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Rozwiązanie problemu

Znane wyniki
Co chcemy pokazać
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Osiągalność w grafach skierowanych:
liniowa przestrzeń i czas
przestrzeń O(log2n), ale czas nie jest wielomianowy
(Savitch)

Osiągalność w grafach nieskierowanych:
przestrzeń nε i wielomianowy czas
logarytmiczna przestrzeń i wielomianowy czas, ale
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Twierdzenie (OSIĄGALNOŚĆ ∈ SC)

Istnieje deterministyczny algorytm rozwiązujący problem
osiągalności w grafach nieskierowanych w czasie
wielomianowym i w przestrzeni O(log2n).

Twierdzenie (BPL ⊆ SC)

BPL ⊆ SC.

a dokładniej dla wszystkich konstruowalnych S(n) = Ω(logn)

BPSPACE(S(n)) ⊆ DTISP(2O(S(n)),S2(n)).
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Twierdzenie (APROKS. OSIĄGALNOŚĆ)

Istnieje deterministyczny algorytm rozwiązujący następujący
problem:
Wejście: Macierz prawdopodobieństw sąsiedztwa M rozmiaru
n na n, liczba całkowita t i ułamek ε (t i ε są podane w postaci
unarnej)
Wyj ście: Macierz A taka że ‖A−M t‖ ¬ ε.
Algorytm działa w czasie poly(N) i przestrzeni O(log2N), gdzie
N = n2 + t + ε−1 jest rozmiarem wejścia.

RL ⊆ SC
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Standardowo określona norma macierzy
Generatory pseudolosowe

Opierają się na uniwersalnych funkcjach haszujących
Zdefiniowane rekurencyjnie — łatwe wyznaczanie wyniku
porcjami
Dobra aproksymacja osiągalności w DFA

RL ⊆ SC



Wprowadzenie
Z czego korzystamy
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Standardowo określona norma macierzy
Generatory pseudolosowe
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Uniwersalne funkcje haszujące
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Uniwersalne funkcje haszujące

Standardowo określona norma macierzy
Generatory pseudolosowe
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RL ⊆ SC



Wprowadzenie
Z czego korzystamy
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Q — automat skończony o n stanach, i , j — stany Q,
x ∈ {0,1}∗, D — rozkład prawdopodobieństwa na {0,1}∗,
t — liczba całkowita

x przechodzi z i do j w Q jeśli Q zaczynając od stanu i na
słowie x dojdzie do stanu j
Q(D)— macierz n na n taka, że

Q(D)[i , j ] = Pr x∈D[x przechodzi z i do j w Q]

Ut — rozkład jednostajny na {0,1}t
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m, k — liczby całkowite ­ 0, H — rodzina uniwersalnych
funkcji haszujących h : {0,1}m → {0,1}m, ◦— operacja
konkatenacji

G0(x) = x
Gk (x ,h1, . . . ,hk ) =
Gk−1(x ,h1, . . . ,hk−1) ◦Gk−1(hk (x),h1, . . .hk−1)

h1, . . . ,hk ∈ H, Dh1,...,hk — rozkład prawdopodobieństwa
na Gk (x ,h1, . . . ,hk ) przy x z rozkładu jednostajnego
na {0,1}m, Mh1,...,hk = Q(Dh1,...,hk )

hk ∈ H jest ε-dobra dla h1, . . . ,hk−1 jeśli
‖M2

h1,...hk−1
−Mh1,...,hk ‖ ¬ ε (dla k = 1 mamy Mnull = Q(Um))
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Główny algorytm

Załóżmy, że mamy dany algorytm rozwiązujący następujący
problem:
Wejście: n-stanowy DFA, liczba całkowita t i ułamek ε (t i ε są
podane w postaci unarnej)
Wyj ście: Liczba całkowita t ′ ­ t i macierz A rozmiaru n na n
taka, że ‖A−Q(Ut ′)‖ ¬ ε.
Algorytm działa w czasie O(n24ε−6t7log3N), gdzie N jest
całkowitym rozmiarem wejścia.

RL ⊆ SC
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BPL ⊆ SC.

Zbuduj DFA Q reprezentujący działanie danej maszyny T
na danym wejściu x

Niech t = n będzie liczbą stanów Q i niech ε = 0.1

Uruchom główny algorytm

Wynik działania pozwala odpowiedzieć, czy T akceptuje x
(
∑

stany akceptujace j A[1, j ])

OSIĄGALNOŚĆ ∈ SC.

Wynika z BPL ⊆ SC i z OSIĄGALNOŚĆ ∈ RL

RL ⊆ SC
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RL ⊆ SC



Wprowadzenie
Z czego korzystamy
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Rozwiązanie problemu

Główny algorytm
Dowody podanych twierdzeń
Symulacja

APROKS. OSIĄGALNOŚĆ.

Zbuduj DFA Q:
Stany główne: {< j , i >: 1 ¬ j ¬ n,0 ¬ i ¬ t}
Stany dodatkowe: binarne drzewo stanów prowadzące od
stanu postaci < j , i > do wszystkich stanów < j ′, i + 1 >
(dla 0 ¬ i < t)
Ze stanu < j , i > da się przejśc do stanu < j ′, i + 1 > z
prawdopodobieństwem M[j , j ′] (z dokładnością do ε/nt)

Uruchom główny algorytm

Wybierz z wyniku podmacierz wyznaczoną przez wiersze
postaci < j ,0 > i kolumny postaci < j , t >

RL ⊆ SC
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Symulacja

APROKS. OSIĄGALNOŚĆ.
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Główny algorytm

Niech K =log2t , δ = ε/(2K ), m = 1+ 7log2n − 2log2δ,
t ′ = m2K .

Dla k = 1, . . . ,K oblicz hk , która jest δ-dobra dla
h1, . . . ,hk−1 (procedura FIND)

Dla wszystkich i , j — stany Q oblicz A[i , j ] = Mh1,...,hk [i , j ]
(procedura COMPUTE)
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Rozwiązanie problemu

Główny algorytm
Dowody podanych twierdzeń
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Procedura FIND

Wejście: Funkcje haszujące h1, . . . ,hk−1, ułamek δ > 0
Wyj ście: Funkcja haszująca hk , która jest δ-dobra dla
h1, . . . ,hk−1

Algorytm:
Dla każdego h ∈ H:

Dla wszystkich i , j — stany Q:
Policz p1 = Mh1,...,hk−1,h[i, j] (procedura COMPUTE)
Policz p2 =

∑
stany l Mh1,...,hk−1 [i, l]Mh1,...,hk−1 [l, j] (2n

wywołań COMPUTE)
Jeśli |p1 − p2| > δ/n przejdź do następnego h

Zwróć hk = h

RL ⊆ SC
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Dla każdego h ∈ H:

Dla wszystkich i , j — stany Q:
Policz p1 = Mh1,...,hk−1,h[i, j] (procedura COMPUTE)
Policz p2 =

∑
stany l Mh1,...,hk−1 [i, l]Mh1,...,hk−1 [l, j] (2n
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Dla każdego h ∈ H:

Dla wszystkich i , j — stany Q:
Policz p1 = Mh1,...,hk−1,h[i, j] (procedura COMPUTE)
Policz p2 =

∑
stany l Mh1,...,hk−1 [i, l]Mh1,...,hk−1 [l, j] (2n
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Dla każdego h ∈ H:

Dla wszystkich i , j — stany Q:
Policz p1 = Mh1,...,hk−1,h[i, j] (procedura COMPUTE)
Policz p2 =

∑
stany l Mh1,...,hk−1 [i, l]Mh1,...,hk−1 [l, j] (2n
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Procedura COMPUTE

Wejście: Funkcje haszujące h1, . . . ,hk , stany i , j
Wyj ście: Wartość Mh1,...,hk [i , j ]

count := 0
Dla wszystkich x ∈ {0,1}m:

Symuluj Q zaczynając od i na wejściu Gk (x ,h1, . . . ,hk )
Jeśli Q skończył pracę w stanie j to count := count +1

Zwróć Mh1,...,hk [i , j ] =count/2m

RL ⊆ SC
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Zwróć Mh1,...,hk [i , j ] =count/2m

RL ⊆ SC



Wprowadzenie
Z czego korzystamy
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Symulacja

Procedura COMPUTE
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Symuluj Q zaczynając od i na wejściu Gk (x ,h1, . . . ,hk )
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