
Wprowadzenie
Z czego korzystamy

Rozwiązanie problemu

RL ⊆ SC

13 grudnia 2004 roku

RL ⊆ SC

Wprowadzenie
Z czego korzystamy

Rozwiązanie problemu

Plan

1 Wprowadzenie
Znane wyniki
Co chcemy pokazać

2 Z czego korzystamy
Pomysły
Notacja

3 Rozwiązanie problemu
Główny algorytm
Dowody podanych twierdzeń
Symulacja

RL ⊆ SC

Wprowadzenie
Z czego korzystamy

Rozwiązanie problemu

Znane wyniki
Co chcemy pokazać

Znane wyniki

Osiągalność w grafach skierowanych:
liniowa przestrzeń i czas
przestrzeń O(log2n), ale czas nie jest wielomianowy
(Savitch)

Osiągalność w grafach nieskierowanych:
przestrzeń nε i wielomianowy czas
logarytmiczna przestrzeń i wielomianowy czas, ale
zrandomizowany

RL ⊆ SC

Wprowadzenie
Z czego korzystamy

Rozwiązanie problemu

Znane wyniki
Co chcemy pokazać

Znane wyniki

Osiągalność w grafach skierowanych:
liniowa przestrzeń i czas
przestrzeń O(log2n), ale czas nie jest wielomianowy
(Savitch)

Osiągalność w grafach nieskierowanych:
przestrzeń nε i wielomianowy czas
logarytmiczna przestrzeń i wielomianowy czas, ale
zrandomizowany

RL ⊆ SC

Wprowadzenie
Z czego korzystamy

Rozwiązanie problemu

Znane wyniki
Co chcemy pokazać

Znane wyniki

Osiągalność w grafach skierowanych:
liniowa przestrzeń i czas
przestrzeń O(log2n), ale czas nie jest wielomianowy
(Savitch)

Osiągalność w grafach nieskierowanych:
przestrzeń nε i wielomianowy czas
logarytmiczna przestrzeń i wielomianowy czas, ale
zrandomizowany

RL ⊆ SC

Wprowadzenie
Z czego korzystamy

Rozwiązanie problemu

Znane wyniki
Co chcemy pokazać

Znane wyniki

Osiągalność w grafach skierowanych:
liniowa przestrzeń i czas
przestrzeń O(log2n), ale czas nie jest wielomianowy
(Savitch)

Osiągalność w grafach nieskierowanych:
przestrzeń nε i wielomianowy czas
logarytmiczna przestrzeń i wielomianowy czas, ale
zrandomizowany

RL ⊆ SC

Wprowadzenie
Z czego korzystamy

Rozwiązanie problemu

Znane wyniki
Co chcemy pokazać

Znane wyniki

Osiągalność w grafach skierowanych:
liniowa przestrzeń i czas
przestrzeń O(log2n), ale czas nie jest wielomianowy
(Savitch)

Osiągalność w grafach nieskierowanych:
przestrzeń nε i wielomianowy czas
logarytmiczna przestrzeń i wielomianowy czas, ale
zrandomizowany

RL ⊆ SC

Wprowadzenie
Z czego korzystamy

Rozwiązanie problemu

Znane wyniki
Co chcemy pokazać

Znane wyniki

Osiągalność w grafach skierowanych:
liniowa przestrzeń i czas
przestrzeń O(log2n), ale czas nie jest wielomianowy
(Savitch)

Osiągalność w grafach nieskierowanych:
przestrzeń nε i wielomianowy czas
logarytmiczna przestrzeń i wielomianowy czas, ale
zrandomizowany

RL ⊆ SC

Wprowadzenie
Z czego korzystamy

Rozwiązanie problemu

Znane wyniki
Co chcemy pokazać

Co chcemy pokazać

Twierdzenie (OSIĄGALNOŚĆ ∈ SC)

Istnieje deterministyczny algorytm rozwiązujący problem
osiągalności w grafach nieskierowanych w czasie
wielomianowym i w przestrzeni O(log2n).

Twierdzenie (BPL ⊆ SC)

BPL ⊆ SC.

a dokładniej dla wszystkich konstruowalnych S(n) = Ω(logn)

BPSPACE(S(n)) ⊆ DTISP(2O(S(n)),S2(n)).

RL ⊆ SC

Wprowadzenie
Z czego korzystamy

Rozwiązanie problemu

Znane wyniki
Co chcemy pokazać

Co chcemy pokazać

Twierdzenie (OSIĄGALNOŚĆ ∈ SC)

Istnieje deterministyczny algorytm rozwiązujący problem
osiągalności w grafach nieskierowanych w czasie
wielomianowym i w przestrzeni O(log2n).

Twierdzenie (BPL ⊆ SC)

BPL ⊆ SC.

a dokładniej dla wszystkich konstruowalnych S(n) = Ω(logn)

BPSPACE(S(n)) ⊆ DTISP(2O(S(n)),S2(n)).

RL ⊆ SC

Wprowadzenie
Z czego korzystamy

Rozwiązanie problemu

Znane wyniki
Co chcemy pokazać

Co chcemy pokazać

Twierdzenie (OSIĄGALNOŚĆ ∈ SC)

Istnieje deterministyczny algorytm rozwiązujący problem
osiągalności w grafach nieskierowanych w czasie
wielomianowym i w przestrzeni O(log2n).

Twierdzenie (BPL ⊆ SC)

BPL ⊆ SC.

a dokładniej dla wszystkich konstruowalnych S(n) = Ω(logn)

BPSPACE(S(n)) ⊆ DTISP(2O(S(n)),S2(n)).

RL ⊆ SC

Wprowadzenie
Z czego korzystamy

Rozwiązanie problemu

Znane wyniki
Co chcemy pokazać

Co chcemy pokazać

Twierdzenie (APROKS. OSIĄGALNOŚĆ)

Istnieje deterministyczny algorytm rozwiązujący następujący
problem:
Wejście: Macierz prawdopodobieństw sąsiedztwa M rozmiaru
n na n, liczba całkowita t i ułamek ε (t i ε są podane w postaci
unarnej)
Wyj ście: Macierz A taka że ‖A−M t‖ ¬ ε.
Algorytm działa w czasie poly(N) i przestrzeni O(log2N), gdzie
N = n2 + t + ε−1 jest rozmiarem wejścia.

RL ⊆ SC

Wprowadzenie
Z czego korzystamy

Rozwiązanie problemu

Pomysły
Notacja

Pomysły

Symulacja maszyny BPL przez automat skończony
Określone wejście
Prawdopodobieństwo osiągnięcia stanu akceptującego

Uniwersalne funkcje haszujące

Standardowo określona norma macierzy
Generatory pseudolosowe

Opierają się na uniwersalnych funkcjach haszujących
Zdefiniowane rekurencyjnie — łatwe wyznaczanie wyniku
porcjami
Dobra aproksymacja osiągalności w DFA

RL ⊆ SC

Wprowadzenie
Z czego korzystamy

Rozwiązanie problemu

Pomysły
Notacja

Pomysły

Symulacja maszyny BPL przez automat skończony
Określone wejście
Prawdopodobieństwo osiągnięcia stanu akceptującego

Uniwersalne funkcje haszujące

Standardowo określona norma macierzy
Generatory pseudolosowe

Opierają się na uniwersalnych funkcjach haszujących
Zdefiniowane rekurencyjnie — łatwe wyznaczanie wyniku
porcjami
Dobra aproksymacja osiągalności w DFA

RL ⊆ SC

Wprowadzenie
Z czego korzystamy

Rozwiązanie problemu

Pomysły
Notacja

Pomysły

Symulacja maszyny BPL przez automat skończony
Określone wejście
Prawdopodobieństwo osiągnięcia stanu akceptującego

Uniwersalne funkcje haszujące

Standardowo określona norma macierzy
Generatory pseudolosowe

Opierają się na uniwersalnych funkcjach haszujących
Zdefiniowane rekurencyjnie — łatwe wyznaczanie wyniku
porcjami
Dobra aproksymacja osiągalności w DFA

RL ⊆ SC

Wprowadzenie
Z czego korzystamy

Rozwiązanie problemu

Pomysły
Notacja

Pomysły

Symulacja maszyny BPL przez automat skończony
Określone wejście
Prawdopodobieństwo osiągnięcia stanu akceptującego

Uniwersalne funkcje haszujące

Standardowo określona norma macierzy
Generatory pseudolosowe

Opierają się na uniwersalnych funkcjach haszujących
Zdefiniowane rekurencyjnie — łatwe wyznaczanie wyniku
porcjami
Dobra aproksymacja osiągalności w DFA

RL ⊆ SC

Wprowadzenie
Z czego korzystamy

Rozwiązanie problemu

Pomysły
Notacja

Pomysły

Symulacja maszyny BPL przez automat skończony
Określone wejście
Prawdopodobieństwo osiągnięcia stanu akceptującego

Uniwersalne funkcje haszujące

Standardowo określona norma macierzy
Generatory pseudolosowe

Opierają się na uniwersalnych funkcjach haszujących
Zdefiniowane rekurencyjnie — łatwe wyznaczanie wyniku
porcjami
Dobra aproksymacja osiągalności w DFA

RL ⊆ SC

Wprowadzenie
Z czego korzystamy

Rozwiązanie problemu

Pomysły
Notacja

Pomysły

Symulacja maszyny BPL przez automat skończony
Określone wejście
Prawdopodobieństwo osiągnięcia stanu akceptującego

Uniwersalne funkcje haszujące

Standardowo określona norma macierzy
Generatory pseudolosowe

Opierają się na uniwersalnych funkcjach haszujących
Zdefiniowane rekurencyjnie — łatwe wyznaczanie wyniku
porcjami
Dobra aproksymacja osiągalności w DFA

RL ⊆ SC

Wprowadzenie
Z czego korzystamy

Rozwiązanie problemu

Pomysły
Notacja

Pomysły

Symulacja maszyny BPL przez automat skończony
Określone wejście
Prawdopodobieństwo osiągnięcia stanu akceptującego

Uniwersalne funkcje haszujące

Standardowo określona norma macierzy
Generatory pseudolosowe

Opierają się na uniwersalnych funkcjach haszujących
Zdefiniowane rekurencyjnie — łatwe wyznaczanie wyniku
porcjami
Dobra aproksymacja osiągalności w DFA

RL ⊆ SC

Wprowadzenie
Z czego korzystamy

Rozwiązanie problemu

Pomysły
Notacja

Pomysły

Symulacja maszyny BPL przez automat skończony
Określone wejście
Prawdopodobieństwo osiągnięcia stanu akceptującego

Uniwersalne funkcje haszujące

Standardowo określona norma macierzy
Generatory pseudolosowe

Opierają się na uniwersalnych funkcjach haszujących
Zdefiniowane rekurencyjnie — łatwe wyznaczanie wyniku
porcjami
Dobra aproksymacja osiągalności w DFA

RL ⊆ SC

Wprowadzenie
Z czego korzystamy

Rozwiązanie problemu

Pomysły
Notacja

Pomysły

Symulacja maszyny BPL przez automat skończony
Określone wejście
Prawdopodobieństwo osiągnięcia stanu akceptującego

Uniwersalne funkcje haszujące

Standardowo określona norma macierzy
Generatory pseudolosowe

Opierają się na uniwersalnych funkcjach haszujących
Zdefiniowane rekurencyjnie — łatwe wyznaczanie wyniku
porcjami
Dobra aproksymacja osiągalności w DFA

RL ⊆ SC

Wprowadzenie
Z czego korzystamy

Rozwiązanie problemu

Pomysły
Notacja

Notacja

Q — automat skończony o n stanach, i , j — stany Q,
x ∈ {0,1}∗, D — rozkład prawdopodobieństwa na {0,1}∗,
t — liczba całkowita

x przechodzi z i do j w Q jeśli Q zaczynając od stanu i na
słowie x dojdzie do stanu j
Q(D)— macierz n na n taka, że

Q(D)[i , j] = Pr x∈D[x przechodzi z i do j w Q]

Ut — rozkład jednostajny na {0,1}t

RL ⊆ SC

Wprowadzenie
Z czego korzystamy

Rozwiązanie problemu

Pomysły
Notacja

Notacja

Q — automat skończony o n stanach, i , j — stany Q,
x ∈ {0,1}∗, D — rozkład prawdopodobieństwa na {0,1}∗,
t — liczba całkowita

x przechodzi z i do j w Q jeśli Q zaczynając od stanu i na
słowie x dojdzie do stanu j
Q(D)— macierz n na n taka, że

Q(D)[i , j] = Pr x∈D[x przechodzi z i do j w Q]

Ut — rozkład jednostajny na {0,1}t

RL ⊆ SC

Wprowadzenie
Z czego korzystamy

Rozwiązanie problemu

Pomysły
Notacja

Notacja

Q — automat skończony o n stanach, i , j — stany Q,
x ∈ {0,1}∗, D — rozkład prawdopodobieństwa na {0,1}∗,
t — liczba całkowita

x przechodzi z i do j w Q jeśli Q zaczynając od stanu i na
słowie x dojdzie do stanu j
Q(D)— macierz n na n taka, że

Q(D)[i , j] = Pr x∈D[x przechodzi z i do j w Q]

Ut — rozkład jednostajny na {0,1}t

RL ⊆ SC

Wprowadzenie
Z czego korzystamy

Rozwiązanie problemu

Pomysły
Notacja

Notacja

Q — automat skończony o n stanach, i , j — stany Q,
x ∈ {0,1}∗, D — rozkład prawdopodobieństwa na {0,1}∗,
t — liczba całkowita

x przechodzi z i do j w Q jeśli Q zaczynając od stanu i na
słowie x dojdzie do stanu j
Q(D)— macierz n na n taka, że

Q(D)[i , j] = Pr x∈D[x przechodzi z i do j w Q]

Ut — rozkład jednostajny na {0,1}t

RL ⊆ SC

Wprowadzenie
Z czego korzystamy

Rozwiązanie problemu

Pomysły
Notacja

Notacja

m, k — liczby całkowite ­ 0, H — rodzina uniwersalnych
funkcji haszujących h : {0,1}m → {0,1}m, ◦— operacja
konkatenacji

G0(x) = x
Gk (x ,h1, . . . ,hk) =
Gk−1(x ,h1, . . . ,hk−1) ◦Gk−1(hk (x),h1, . . .hk−1)

h1, . . . ,hk ∈ H, Dh1,...,hk — rozkład prawdopodobieństwa
na Gk (x ,h1, . . . ,hk) przy x z rozkładu jednostajnego
na {0,1}m, Mh1,...,hk = Q(Dh1,...,hk)

hk ∈ H jest ε-dobra dla h1, . . . ,hk−1 jeśli
‖M2

h1,...hk−1
−Mh1,...,hk ‖ ¬ ε (dla k = 1 mamy Mnull = Q(Um))

RL ⊆ SC

Wprowadzenie
Z czego korzystamy

Rozwiązanie problemu

Pomysły
Notacja

Notacja

m, k — liczby całkowite ­ 0, H — rodzina uniwersalnych
funkcji haszujących h : {0,1}m → {0,1}m, ◦— operacja
konkatenacji

G0(x) = x
Gk (x ,h1, . . . ,hk) =
Gk−1(x ,h1, . . . ,hk−1) ◦Gk−1(hk (x),h1, . . .hk−1)

h1, . . . ,hk ∈ H, Dh1,...,hk — rozkład prawdopodobieństwa
na Gk (x ,h1, . . . ,hk) przy x z rozkładu jednostajnego
na {0,1}m, Mh1,...,hk = Q(Dh1,...,hk)

hk ∈ H jest ε-dobra dla h1, . . . ,hk−1 jeśli
‖M2

h1,...hk−1
−Mh1,...,hk ‖ ¬ ε (dla k = 1 mamy Mnull = Q(Um))

RL ⊆ SC

Wprowadzenie
Z czego korzystamy

Rozwiązanie problemu

Pomysły
Notacja

Notacja

m, k — liczby całkowite ­ 0, H — rodzina uniwersalnych
funkcji haszujących h : {0,1}m → {0,1}m, ◦— operacja
konkatenacji

G0(x) = x
Gk (x ,h1, . . . ,hk) =
Gk−1(x ,h1, . . . ,hk−1) ◦Gk−1(hk (x),h1, . . .hk−1)

h1, . . . ,hk ∈ H, Dh1,...,hk — rozkład prawdopodobieństwa
na Gk (x ,h1, . . . ,hk) przy x z rozkładu jednostajnego
na {0,1}m, Mh1,...,hk = Q(Dh1,...,hk)

hk ∈ H jest ε-dobra dla h1, . . . ,hk−1 jeśli
‖M2

h1,...hk−1
−Mh1,...,hk ‖ ¬ ε (dla k = 1 mamy Mnull = Q(Um))

RL ⊆ SC

Wprowadzenie
Z czego korzystamy

Rozwiązanie problemu

Pomysły
Notacja

Notacja

m, k — liczby całkowite ­ 0, H — rodzina uniwersalnych
funkcji haszujących h : {0,1}m → {0,1}m, ◦— operacja
konkatenacji

G0(x) = x
Gk (x ,h1, . . . ,hk) =
Gk−1(x ,h1, . . . ,hk−1) ◦Gk−1(hk (x),h1, . . .hk−1)

h1, . . . ,hk ∈ H, Dh1,...,hk — rozkład prawdopodobieństwa
na Gk (x ,h1, . . . ,hk) przy x z rozkładu jednostajnego
na {0,1}m, Mh1,...,hk = Q(Dh1,...,hk)

hk ∈ H jest ε-dobra dla h1, . . . ,hk−1 jeśli
‖M2

h1,...hk−1
−Mh1,...,hk ‖ ¬ ε (dla k = 1 mamy Mnull = Q(Um))

RL ⊆ SC

Wprowadzenie
Z czego korzystamy

Rozwiązanie problemu

Pomysły
Notacja

Notacja

m, k — liczby całkowite ­ 0, H — rodzina uniwersalnych
funkcji haszujących h : {0,1}m → {0,1}m, ◦— operacja
konkatenacji

G0(x) = x
Gk (x ,h1, . . . ,hk) =
Gk−1(x ,h1, . . . ,hk−1) ◦Gk−1(hk (x),h1, . . .hk−1)

h1, . . . ,hk ∈ H, Dh1,...,hk — rozkład prawdopodobieństwa
na Gk (x ,h1, . . . ,hk) przy x z rozkładu jednostajnego
na {0,1}m, Mh1,...,hk = Q(Dh1,...,hk)

hk ∈ H jest ε-dobra dla h1, . . . ,hk−1 jeśli
‖M2

h1,...hk−1
−Mh1,...,hk ‖ ¬ ε (dla k = 1 mamy Mnull = Q(Um))

RL ⊆ SC

Wprowadzenie
Z czego korzystamy

Rozwiązanie problemu

Główny algorytm
Dowody podanych twierdzeń
Symulacja

Główny algorytm

Załóżmy, że mamy dany algorytm rozwiązujący następujący
problem:
Wejście: n-stanowy DFA, liczba całkowita t i ułamek ε (t i ε są
podane w postaci unarnej)
Wyj ście: Liczba całkowita t ′ ­ t i macierz A rozmiaru n na n
taka, że ‖A−Q(Ut ′)‖ ¬ ε.
Algorytm działa w czasie O(n24ε−6t7log3N), gdzie N jest
całkowitym rozmiarem wejścia.

RL ⊆ SC

Wprowadzenie
Z czego korzystamy

Rozwiązanie problemu

Główny algorytm
Dowody podanych twierdzeń
Symulacja

BPL ⊆ SC.

Zbuduj DFA Q reprezentujący działanie danej maszyny T
na danym wejściu x

Niech t = n będzie liczbą stanów Q i niech ε = 0.1

Uruchom główny algorytm

Wynik działania pozwala odpowiedzieć, czy T akceptuje x
(
∑

stany akceptujace j A[1, j])

OSIĄGALNOŚĆ ∈ SC.

Wynika z BPL ⊆ SC i z OSIĄGALNOŚĆ ∈ RL

RL ⊆ SC

Wprowadzenie
Z czego korzystamy

Rozwiązanie problemu

Główny algorytm
Dowody podanych twierdzeń
Symulacja

BPL ⊆ SC.

Zbuduj DFA Q reprezentujący działanie danej maszyny T
na danym wejściu x

Niech t = n będzie liczbą stanów Q i niech ε = 0.1

Uruchom główny algorytm

Wynik działania pozwala odpowiedzieć, czy T akceptuje x
(
∑

stany akceptujace j A[1, j])

OSIĄGALNOŚĆ ∈ SC.

Wynika z BPL ⊆ SC i z OSIĄGALNOŚĆ ∈ RL

RL ⊆ SC

Wprowadzenie
Z czego korzystamy

Rozwiązanie problemu

Główny algorytm
Dowody podanych twierdzeń
Symulacja

BPL ⊆ SC.

Zbuduj DFA Q reprezentujący działanie danej maszyny T
na danym wejściu x

Niech t = n będzie liczbą stanów Q i niech ε = 0.1

Uruchom główny algorytm

Wynik działania pozwala odpowiedzieć, czy T akceptuje x
(
∑

stany akceptujace j A[1, j])

OSIĄGALNOŚĆ ∈ SC.

Wynika z BPL ⊆ SC i z OSIĄGALNOŚĆ ∈ RL

RL ⊆ SC

Wprowadzenie
Z czego korzystamy

Rozwiązanie problemu

Główny algorytm
Dowody podanych twierdzeń
Symulacja

BPL ⊆ SC.

Zbuduj DFA Q reprezentujący działanie danej maszyny T
na danym wejściu x

Niech t = n będzie liczbą stanów Q i niech ε = 0.1

Uruchom główny algorytm

Wynik działania pozwala odpowiedzieć, czy T akceptuje x
(
∑

stany akceptujace j A[1, j])

OSIĄGALNOŚĆ ∈ SC.

Wynika z BPL ⊆ SC i z OSIĄGALNOŚĆ ∈ RL

RL ⊆ SC

Wprowadzenie
Z czego korzystamy

Rozwiązanie problemu

Główny algorytm
Dowody podanych twierdzeń
Symulacja

BPL ⊆ SC.

Zbuduj DFA Q reprezentujący działanie danej maszyny T
na danym wejściu x

Niech t = n będzie liczbą stanów Q i niech ε = 0.1

Uruchom główny algorytm

Wynik działania pozwala odpowiedzieć, czy T akceptuje x
(
∑

stany akceptujace j A[1, j])

OSIĄGALNOŚĆ ∈ SC.

Wynika z BPL ⊆ SC i z OSIĄGALNOŚĆ ∈ RL

RL ⊆ SC

Wprowadzenie
Z czego korzystamy

Rozwiązanie problemu

Główny algorytm
Dowody podanych twierdzeń
Symulacja

APROKS. OSIĄGALNOŚĆ.

Zbuduj DFA Q:
Stany główne: {< j , i >: 1 ¬ j ¬ n,0 ¬ i ¬ t}
Stany dodatkowe: binarne drzewo stanów prowadzące od
stanu postaci < j , i > do wszystkich stanów < j ′, i + 1 >
(dla 0 ¬ i < t)
Ze stanu < j , i > da się przejśc do stanu < j ′, i + 1 > z
prawdopodobieństwem M[j , j ′] (z dokładnością do ε/nt)

Uruchom główny algorytm

Wybierz z wyniku podmacierz wyznaczoną przez wiersze
postaci < j ,0 > i kolumny postaci < j , t >

RL ⊆ SC

Wprowadzenie
Z czego korzystamy

Rozwiązanie problemu

Główny algorytm
Dowody podanych twierdzeń
Symulacja

APROKS. OSIĄGALNOŚĆ.

Zbuduj DFA Q:
Stany główne: {< j , i >: 1 ¬ j ¬ n,0 ¬ i ¬ t}
Stany dodatkowe: binarne drzewo stanów prowadzące od
stanu postaci < j , i > do wszystkich stanów < j ′, i + 1 >
(dla 0 ¬ i < t)
Ze stanu < j , i > da się przejśc do stanu < j ′, i + 1 > z
prawdopodobieństwem M[j , j ′] (z dokładnością do ε/nt)

Uruchom główny algorytm

Wybierz z wyniku podmacierz wyznaczoną przez wiersze
postaci < j ,0 > i kolumny postaci < j , t >

RL ⊆ SC

Wprowadzenie
Z czego korzystamy

Rozwiązanie problemu

Główny algorytm
Dowody podanych twierdzeń
Symulacja

APROKS. OSIĄGALNOŚĆ.

Zbuduj DFA Q:
Stany główne: {< j , i >: 1 ¬ j ¬ n,0 ¬ i ¬ t}
Stany dodatkowe: binarne drzewo stanów prowadzące od
stanu postaci < j , i > do wszystkich stanów < j ′, i + 1 >
(dla 0 ¬ i < t)
Ze stanu < j , i > da się przejśc do stanu < j ′, i + 1 > z
prawdopodobieństwem M[j , j ′] (z dokładnością do ε/nt)

Uruchom główny algorytm

Wybierz z wyniku podmacierz wyznaczoną przez wiersze
postaci < j ,0 > i kolumny postaci < j , t >

RL ⊆ SC

Wprowadzenie
Z czego korzystamy

Rozwiązanie problemu

Główny algorytm
Dowody podanych twierdzeń
Symulacja

APROKS. OSIĄGALNOŚĆ.

Zbuduj DFA Q:
Stany główne: {< j , i >: 1 ¬ j ¬ n,0 ¬ i ¬ t}
Stany dodatkowe: binarne drzewo stanów prowadzące od
stanu postaci < j , i > do wszystkich stanów < j ′, i + 1 >
(dla 0 ¬ i < t)
Ze stanu < j , i > da się przejśc do stanu < j ′, i + 1 > z
prawdopodobieństwem M[j , j ′] (z dokładnością do ε/nt)

Uruchom główny algorytm

Wybierz z wyniku podmacierz wyznaczoną przez wiersze
postaci < j ,0 > i kolumny postaci < j , t >

RL ⊆ SC

Wprowadzenie
Z czego korzystamy

Rozwiązanie problemu

Główny algorytm
Dowody podanych twierdzeń
Symulacja

APROKS. OSIĄGALNOŚĆ.

Zbuduj DFA Q:
Stany główne: {< j , i >: 1 ¬ j ¬ n,0 ¬ i ¬ t}
Stany dodatkowe: binarne drzewo stanów prowadzące od
stanu postaci < j , i > do wszystkich stanów < j ′, i + 1 >
(dla 0 ¬ i < t)
Ze stanu < j , i > da się przejśc do stanu < j ′, i + 1 > z
prawdopodobieństwem M[j , j ′] (z dokładnością do ε/nt)

Uruchom główny algorytm

Wybierz z wyniku podmacierz wyznaczoną przez wiersze
postaci < j ,0 > i kolumny postaci < j , t >

RL ⊆ SC

Wprowadzenie
Z czego korzystamy

Rozwiązanie problemu

Główny algorytm
Dowody podanych twierdzeń
Symulacja

APROKS. OSIĄGALNOŚĆ.

Zbuduj DFA Q:
Stany główne: {< j , i >: 1 ¬ j ¬ n,0 ¬ i ¬ t}
Stany dodatkowe: binarne drzewo stanów prowadzące od
stanu postaci < j , i > do wszystkich stanów < j ′, i + 1 >
(dla 0 ¬ i < t)
Ze stanu < j , i > da się przejśc do stanu < j ′, i + 1 > z
prawdopodobieństwem M[j , j ′] (z dokładnością do ε/nt)

Uruchom główny algorytm

Wybierz z wyniku podmacierz wyznaczoną przez wiersze
postaci < j ,0 > i kolumny postaci < j , t >

RL ⊆ SC

Wprowadzenie
Z czego korzystamy

Rozwiązanie problemu

Główny algorytm
Dowody podanych twierdzeń
Symulacja

Główny algorytm

Niech K =log2t , δ = ε/(2K), m = 1+ 7log2n − 2log2δ,
t ′ = m2K .

Dla k = 1, . . . ,K oblicz hk , która jest δ-dobra dla
h1, . . . ,hk−1 (procedura FIND)

Dla wszystkich i , j — stany Q oblicz A[i , j] = Mh1,...,hk [i , j]
(procedura COMPUTE)

RL ⊆ SC

Wprowadzenie
Z czego korzystamy

Rozwiązanie problemu

Główny algorytm
Dowody podanych twierdzeń
Symulacja

Główny algorytm

Niech K =log2t , δ = ε/(2K), m = 1+ 7log2n − 2log2δ,
t ′ = m2K .

Dla k = 1, . . . ,K oblicz hk , która jest δ-dobra dla
h1, . . . ,hk−1 (procedura FIND)

Dla wszystkich i , j — stany Q oblicz A[i , j] = Mh1,...,hk [i , j]
(procedura COMPUTE)

RL ⊆ SC

Wprowadzenie
Z czego korzystamy

Rozwiązanie problemu

Główny algorytm
Dowody podanych twierdzeń
Symulacja

Główny algorytm

Niech K =log2t , δ = ε/(2K), m = 1+ 7log2n − 2log2δ,
t ′ = m2K .

Dla k = 1, . . . ,K oblicz hk , która jest δ-dobra dla
h1, . . . ,hk−1 (procedura FIND)

Dla wszystkich i , j — stany Q oblicz A[i , j] = Mh1,...,hk [i , j]
(procedura COMPUTE)

RL ⊆ SC

Wprowadzenie
Z czego korzystamy

Rozwiązanie problemu

Główny algorytm
Dowody podanych twierdzeń
Symulacja

Procedura FIND

Wejście: Funkcje haszujące h1, . . . ,hk−1, ułamek δ > 0
Wyj ście: Funkcja haszująca hk , która jest δ-dobra dla
h1, . . . ,hk−1

Algorytm:
Dla każdego h ∈ H:

Dla wszystkich i , j — stany Q:
Policz p1 = Mh1,...,hk−1,h[i, j] (procedura COMPUTE)
Policz p2 =

∑
stany l Mh1,...,hk−1 [i, l]Mh1,...,hk−1 [l, j] (2n

wywołań COMPUTE)
Jeśli |p1 − p2| > δ/n przejdź do następnego h

Zwróć hk = h

RL ⊆ SC

Wprowadzenie
Z czego korzystamy

Rozwiązanie problemu

Główny algorytm
Dowody podanych twierdzeń
Symulacja

Procedura FIND

Wejście: Funkcje haszujące h1, . . . ,hk−1, ułamek δ > 0
Wyj ście: Funkcja haszująca hk , która jest δ-dobra dla
h1, . . . ,hk−1

Algorytm:
Dla każdego h ∈ H:

Dla wszystkich i , j — stany Q:
Policz p1 = Mh1,...,hk−1,h[i, j] (procedura COMPUTE)
Policz p2 =

∑
stany l Mh1,...,hk−1 [i, l]Mh1,...,hk−1 [l, j] (2n

wywołań COMPUTE)
Jeśli |p1 − p2| > δ/n przejdź do następnego h

Zwróć hk = h

RL ⊆ SC

Wprowadzenie
Z czego korzystamy

Rozwiązanie problemu

Główny algorytm
Dowody podanych twierdzeń
Symulacja

Procedura FIND

Wejście: Funkcje haszujące h1, . . . ,hk−1, ułamek δ > 0
Wyj ście: Funkcja haszująca hk , która jest δ-dobra dla
h1, . . . ,hk−1

Algorytm:
Dla każdego h ∈ H:

Dla wszystkich i , j — stany Q:
Policz p1 = Mh1,...,hk−1,h[i, j] (procedura COMPUTE)
Policz p2 =

∑
stany l Mh1,...,hk−1 [i, l]Mh1,...,hk−1 [l, j] (2n

wywołań COMPUTE)
Jeśli |p1 − p2| > δ/n przejdź do następnego h

Zwróć hk = h

RL ⊆ SC

Wprowadzenie
Z czego korzystamy

Rozwiązanie problemu

Główny algorytm
Dowody podanych twierdzeń
Symulacja

Procedura FIND

Wejście: Funkcje haszujące h1, . . . ,hk−1, ułamek δ > 0
Wyj ście: Funkcja haszująca hk , która jest δ-dobra dla
h1, . . . ,hk−1

Algorytm:
Dla każdego h ∈ H:

Dla wszystkich i , j — stany Q:
Policz p1 = Mh1,...,hk−1,h[i, j] (procedura COMPUTE)
Policz p2 =

∑
stany l Mh1,...,hk−1 [i, l]Mh1,...,hk−1 [l, j] (2n

wywołań COMPUTE)
Jeśli |p1 − p2| > δ/n przejdź do następnego h

Zwróć hk = h

RL ⊆ SC

Wprowadzenie
Z czego korzystamy

Rozwiązanie problemu

Główny algorytm
Dowody podanych twierdzeń
Symulacja

Procedura FIND

Wejście: Funkcje haszujące h1, . . . ,hk−1, ułamek δ > 0
Wyj ście: Funkcja haszująca hk , która jest δ-dobra dla
h1, . . . ,hk−1

Algorytm:
Dla każdego h ∈ H:

Dla wszystkich i , j — stany Q:
Policz p1 = Mh1,...,hk−1,h[i, j] (procedura COMPUTE)
Policz p2 =

∑
stany l Mh1,...,hk−1 [i, l]Mh1,...,hk−1 [l, j] (2n

wywołań COMPUTE)
Jeśli |p1 − p2| > δ/n przejdź do następnego h

Zwróć hk = h

RL ⊆ SC

Wprowadzenie
Z czego korzystamy

Rozwiązanie problemu

Główny algorytm
Dowody podanych twierdzeń
Symulacja

Procedura COMPUTE

Wejście: Funkcje haszujące h1, . . . ,hk , stany i , j
Wyj ście: Wartość Mh1,...,hk [i , j]

count := 0
Dla wszystkich x ∈ {0,1}m:

Symuluj Q zaczynając od i na wejściu Gk (x ,h1, . . . ,hk)
Jeśli Q skończył pracę w stanie j to count := count +1

Zwróć Mh1,...,hk [i , j] =count/2m

RL ⊆ SC

Wprowadzenie
Z czego korzystamy

Rozwiązanie problemu

Główny algorytm
Dowody podanych twierdzeń
Symulacja

Procedura COMPUTE

Wejście: Funkcje haszujące h1, . . . ,hk , stany i , j
Wyj ście: Wartość Mh1,...,hk [i , j]

count := 0
Dla wszystkich x ∈ {0,1}m:

Symuluj Q zaczynając od i na wejściu Gk (x ,h1, . . . ,hk)
Jeśli Q skończył pracę w stanie j to count := count +1

Zwróć Mh1,...,hk [i , j] =count/2m

RL ⊆ SC

Wprowadzenie
Z czego korzystamy

Rozwiązanie problemu

Główny algorytm
Dowody podanych twierdzeń
Symulacja

Procedura COMPUTE

Wejście: Funkcje haszujące h1, . . . ,hk , stany i , j
Wyj ście: Wartość Mh1,...,hk [i , j]

count := 0
Dla wszystkich x ∈ {0,1}m:

Symuluj Q zaczynając od i na wejściu Gk (x ,h1, . . . ,hk)
Jeśli Q skończył pracę w stanie j to count := count +1

Zwróć Mh1,...,hk [i , j] =count/2m

RL ⊆ SC

Wprowadzenie
Z czego korzystamy

Rozwiązanie problemu

Główny algorytm
Dowody podanych twierdzeń
Symulacja

Procedura COMPUTE

Wejście: Funkcje haszujące h1, . . . ,hk , stany i , j
Wyj ście: Wartość Mh1,...,hk [i , j]

count := 0
Dla wszystkich x ∈ {0,1}m:

Symuluj Q zaczynając od i na wejściu Gk (x ,h1, . . . ,hk)
Jeśli Q skończył pracę w stanie j to count := count +1

Zwróć Mh1,...,hk [i , j] =count/2m

RL ⊆ SC

Wprowadzenie
Z czego korzystamy

Rozwiązanie problemu

Główny algorytm
Dowody podanych twierdzeń
Symulacja

Procedura COMPUTE

Wejście: Funkcje haszujące h1, . . . ,hk , stany i , j
Wyj ście: Wartość Mh1,...,hk [i , j]

count := 0
Dla wszystkich x ∈ {0,1}m:

Symuluj Q zaczynając od i na wejściu Gk (x ,h1, . . . ,hk)
Jeśli Q skończył pracę w stanie j to count := count +1

Zwróć Mh1,...,hk [i , j] =count/2m

RL ⊆ SC

	Wprowadzenie
	Znane wyniki
	Co chcemy pokazac

	Z czego korzystamy
	Pomysly
	Notacja

	Rozwiazanie problemu
	Glówny algorytm
	Dowody podanych twierdzen
	Symulacja

