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I (Silna) Teza Church’a
I Co to znaczy ’zasoby’ i ’fizyczna maszyna liczaca’ ?
I Dlaczego obliczenia kwantowe ?
I Dlaczego akurat faktoryzacja liczb i problem dyskretnego

logarytmu ?
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fizyczne właściwości: położenie, pęd, ładunek elektryczny
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podanie jej wektora stanu tzn. zbioru liczb opisujących jej
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I Stan każdej cząstki opisuje się jednoznacznie poprzez
podanie jej wektora stanu tzn. zbioru liczb opisujących jej
fizyczne właściwości: położenie, pęd, ładunek elektryczny
itp.

I Stan układu to po prostu podanie wektora stanu
zawierającego opis wszystkich cząstek

I Mając podany wektor stanu układu oraz jego równanie
ruchu (hamiltonian) możemy powiedzieć wszystko o jego
przyszłości i przeszłości.

I Bardzo dobrze sprawdza się w przypadku ’dużych’ zjawisk
fizycznych.



Stan układu - Fizyka kwantowa
I Stanu cząstki nie znamy z całkowitą pewnością - znamy

natomiast rozkład prawdopodobieństwa stanów, opisujemy
go za pomocą wektora stanu. Jest to wektor z pewnej
zespolonej przestrzeni liniowej (Hilberta) postaci:

p1|s1〉+ p2|s2〉+ · · ·+ pn|sn〉,
o jednostkowej długości. si są to możliwe stany układu,
a p2

i prawdopodobieństwa ich zaobserwowania, a więc:
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a p2
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I Obserwacja układu powoduje jego ’uklasycznienie’.
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I Aby móc przeprowadzać obliczenia kwantowe, musimy
mieć możliwość wpływania na stan układu.

I Prawa fizyki kwantowej pozwalają tylko na przekształcenia
odwracalne. Wygodnym sposobem ich opisu jest macierz
unitarna (jej sprzężenie jest równe jej transpozycji), która
określa dla każdego stanu układu, prawdopodobieństwo
znalezienia się w superpozycji innych stanów.

I Przykład. Rozważmy transformacje:
|00〉 → |00〉 |01〉 → |01〉
|10〉 → 1√

2
(|10〉+ |11〉) |11〉 → 1√

2
(|10〉 − |11〉)

Macierzą tego przekształcenia jest:

1 0 0 0
0 1 0 0
0 0 1√

2
1√
2

0 0 1√
2
− 1√

2
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I To otrzymamy układ w stanie:

1
2
(|10〉+ |11〉)− 1

2
(|10〉 − |11〉) = |11〉

I Zauważmy, że zaszła tutaj interferencja
prawdopodobieństw - jest to bardzo ważna cecha tych
transformacji - to jest najbardziej istotne źródło mocy
obliczeń kwantowych.

I Transformacje można oczywiście składać - reprezentujemy
je jako iloczyn tensorowy macierzy.
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logicznych - np. dzięki odwracalnemu odpowiednikowi
bramki NAND (bramka Toffoli’ego), która działa na trzech
bitach i zamienia ostatni bit jeśli pierwsze dwa są 1.
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I Chcemy umieć przechodzić od |b,0〉 do |0,bc (mod n)〉

gdzie gcd(c,n) = 1.
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I Dane n,x ,r - oblicz x r (mod n).
I Idea algorytmu - znana wszystkim.
I Jednak pojawiają się problemy związane

z odwracalnością.
I Chcemy umieć przechodzić od |b,0〉 do |0,bc (mod n)〉

gdzie gcd(c,n) = 1.
I Możemy przejść odwracalnie |b,0〉 → |b,bc (mod n)).
I A także |0,bc (mod n)〉 → |bcc−1 (mod n),bc (mod n)) =
|b (mod n),bc (mod n))

I A więc możemy najpierw wykonać pierwsze przejście,
a potem odwrócone drugie i otrzymamy to o co nam
chodzi.

I Jest jeszcze kwestia błedów w obliczeniach.



Kwantowa transformata Fouriera

I Chcemy móc transformować w czasie wielomianowym:

|a〉 → 1

q
1
2

q−1∑

c=0

|c(2Πiac/q)

(0¬ a ¬ q)
przyjmijmy, że q = 2l i liczbę a reprezentujemy jako stan
|al−1 · · ·a0〉.

I Rozbijemy cała transformację (której macierz ma wykładniczy
rozmiar) na lokalne transformacje:

Rj operująca na j- tym bicie:
1√
2

1√
2

1√
2
− 1√

2



Kwantowa transformata Fouriera cd.

I oraz Sj,k , operujący na bitach j < k :
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 exp(iµk−j)

gdzieµk−j =
Π

2k−j .



Kwantowa transformata Fouriera cd.

I oraz Sj,k , operujący na bitach j < k :
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 exp(iµk−j)

gdzieµk−j =
Π

2k−j .

I Aplikujemy je w porządku:
Rl−1Sl−2,l−1Rl−2Sl−3,l−1Sl−3,l−2Rl−3 · · ·R1S0,l−1S0,l−2 · · ·

S0,2S0,1R0;
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Obliczanie rzędu elementu, a faktoryzacja

I Dane n, x , oblicz najmniejsze takie r , że x r = 1 (mod n).
I Jeśli potrafimy znajdować szybko rząd elementu to (o ile n

nie jest potęgą liczby pierwszej) z dużym
prawdopodobieństwem, r będzie parzysty i:
(x r/2 − 1)(x r/2 + 1) = x r − 1 = 0 (mod n) będzie
rozkładało nietrywialnie n.
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I Będziemy mieli jeden rejestr (mod q) i drugi (mod n) oraz
jeden rejestr roboczy.

I Zaczynamy od jednostajnego rozkładu
prawdopodobieństwa:
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q
1
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q−1∑

a=0

|a,0〉

osiągamy to poprzez aplikowanie do każdego bitu
transformacji |ai〉 → 1√

2
(|0〉+ |1〉).

I podnosimy do potęgi

1

q
1
2

q−1∑

a=0

|a, xa (mod n)〉
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I stosujemy transformatę Fouriera
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I stosujemy transformatę Fouriera

1
q

q−1∑

a=0

q−1∑

c=0

exp(2Πiac/q)|c, xa (mod n)〉

I i patrzymy na liczbę zapisaną w pierwszym rejestrze - z dużym
prawdopodobieństwem będzie ona taka, że:

|c
q
− d

r
| ¬ 1

2q
.



Algorytm cd.

I stosujemy transformatę Fouriera

1
q

q−1∑

a=0

q−1∑

c=0

exp(2Πiac/q)|c, xa (mod n)〉

I i patrzymy na liczbę zapisaną w pierwszym rejestrze - z dużym
prawdopodobieństwem będzie ona taka, że:

|c
q
− d

r
| ¬ 1

2q
.

I szukamy teraz rozwinięcia c
q do pierwszego takiego reduktu,

którego mianownik jest mniejszy od n. Z dużym
prawdopodobieństwem to jest r .
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1
p − 1

p−2∑

a=0

p−2∑

b=0

|a,b,gax−b(mod p)〉

I stosujemy transformatę Fouriera na pierwszy i drugi rejestr
(osobno) otrzymując dla |a,b〉 stan:

1
q

q−1∑

c=0

q−1∑

d=0

exp(2Πi/q(ac + bd))|c,d〉
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I czyli całość jest w stanie:

1
p − 1

p−2∑

a,b=0

q−1∑

c,d=0

exp(2Πi/q(ac + bd))|c,d ,gax−b(mod p)〉



Algorytm cd.

I czyli całość jest w stanie:

1
p − 1

p−2∑

a,b=0

q−1∑

c,d=0

exp(2Πi/q(ac + bd))|c,d ,gax−b(mod p)〉

I i patrzymy na liczby |c,d , y〉 w rejestrach i zaokrąglamy d
q

do najbliższej wielokrotności 1
p−1 i dzielimy (mod p − 1)

przez

c′ =
c(p − 1)− c(p − 1)q

q

otrzymując z dużym prawdopodobieństwem r .



Czemu nie mamy (jeszcze) komputerów kwantowych

I rozstrojenie układu kwantowego
I precyzja przekształceń
I zbudowanie układu n-poziomowego (na razie) wymaga

wykładniczej ilości kubitów
I problemy NP-zupełne
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