<B, i=1....N
t=1 t=1

holds. Moreover, for all § > 0, with probability at least 1 — § the actual cumulative loss
satisfies, for any (nonoblivious) strategy of the opponent,

.....

Proof. Observe first that if the opponent is oblivious, that is, the sequence yi, ..., y, is
fixed, then p, is also fixed and thus foreachi =1,..., N,

E [Z ey, y) = C YL, y»] =Y Up, y)—C Y L, y),
t=1 t=1 t=1 t=1
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which is bounded by B by assumption. If the opponent is nonoblivious, then for each
i=1,...,N,

> Up,. Y —C Y €. Y)
t=1 t=1

< sup B, [€(11, y1) — CEG, y)] + - - - + sup E,[ €Ly, ya) — CL(, ya)]

ney ey
— sup (]E1 [Ty, y1) = CLG, y)] + -+ + By [€L, y0) — CLG, y,,)]).
yﬂeyn

To see why the last equality holds, consider n = 2. Since the quantity E;[£(/;, y1) —
C{(i, y1)] does not depend on the value of y,, and since y,, owing to our assumptions on
P, does not depend on the realization of /,, we have

sup B [€(I1, y1) — CLG, y1)] + sup Eo[€(12, y2) — CLG, )]
ney »ney

— sup sup (]E1 [€11, y1) — CLG, y)] + Ea[€(a, y2) — CLG, yz)]>.

VNEY ey

The proof for n > 2 follows by repeating the same argument. By assumption,

sup (B1[ECT 1) = CL 0] -+ Ea[Ell 3) = CLG, )]) = B,
yreyn
which concludes the proof of the first statement of the lemma.

To prove the second statement just observe that the random variables £(/;,Y;) —
Z(p,, Y),t =1,2,...form a sequence of bounded martingale differences (with respect
to the sequence Uy, Us, ... of randomizing variables). Thus, a simple application of the
Hoeffding—Azuma inequality (see Lemma A.7 in the Appendix) yields that for every
6 > 0, with probability at least 1 — 4§,

1

n n
— n
01, Y,) < Lp,,Y)+ ./ =In-.
g(,,);(p, Dy 55

Combine this inequality with the first statement to complete the proof. W

Most of the results presented in this and the next two chapters (with the exception of those
of Section 6.10) are valid in the general model of the nonoblivious opponent. So, unless
otherwise specified, we allow the actions of environment to depend on the randomized
predictions of the forecaster.

In Section 4.2 we show that the techniques of Chapter 2 may be used in the setup of
randomized prediction as well. In particular, a simple adaptation of the weighted average
forecaster guarantees that the actual regret becomes negligible as n grows. This property is
known as Hannan consistency.

In Section 4.3 we describe and analyze a randomized forecaster suggested by Hannan.
This forecaster adds a small random “noise” to the observed cumulative losses of all
strategies and selects the one achieving the minimal value. We show that this simple
method achieves a regret comparable to that of weighted average predictors. In particular,
the forecaster is Hannan consistent.

In Section 4.4, a refined notion of regret, the so-called internal regret, is introduced. It
is shown that even though control of internal regret is more difficult than achieving Hannan
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consistency, the results of Chapter 2 may be used to construct prediction strategies with
small internal regret.

An interesting application of no-internal-regret prediction is described in Section 4.5.
The forecasters considered there predict a {0, 1}-valued sequence with numbers between
[0, 1]. Each number is interpreted as the predicted “chance” of the next outcome being 1.
A forecaster is well calibrated if at those time instances in which a certain percentage is
predicted, the fraction of 1’s indeed turns out to be the predicted value. The main result
of the section is the description of a randomized forecaster that is well calibrated for all
possible sequences of outcomes.

In Section 4.6 we introduce a general notion of regret that contains both internal and
external regret as special cases, as well as a number of other applications.

The chapter is concluded by describing, in Section 4.7, a significantly stronger notion of
calibration, by introducing checking rules. The existence of a calibrated forecaster, in this
stronger sense, follows by a simple application of the general setup of Section 4.6.

4.2 Weighted Average Forecasters

In order to understand the randomized prediction problem described above, we first consider
a simplified version in which we only consider the expected loss E.£(1;,Y;) = £(p,, Y,). If
the player’s goal is to minimize the difference between the cumulative expected loss

def

n
Zn - ZZ(Pp YI)
t=1

and the loss of the best pure strategy, then the problem becomes a special case of the
problem of prediction using expert advice described in Chapter 2. To see this, define the
decision space D of the forecaster (player) as the simplex of probability distributions in R" .
Then the instantaneous regret for the player is the vector r, € R, whose ith component is

rie = 0p,, Yo) — LG, Y)).

This quantity measures the expected change in the player’s loss if it were to deterministically
choose action i and the environment did not change its action. Observe that the “expected”
loss function is linear (and therefore convex) in its first argument, and Lemma 2.1 may be
applied in this situation. To this end, we recall the weighted average forecaster of Section 2.1
based on the potential function

N
D(u) = Y (Z ¢<ui>) :
i=1

where ¢ : R — R is any nonnegative, increasing, and twice differentiable function and
¥ : R — R is any nonnegative, strictly increasing, concave, and twice differentiable aux-
iliary function (which only plays a role in the analysis but not in the definition of the
forecasting strategy). The general potential-based weighted average strategy p, is now

_ VOR_y):  9(Ri1)
Yl VOR e Y ¢'(Ri—t)
fort > land p;; =1/Nfori=1,...,N.

Pit
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By Lemma 2.1, for any y, € ), the Blackwell condition holds, that is,
r,- VOR,_;) <0. 4.1

In fact, by the linearity of the loss function, it is immediate to see that inequality (4.1) is
satisfied with equality. Thus, because the loss function ranges in [0, 1], then choosing ¢(x) =
X fi (with p > 2) or p(x) = €™, the respective performance bounds of Corollaries 2.1 and 2.2
hold in this new setup as well. Also, Theorem 2.2 may be applied, which we recall here for
completeness: consider the exponentially weighted average player given by

exp (—n Y_y_; €6, Yy))

Dit = i=1,...,N,
Yl exp (=1 i £k, ¥y)
where n > 0. Then
— . InN nn
L,— mn L;, <—+4 —.
i=1,...N n 8

With the choice n = 4/81n N /n the upper bound becomes /(n1n N)/2. We remark here
that this bound is essentially unimprovable in this generality. Indeed, in Section 3.7 we
prove the following.

Corollary 4.1. Let n, N > 1. There exists a loss function € such that for any randomized
forecasting strategy,

_ ) nin N
sup (L, — min L;, ) > (1—éyy) ,
yreyn i=1,.,N 2

where limy_, o0 limy, 00 5, = 0.

Thus the expected cumulative loss of randomized forecasters may be effectively bounded by
the results of Chapter 2. On the other hand, it is more interesting to study the behavior of the
actual (random) cumulative loss £(/1, Y;) + - - - + £(I,, Y,,). As we have already observed
in the proof of Lemma 4.1, the random variables ¢£(/,, Y,) — Z(p,, Y),fort =1,2,...,form
a sequence of bounded martingale differences, and a simple application of the Hoeffding—
Azuma inequality yields the following.

Corollary4.2. Letn, N > 1 and § € (0, 1). The exponentially weighted average forecaster
with n = /81In N /n satisfies, with probability at least 1 — &,

iﬂ(l Y,)— min Xn:z(i Y)<\/”lnN+\/ﬁ1nl
p Do N U= 2 28

.....

The relationship between the forecaster’s cumulative loss and the cumulative loss of the
best possible action appears in the classical notion of Hannan consistency, first established
by Hannan [141]. A forecaster is said to be Hannan consistent if

n—oo N 1.,

1 n n
lim sup — (Z €1, Y)) ~ min Z o, Y,)) =0, with probability 1,
=1 = =1

where “probability” is understood with respect to the randomization of the forecaster. A
simple modification of Corollary 4.2 leads to the following.



4.2 Weighted Average Forecasters 73

Corollary 4.3. Consider the exponentially weighted average forecaster defined above. If
the parameter n = n, is chosen by n; = /(8In N)/t (as in Section 2.8), then the forecaster
is Hannan consistent.

The simple proof is left as an exercise. In the exercises some other modifications are
described as well.

In the definition of Hannan consistency the number of pure strategies N is kept fixed while
we let the number n of rounds of the game grow to infinity. However, in some cases it is
more reasonable to set up the asymptotic problem by allowing the number of comparison
strategies to grow with n. Of course, this may be done in many different ways. Next
we briefly describe such a model. The nonasymptotic nature of the performance bounds
described above may be directly used to address this general problem. Let € : {1,..., N} x
Y — [0, 1] be aloss function, and consider the forecasting game defined above. A dynamic
strategy s is simply a sequence of indices sy, s, ..., where s; € {1,..., N} marks the
guess a forecaster predicting according to this strategy makes at time ¢. Given a class S
of dynamic strategies, the forecaster’s goal is to achieve a cumulative loss not much larger
than the best of the strategies in S regardless of the outcome sequence, that is, to keep the
difference

le” Y) — rglzlz(s,, Y)
= =

as small as possible. The weighted average strategy described earlier may be generalized
to this situation in a straightforward way, and repeating the same proof we thus obtain the
following.

Theorem 4.1. Let S be an arbitrary class of dynamic strategies and, for eacht > 1, denote
by N, the number of different vectors s = (sy,...,s;) €{l,...,N},s € S. Foranyn > 0
there exists a randomized forecaster such that for all § € (0, 1), with probability at least
1-46,

iﬂ(l Y,) minZn:e(v vy < N oo ]
p ts t 5e8 p Oty Lt) = ]’I 8 2 8'

Moreover, there exists a strategy such that if n~'In N, — 0 as n — 0o, then
1 n 1 n
=3 0 Yy — —min Y U(s. Y) = 0, with probability 1.
- noses t=1

The details of the proof are left as an easy exercise. As an example, consider the following
class of dynamic strategies. Let k, k7, . . . be a monotonically increasing sequence of posi-
tive integers such that k, < n for all n > 1. Let S contain all dynamic strategies such that
each strategy changes actions at most k,, — 1 times between time 1 and n, for all n. In other

words, each s € S is such that the sequence sy, . .., s, consists of k, constant segments. It
is easy to see that, for each n, N,, = Zl,z”zl (Z:})N(N — 1)*~!. Indeed, for each k, there are
(Z:{) different ways of dividing the time segment 1, ..., n into k pieces, and for a division
with segment lengths ny, . . ., ny, there are N(N — D1 different ways of assigning actions

to the segments such that no two consecutive segments have the same actions assigned.
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Thus, Theorem 4.1 implies that, whenever the sequence {k,} is such that k,, Inn = o(n), we
have

1 « 1 -
- Zz(l,, Y,)— ~ minZﬁ(s,, Y,) — 0, with probability 1.
n P n ses P

Of course, calculating the weighted average forecaster for a large class of dynamic strate-
gies may be computationally prohibitive. However, in many important cases (such as the
concrete example given above), efficient algorithms exist. Several examples are described
in Chapter 5.

Corollary 4.2 is based on the Hoeffding—Azuma inequality, which asserts that, with
probability at least 1 — &,

n n

_ n. 1
E (1,7, —E £p,.Y;) </ =In—.
£ U, Yy) £ P, Y) =< 2n3

This inequality is combined with the fact that the cumulative expected regret is bounded as
S lp,, Y) —min—y _n Y €G,Y,) < /(n/2)InN. The term bounding the random
fluctuations is thus about the same order of magnitude as the bound for the expected regret.
However, it is pointed out in Section 2.4 that if the cumulative loss min;—; __ x Z;’zl £3i,Y,)
is guaranteed to be bounded by a quantity L} < n, then significantly improved per-
formance bounds, of the form ,/2L*InN +InN, may be achieved. In this case the
term +/(/2)In(1/8) resulting from the Hoeffding—Azuma inequality becomes dominat-
ing. However, in such a situation improved bounds may be established for the difference
between the “actual” and “expected” cumulative losses. This may be done by invok-
ing Bernstein’s inequality for martingales (see Lemma A.8 in the Appendix). Indeed,
because

- 2 — 2
E, [K(Its Y,) —£(p,, Yt)] =E(,,Y,)* — (@(p,, Yt))
<E, Y)Y <ElLd,Y,)="p, Yo,

the sum of the conditional variances is bounded by the expected cumulative loss
L, = Z:’Zl £(p;, Y;). Then by Lemma A.8, with probability at least 1 — §,

n n

_ [— 1 22 1
E 0(1,,Y, —E Lp,,Y;) <./2L,In-— 4+ —In-.
L 4, Y) L p;. Y1) n8 + 3 n 5

If the cumulative loss of the best action is bounded by a number L} known in advance,
then L, can be bounded by L* + ,/2L*In N + In N (see Corollary 2.4), and the effect of
the random fluctuations is comparable with the bound for the expected regret.

4.3 Follow the Perturbed Leader

One may wonder whether “following the leader,” that is, predicting at time ¢ according
to the action i whose cumulative loss L;,_; up to that time is minimal, is a reasonable
algorithm. In Section 3.2 we saw that under certain conditions for the loss function, this
is quite a powerful strategy. However, it is easy to see that in the setup of this chapter
this strategy, also known as fictitious play, does not achieve Hannan consistency. To see
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this, just consider N = 2 actions such that the sequence of losses €(1, y,) of the first action
is (1/2,0,1,0,1,0, 1, ...) while the values of £(2, y;) are (1/2,1,0,1,0, 1,0, ...). Then
L;, is about n/2 for bothi = 1 and i = 2, but fictitious play suffers a loss close to n. (See
also Exercises 3.8 and 4.6.) However, as it was pointed out by Hannan [141], a simple
modification suffices to achieve a significantly improved performance. One merely has
to add a small random perturbation to the cumulative losses and follow the “perturbed”
leader.

Formally, let Z,, Z,, . . . be independent, identically distributed random N -vectors with
components Z; , (i = 1, ..., N).Forsimplicity, assume that Z, has an absolutely continuous
distribution (with respect to the N-dimensional Lebesgue measure) and denote its density
by f. The follow-the-perturbed-leader forecaster selects, at time ¢, an action

[; = argmin (Li_,_l + Zi,,) .
i=1,..,N
(Ties may be broken, say, in favor of the smallest index.)

Unlike in the case of weighted average predictors, the definition of the forecaster does
not explicitly specify the probabilities p; ; of selecting action i at time ¢. However, it is clear
from the definition that given the past sequence of plays and outcomes, the value of p;,
only depends on the joint distribution of the random variables Z; ;, but not on their random
values. Therefore, by Lemma 4.1 it suffices to consider the model of oblivious opponent
and derive bounds for the expected regret in that case.

To state the main result of t