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BPL C SC.

a doktadniej dla wszystkich konstruowalnych S(n) = ©(logn)

BPSPACE (S(n)) C DTISP (2°65(M) s2(n)).
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Twierdzenie (APROKS. OSIAGALNOSC)

Istnieje deterministyczny algorytm rozwigzujacy nastepujacy
problem:

Wejscie: Macierz prawdopodobienstw sgsiedztwa M rozmiaru
n na n, liczba catkowita t i utamek ¢ (t i e sg podane w postaci
unarnej)

Wyj$cie: Macierz A taka ze ||A — M!|| < e.

Algorytm dziata w czasie poly (N) i przestrzeni O(log®N), gdzie
N =n? +t + ¢! jest rozmiarem wejscia.
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Z czego korzystamy

@ Symulacja maszyny BPL przez automat skohczony

o OkreSlone wejscie

e Prawdopodobienstwo osiggniecia stanu akceptujgcego
@ Uniwersalne funkcje haszujace

@ Standardowo okreSlona norma macierzy
@ Generatory pseudolosowe

e Opieraja sie na uniwersalnych funkcjach haszujacych

e Zdefiniowane rekurencyjnie — tatwe wyznaczanie wyniku
porcjami

o Dobra aproksymacja osiggalnosci w DFA
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e Q(D) — macierz n na n taka, ze

Q(D)[i,j] = Prxep[x przechodzi z i do j w Q]
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@ m,k — liczby catkowite > 0, H — rodzina uniwersalnych
funkcji haszujacych h : {0,1}™ — {0,1}™, o — operacja
konkatenaciji

@ Go(x) =x
4] Gk(X,hl,...,hk) =
Gk-1(X,hy, ..., hg 1) 0 Gk_1(he(x), g, ... he 1)

@ hy,...,h € H, Dy, pn, — rozktad prawdopodobienstwa

na Gg (X, hy, ..., hg) przy x z rozktadu jednostajnego

na {0,1}"™, Mp, _h, = Q(Dn,. .n)

@ hy € H jest e-dobradla hy, ..., hx_; jesli
IMZhe_, = Mh ol < e (dlak = 1 mamy Mag = Q(Un))

~~~~~

Kk —
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Gtoéwny algorytm
Dowody podanych twierdzen
Rozwigzanie problemu Symulacja

Glowny algorytm

Zat6zmy, ze mamy dany algorytm rozwiazujgcy nastepujacy
problem:

Wejscie: n-stanowy DFA, liczba catkowita t i utamek ¢ (t i € sg
podane w postaci unarnej)

WyijScie: Liczba catkowita t’ >t i macierz A rozmiaru n nan
taka, ze ||A — Q(Uy)|| < e.

Algorytm dziata w czasie O(n?*¢=%t"log3N), gdzie N jest
catkowitym rozmiarem wejscia.
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OSIAGALNOSC € SC.

Wynika z BPL C SC i z OSIAGALNOSC € RL O
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@ Zbuduj DFA Q:

e Stany gléwne: {<j,i >:1<j<n,0<i <t}

e Stany dodatkowe: binarne drzewo stanéw prowadzace od
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e Ze stanu < j,i > da sie przejsc do stanu < j’,i +1 >z
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@ Wybierz z wyniku podmacierz wyznaczona przez wiersze
postaci < j,0 > i kolumny postaci < j,t >
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Procedura FIND

Wejscie: Funkcje haszujace hq, ..., hg_q1, utamek § >0
Wyjscie: Funkcja haszujaca hy, ktéra jest 6-dobra dla
hy, ..., e
Algorytm:
@ Dla kazdego h € H:
e Dla wszystkich i, ] — stany Q:
@ Policz p1 = Mp,,....n,_,,nli,]] (procedura COMPUTE)
o Policz pz =3 . Mnyn 4 [11Mny,on 4 (1] (20
wywotah COMPUTE)
@ Jesli |p1 — pz| > §/n przejdz do nastepnego h
@ Zwréc hy =h
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Procedura COMPUTE

Wejscie: Funkcje haszujgce hy, ..., hy, stany i, j
Wyjscie: WartoSC My, . p, i, ]]

@ count:=0

@ Dla wszystkich x € {0,1}™:

e Symuluj Q zaczynajac od i na wejsciu G (X, hy, ..., hy)
e Jesli Q skohczyt prace w stanie j to count := count +1

@ Zwro€ M, ., [i,j] =count/2M
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