RL € SC

13 grudnia 2004 roku

Plan

e Wprowadzenie
@ Znane wyniki
@ Co chcemy pokazac

e Z czego korzystamy
@ Pomysty
@ Notacja

e Rozwigzanie problemu
@ Gléwny algorytm
@ Dowody podanych twierdzeh
@ Symulacja

RL C SC

Wprowadzenie TR

Co chcemy pokazac

Znane wyniki

@ Osiggalnosc w grafach skierowanych:

Wprowadzenie TR

Co chcemy pokazac

Znane wyniki

@ Osiggalnosc w grafach skierowanych:
o liniowa przestrzen i czas

Wprowadzenie TR

Co chcemy pokazac

Znane wyniki

@ Osiggalnosc w grafach skierowanych:
o liniowa przestrzen i czas
e przestrzen O(log?n), ale czas nie jest wielomianowy
(Savitch)

Wprowadzenie TR

Co chcemy pokazac

Znane wyniki

@ Osiggalnosc w grafach skierowanych:

o liniowa przestrzen i czas
e przestrzen O(log?n), ale czas nie jest wielomianowy
(Savitch)

@ Osiggalnosc w grafach nieskierowanych:

Wprowadzenie TR

Co chcemy pokazac

Znane wyniki

@ Osiggalnosc w grafach skierowanych:
o liniowa przestrzen i czas
e przestrzen O(log?n), ale czas nie jest wielomianowy
(Savitch)
@ Osiggalnosc w grafach nieskierowanych:
e przestrzeh n¢ i wielomianowy czas

Wprowadzenie TR

Co chcemy pokazac

Znane wyniki

@ Osiggalnosc w grafach skierowanych:
o liniowa przestrzen i czas
e przestrzen O(log?n), ale czas nie jest wielomianowy
(Savitch)
@ Osiggalnosc w grafach nieskierowanych:
e przestrzeh n¢ i wielomianowy czas
e logarytmiczna przestrzeh i wielomianowy czas, ale
zrandomizowany

Woprowadzenie .
P Znane wyniki

Co chcemy pokazac

Co chcemy pokazac

Twierdzenie (OSIAGALNOSC € SC)

Istnieje deterministyczny algorytm rozwigzujacy problem
osiagalnosci w grafach nieskierowanych w czasie
wielomianowym i w przestrzeni O (log?n).

Wprowadzenie Znane wyniki

Co chcemy pokazac

Co chcemy pokazac

Twierdzenie (OSIAGALNOSC € SC)

Istnieje deterministyczny algorytm rozwigzujacy problem
osiagalnosci w grafach nieskierowanych w czasie
wielomianowym i w przestrzeni O (log?n).

Twierdzenie (BPL C SC)

BPL C SC.

Wprowadzenie Znane wyniki

Co chcemy pokazac

Co chcemy pokazac

Twierdzenie (OSIAGALNOSC € SC)

Istnieje deterministyczny algorytm rozwigzujacy problem
osiagalnosci w grafach nieskierowanych w czasie
wielomianowym i w przestrzeni O (log?n).

Twierdzenie (BPL C SC)

BPL C SC.

a doktadniej dla wszystkich konstruowalnych S(n) = ©(logn)

BPSPACE (S(n)) C DTISP (2°65(M) s2(n)).

RL C SC

Wprowadzenie Znane wyniki

Co chcemy pokazac

Co chcemy pokazac

Twierdzenie (APROKS. OSIAGALNOSC)

Istnieje deterministyczny algorytm rozwigzujacy nastepujacy
problem:

Wejscie: Macierz prawdopodobienstw sgsiedztwa M rozmiaru
n na n, liczba catkowita t i utamek ¢ (t i e sg podane w postaci
unarnej)

Wyj$cie: Macierz A taka ze ||A — M!|| < e.

Algorytm dziata w czasie poly (N) i przestrzeni O(log®N), gdzie
N =n? +t + ¢! jest rozmiarem wejscia.

Pomysty
Notacja

Z czego korzystamy

@ Symulacja maszyny BPL przez automat skohczony

Pomysty
Notacja

Z czego korzystamy

@ Symulacja maszyny BPL przez automat skohczony
o OkreSlone wejscie

Pomysty
Notacja

Z czego korzystamy

@ Symulacja maszyny BPL przez automat skohczony

o OkreSlone wejscie
e Prawdopodobienstwo osiggniecia stanu akceptujgcego

Pomysty
Notacja

Z czego korzystamy

@ Symulacja maszyny BPL przez automat skohczony

o OkreSlone wejscie
e Prawdopodobienstwo osiggniecia stanu akceptujgcego

@ Uniwersalne funkcje haszujace

Pomysty
Notacja

Z czego korzystamy

@ Symulacja maszyny BPL przez automat skohczony

o OkreSlone wejscie
e Prawdopodobienstwo osiggniecia stanu akceptujgcego

@ Uniwersalne funkcje haszujace
@ Standardowo okreSlona norma macierzy

Pomysty
Notacja

Z czego korzystamy

@ Symulacja maszyny BPL przez automat skohczony

o OkreSlone wejscie
e Prawdopodobienstwo osiggniecia stanu akceptujgcego

@ Uniwersalne funkcje haszujace

@ Standardowo okreSlona norma macierzy
@ Generatory pseudolosowe

Pomysty
Notacja

Z czego korzystamy

@ Symulacja maszyny BPL przez automat skohczony

o OkreSlone wejscie
e Prawdopodobienstwo osiggniecia stanu akceptujgcego

@ Uniwersalne funkcje haszujace

@ Standardowo okreSlona norma macierzy
@ Generatory pseudolosowe
e Opieraja sie na uniwersalnych funkcjach haszujacych

Pomysty
Notacja

Z czego korzystamy

@ Symulacja maszyny BPL przez automat skohczony

o OkreSlone wejscie
e Prawdopodobienstwo osiggniecia stanu akceptujgcego

@ Uniwersalne funkcje haszujace

@ Standardowo okreSlona norma macierzy
@ Generatory pseudolosowe

e Opieraja sie na uniwersalnych funkcjach haszujacych
e Zdefiniowane rekurencyjnie — tatwe wyznaczanie wyniku
porcjami

Pomysty
Notacja

Z czego korzystamy

@ Symulacja maszyny BPL przez automat skohczony

o OkreSlone wejscie

e Prawdopodobienstwo osiggniecia stanu akceptujgcego
@ Uniwersalne funkcje haszujace

@ Standardowo okreSlona norma macierzy
@ Generatory pseudolosowe

e Opieraja sie na uniwersalnych funkcjach haszujacych

e Zdefiniowane rekurencyjnie — tatwe wyznaczanie wyniku
porcjami

o Dobra aproksymacja osiggalnosci w DFA

RL C SC

Pomysty

Z czego korzystamy Notacja

Notacja

@ Q — automat skohczony o n stanach, i, j — stany Q,
x € {0,1}*, D — rozktad prawdopodobienstwa na {0, 1}*,
t — liczba catkowita

Pomysty

Z czego korzystamy Notacja

Notacja

@ Q — automat skohczony o n stanach, i, j — stany Q,
x € {0,1}*, D — rozktad prawdopodobienstwa na {0, 1}*,
t — liczba catkowita

@ x przechodzi zi doj w Q jesli Q zaczynajac od stanu i na
stowie x dojdzie do stanu |

Pomysty

Z czego korzystamy Notacja

Notacja

@ Q — automat skohczony o n stanach, i, j — stany Q,
x € {0,1}*, D — rozktad prawdopodobienstwa na {0, 1}*,
t — liczba catkowita
@ x przechodzi zi doj w Q jesli Q zaczynajac od stanu i na
stowie x dojdzie do stanu |
e Q(D) — macierz n na n taka, ze

Q(D)[i,j] = Prxep[x przechodzi z i do j w Q]

Pomysty

Z czego korzystamy Notacja

Notacja

@ Q — automat skohczony o n stanach, i, j — stany Q,
x € {0,1}*, D — rozktad prawdopodobienstwa na {0, 1}*,
t — liczba catkowita
@ x przechodzi zi doj w Q jesli Q zaczynajac od stanu i na
stowie x dojdzie do stanu |
e Q(D) — macierz n na n taka, ze

Q(D)[i,j] = Prxep[x przechodzi z i do j w Q]

e U; — rozkfad jednostajny na {0, 1}!

Pomysty

Z czego korzystamy Notacja

Notacja

@ m,k — liczby catkowite > 0, H — rodzina uniwersalnych
funkcji haszujacych h : {0,1}™ — {0,1}™, o — operacja
konkatenaciji

Pomysty

Z czego korzystamy Notacja

Notacja

@ m,k — liczby catkowite > 0, H — rodzina uniwersalnych
funkcji haszujacych h : {0,1}™ — {0,1}™, o — operacja
konkatenaciji

@ Go(x) =x

Pomysty

Z czego korzystamy Notacja

Notacja

@ m,k — liczby catkowite > 0, H — rodzina uniwersalnych
funkcji haszujacych h : {0,1}™ — {0,1}™, o — operacja
konkatenaciji

@ Go(x) =x
4] Gk(X,hl,...,hk) =
Gk-1(X,hy, ..., hg 1) 0 Gk_1(he(x), g, ... he 1)

Pomysty

Z czego korzystamy Notacja

Notacja

@ m,k — liczby catkowite > 0, H — rodzina uniwersalnych
funkcji haszujacych h : {0,1}™ — {0,1}™, o — operacja
konkatenaciji

@ Go(x) =x
4] Gk(X,hl,...,hk) =
Gk-1(X,hy, ..., hg 1) 0 Gk_1(he(x), g, ... he 1)

@ hy,...,h € H, Dy, pn, — rozktad prawdopodobienstwa
na Gg (X, hy, ..., hg) przy x z rozktadu jednostajnego
na{0,1}", My, _h, = Q(Dn, n)

Pomysty

Z czego korzystamy Notacja

Notacja

@ m,k — liczby catkowite > 0, H — rodzina uniwersalnych
funkcji haszujacych h : {0,1}™ — {0,1}™, o — operacja
konkatenaciji

@ Go(x) =x
4] Gk(X,hl,...,hk) =
Gk-1(X,hy, ..., hg 1) 0 Gk_1(he(x), g, ... he 1)

@ hy,...,h € H, Dy, pn, — rozktad prawdopodobienstwa

na Gg (X, hy, ..., hg) przy x z rozktadu jednostajnego

na {0,1}"™, Mp, _h, = Q(Dn,. .n)

@ hy € H jest e-dobradla hy, ..., hx_; jesli
IMZhe_, = Mh ol < e (dlak = 1 mamy Mag = Q(Un))

~~~~~

Kk —

RL C SC



Gtoéwny algorytm
Dowody podanych twierdzen
Rozwigzanie problemu Symulacja

Glowny algorytm

Zat6zmy, ze mamy dany algorytm rozwiazujgcy nastepujacy
problem:

Wejscie: n-stanowy DFA, liczba catkowita t i utamek ¢ (t i € sg
podane w postaci unarnej)

WyijScie: Liczba catkowita t’ >t i macierz A rozmiaru n nan
taka, ze ||A — Q(Uy)|| < e.

Algorytm dziata w czasie O(n?*¢=%t"log3N), gdzie N jest
catkowitym rozmiarem wejscia.




Gtoéwny algorytm
Dowody podanych twierdzen

Rozwigzanie problemu Symulacja

BPL C SC.

@ Zbuduj DFA Q reprezentujacy dziatanie danej maszyny T
na danym wejsciu x




Gtoéwny algorytm
Dowody podanych twierdzen

Rozwigzanie problemu Symulacja

BPL C SC.

@ Zbuduj DFA Q reprezentujacy dziatanie danej maszyny T
na danym wejsciu x
@ Niech t = n bedzie liczba standw Q i niech e = 0.1




Gtoéwny algorytm
Dowody podanych twierdzen

Rozwigzanie problemu Symulacja

BPL C SC.

@ Zbuduj DFA Q reprezentujacy dziatanie danej maszyny T
na danym wejsciu x

@ Niech t = n bedzie liczba standw Q i niech e = 0.1
@ Uruchom gtowny algorytm




Gtoéwny algorytm
Dowody podanych twierdzen

Rozwigzanie problemu Symulacja

BPL C SC.

@ Zbuduj DFA Q reprezentujacy dziatanie danej maszyny T
na danym wejsciu x

@ Niech t = n bedzie liczba standw Q i niech e = 0.1
@ Uruchom gtowny algorytm

@ Wynik dziatania pozwala odpowiedzie¢, czy T akceptuje x
(Zstany akceptujace | A[l,j])

O




Gtoéwny algorytm
Dowody podanych twierdzen

Rozwigzanie problemu Symulacja

BPL C SC.

@ Zbuduj DFA Q reprezentujacy dziatanie danej maszyny T
na danym wejsciu x

@ Niech t = n bedzie liczba standw Q i niech e = 0.1
@ Uruchom gtowny algorytm

@ Wynik dziatania pozwala odpowiedzie¢, czy T akceptuje x
(Zstany akceptujace | A[l,j])

O

OSIAGALNOSC € SC.

Wynika z BPL C SC i z OSIAGALNOSC € RL O




Gtoéwny algorytm
Dowody podanych twierdzen

Rozwigzanie problemu Symulacja

APROKS. OSIAGALNOSC.

@ Zbuduj DFA Q:




Gtoéwny algorytm
Dowody podanych twierdzen

Rozwigzanie problemu Symulacja

APROKS. OSIAGALNOSC.

@ Zbuduj DFA Q:
e Stany gléwne: {<j,i >:1<j<n,0<i <t}




Gtoéwny algorytm
Dowody podanych twierdzen

Rozwigzanie problemu Symulacja

APROKS. OSIAGALNOSC.

@ Zbuduj DFA Q:
e Stany gléwne: {<j,i >:1<j<n,0<i <t}
e Stany dodatkowe: binarne drzewo stanéw prowadzace od
stanu postaci < j,i > do wszystkich stanéw < j’,i +1 >
(dao<i<t)




Gtoéwny algorytm

Dowody podanych twierdzen
Rozwigzanie problemu Symulacja

APROKS. OSIAGALNOSC.

@ Zbuduj DFA Q:

e Stany gléwne: {<j,i >:1<j<n,0<i <t}

e Stany dodatkowe: binarne drzewo stanéw prowadzace od
stanu postaci < j,i > do wszystkich stanéw < j’,i +1 >
(dla0<ic<t)

e Ze stanu < j,i > da sie przejsc do stanu < j’,i +1 >z
prawdopodobienstwem Mj, '] (z doktadnoscia do e/nt)




Gtoéwny algorytm
Dowody podanych twierdzen

Rozwigzanie problemu Symulacja

APROKS. OSIAGALNOSC.

@ Zbuduj DFA Q:

e Stany gléwne: {<j,i >:1<j<n,0<i <t}

e Stany dodatkowe: binarne drzewo stanéw prowadzace od
stanu postaci < j,i > do wszystkich stanéw < j’,i +1 >
(dla0<ic<t)

e Ze stanu < j,i > da sie przejsc do stanu < j’,i +1 >z
prawdopodobienstwem Mj, '] (z doktadnoscia do e/nt)

@ Uruchom gtéwny algorytm




Gtoéwny algorytm
Dowody podanych twierdzen

Rozwigzanie problemu Symulacja

APROKS. OSIAGALNOSC.

@ Zbuduj DFA Q:

e Stany gléwne: {<j,i >:1<j<n,0<i <t}

e Stany dodatkowe: binarne drzewo stanéw prowadzace od
stanu postaci < j,i > do wszystkich stanéw < j’,i +1 >
(dla0<ic<t)

e Ze stanu < j,i > da sie przejsc do stanu < j’,i +1 >z
prawdopodobienstwem Mj, '] (z doktadnoscia do e/nt)

@ Uruchom gtéwny algorytm

@ Wybierz z wyniku podmacierz wyznaczona przez wiersze
postaci < j,0 > i kolumny postaci < j,t >




Gtoéwny algorytm
Dowody podanych twierdzen
Rozwigzanie problemu Symulacja

Glowny algorytm

@ Niech K =logst, § = ¢/(2X), m = 1 + 7logsn — 2logs9,
t’ = m2K,




Gtoéwny algorytm
Dowody podanych twierdzen
Rozwigzanie problemu Symulacja

Glowny algorytm

@ Niech K =logst, § = ¢/(2X), m = 1 + 7logsn — 2logs9,
t’ = m2K,

@ Dlak =1,...,K oblicz hy, ktéra jest 5-dobra dla
hy,...,hx_1 (procedura FIND)




Gtoéwny algorytm
Dowody podanych twierdzen
Rozwigzanie problemu Symulacja

Glowny algorytm

@ Niech K =logst, § = ¢/(2X), m = 1 + 7logsn — 2logs9,
t’ = m2K,

@ Dlak =1,...,K oblicz hy, ktéra jest 5-dobra dla
hy,...,hx_1 (procedura FIND)

@ Dla wszystkich i,j — stany Q oblicz Afi,j] = Mn,.._n,[i,]]
(procedura COMPUTE)




Gtoéwny algorytm
Dowody podanych twierdzen
Rozwigzanie problemu Symulacja

Procedura FIND

Wejscie: Funkcje haszujgce hy, ..., hg_1, utamek 6 > 0
Wyjscie: Funkcja haszujaca hy, ktéra jest 6-dobra dla
hi,...,he_1
Algorytm:
@ Dla kazdego h € H:
e Dla wszystkich i, ] — stany Q:




Gtoéwny algorytm
Dowody podanych twierdzen
Rozwigzanie problemu Symulacja

Procedura FIND

Wejscie: Funkcje haszujgce hy, ..., hg_1, utamek 6 > 0
Wyjscie: Funkcja haszujaca hy, ktéra jest 6-dobra dla
hi,...,he_1
Algorytm:
@ Dla kazdego h € H:
e Dla wszystkich i, ] — stany Q:
@ Policz p1 = Mp,,....n,_,,nli,]] (procedura COMPUTE)




Gtoéwny algorytm
Dowody podanych twierdzen
Rozwigzanie problemu Symulacja

Procedura FIND

Wejscie: Funkcje haszujgce hy, ..., hg_1, utamek 6 > 0
Wyjscie: Funkcja haszujaca hy, ktéra jest 6-dobra dla
hi,...,he_1
Algorytm:
@ Dla kazdego h € H:
e Dla wszystkich i, ] — stany Q:

@ Policz p1 = Mp,,....n,_,,nli,]] (procedura COMPUTE)
@ Policz p; = Zstany | Mhl ~~~~~ hk—lﬁ? l]Mhl ~~~~~ hk71[|7” @n
wywotah COMPUTE)




Gtoéwny algorytm
Dowody podanych twierdzen
Rozwigzanie problemu Symulacja

Procedura FIND

Wejscie: Funkcje haszujace hq, ..., hg_q1, utamek § >0
Wyjscie: Funkcja haszujaca hy, ktéra jest 6-dobra dla
hy, ..., e
Algorytm:
@ Dla kazdego h € H:
e Dla wszystkich i, ] — stany Q:
@ Policz p1 = Mp,,....n,_,,nli,]] (procedura COMPUTE)
o Policz pz =3 . Mnyn 4 [11Mny,on 4 (1] (20
wywotah COMPUTE)
@ Jesli |p1 — pz| > §/n przejdz do nastepnego h




Gtoéwny algorytm
Dowody podanych twierdzen
Rozwigzanie problemu Symulacja

Procedura FIND

Wejscie: Funkcje haszujace hq, ..., hg_q1, utamek § >0
Wyjscie: Funkcja haszujaca hy, ktéra jest 6-dobra dla
hy, ..., e
Algorytm:
@ Dla kazdego h € H:
e Dla wszystkich i, ] — stany Q:
@ Policz p1 = Mp,,....n,_,,nli,]] (procedura COMPUTE)
o Policz pz =3 . Mnyn 4 [11Mny,on 4 (1] (20
wywotah COMPUTE)
@ Jesli |p1 — pz| > §/n przejdz do nastepnego h
@ Zwréc hy =h

RL C SC



Gtoéwny algorytm
Dowody podanych twierdzen
Rozwigzanie problemu Symulacja

Procedura COMPUTE

Wejscie: Funkcje haszujgce hy, ..., hy, stany i, j

Wyjscie: WartoSC My, . p, i, ]]

@ count:=0




Gtoéwny algorytm
Dowody podanych twierdzen
Rozwigzanie problemu Symulacja

Procedura COMPUTE

Wejscie: Funkcje haszujgce hy, ..., hy, stany i, j
Wyjscie: WartoSC My, . p, i, ]]

@ count:=0
@ Dla wszystkich x € {0,1}™:




Gtoéwny algorytm
Dowody podanych twierdzen
Rozwigzanie problemu Symulacja

Procedura COMPUTE

Wejscie: Funkcje haszujgce hy, ..., hy, stany i, j
Wyjscie: WartoSC My, . p, i, ]]

@ count:=0
@ Dla wszystkich x € {0,1}™:
e Symuluj Q zaczynajac od i na wejsciu G (X, hy, ..., hy)




Gtoéwny algorytm
Dowody podanych twierdzen
Rozwigzanie problemu Symulacja

Procedura COMPUTE

Wejscie: Funkcje haszujgce hy, ..., hy, stany i, j

Wyjscie: WartoSC My, . p, i, ]]

@ count:=0
@ Dla wszystkich x € {0,1}™:

e Symuluj Q zaczynajac od i na wejsciu G (X, hy, ..., hy)
e Jesli Q skohczyt prace w stanie j to count := count +1




Gtoéwny algorytm
Dowody podanych twierdzen
Rozwigzanie problemu Symulacja

Procedura COMPUTE

Wejscie: Funkcje haszujgce hy, ..., hy, stany i, j
Wyjscie: WartoSC My, . p, i, ]]

@ count:=0

@ Dla wszystkich x € {0,1}™:

e Symuluj Q zaczynajac od i na wejsciu G (X, hy, ..., hy)
e Jesli Q skohczyt prace w stanie j to count := count +1

@ Zwro€ M, ., [i,j] =count/2M




	Wprowadzenie
	Znane wyniki
	Co chcemy pokazac

	Z czego korzystamy
	Pomysly
	Notacja

	Rozwiazanie problemu
	Glówny algorytm
	Dowody podanych twierdzen
	Symulacja


