Peter W. Shor - Polynomial-Time Algorithms
for Prime Factorization and Discrete
Logarithms on a Quantum Computer.

19 listopada 2004 roku



Wstep czyli (proba) odpowiedzi na pewne pytania

» (Silna) Teza Church’a



Wstep czyli (préba) odpowiedzi na pewne pytania

» (Silna) Teza Church’a
» Co to znaczy ’zasoby’ i 'fizyczna maszyna liczaca’ ?



Wstep czyli (préba) odpowiedzi na pewne pytania

» (Silna) Teza Church’a
» Co to znaczy ’zasoby’ i 'fizyczna maszyna liczaca’ ?
» Dlaczego obliczenia kwantowe ?



Wstep czyli (préba) odpowiedzi na pewne pytania

» (Silna) Teza Church’a
» Co to znaczy 'zasoby’ i 'fizyczna maszyna liczaca’ ?
» Dlaczego obliczenia kwantowe ?

» Dlaczego akurat faktoryzacja liczb i problem dyskretnego
logarytmu ?
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Stan kazdej czastki opisuje sie jednoznacznie poprzez
podanie jej wektora stanu tzn. zbioru liczb opisujacych jej
fizyczne wtasciwosci: potozenie, ped, tadunek elektryczny
itp.

Stan uktadu to po prostu podanie wektora stanu
zawierajgcego opis wszystkich czgstek

Majac podany wektor stanu ukfadu oraz jego rownanie
ruchu (hamiltonian) mozemy powiedzie¢ wszystko o jego
przysztosci i przesztosci.

Bardzo dobrze sprawdza sie w przypadku ‘duzych’ zjawisk
fizycznych.
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» Stan uktadu sktadajacego sie z n kubitéw definiujemy
poprzez podanie wektora stanu w 2" — 1 wymiarowe;j
przestrzeni.

» Wszystkie transformacje uktadu kwantowego muszg by¢é
odwracalne.

» Obserwacja uktadu powoduje jego 'uklasycznienie’.
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» Prawa fizyki kwantowej pozwalajg tylko na przeksztatcenia
odwracalne. Wygodnym sposobem ich opisu jest macierz
unitarna (jej sprzezenie jest rowne jej transpozyciji), ktéra
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1 0 O 0
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gop J 0 0 75 7
oo L -1
V2 V2
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» Przyktad. Transformacja:

|00) — |00) |01) — |01)

[10) — J5(|10) + [11))  [11) — J5(|10) — [11))
» Jesli teraz nasz uktad jest w stanie:

)
E(HW - 11))

i zadziatamy na niego powyzszg transformacja
» To otrzymamy ukfad w stanie:

1 1
5([10) +[11)) = 5(|10) — [11)) = [11)

» Zauwazmy, ze zaszta tutaj interferencja
prawdopodobienstw - jest to bardzo wazna cecha tych
transformaciji - to jest najbardziej istotne zrédto mocy
obliczen kwantowych.

» Transformacje mozna oczywiscie sktada¢ - reprezentujemy
je jako iloczyn tensorowy macierzy.
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» Dane n,x,r - oblicz x" (mod n).

» |dea algorytmu - znana wszystkim.

» Jednak pojawiajg sie problemy zwigzane
z odwracalnoscia.

» Chcemy umie¢ przechodzi¢ od |b, 0) do |0, bc (mod n))
gdzie ged(c,n) = 1.

» Mozemy przej$¢ odwracalnie |b,0) — |b, bc (mod n)).

» A takze |0, bc (mod n)) — |bec™' (mod n), bc (mod n)) =
|b (mod n), bc (mod n))

» A wiec mozemy najpierw wykonac pierwsze przejscie,
a potem odwrécone drugie i otrzymamy to o co nam
chodzi.

» Jest jeszcze kwestia bteddéw w obliczeniach.



Kwantowa transformata Fouriera

» Chcemy méc transformowac¢ w czasie wielomianowym:

q—1

1 :
|a) — — Y _ |c(2lliac/q)
g2 c=0
(0<a<q)
przyjmijmy, ze g = 2! i liczbe a reprezentujemy jako stan
laj—1-- - ao).

» Rozbijemy cata transformacje (ktérej macierz ma wyktadniczy
rozmiar) na lokalne transformacije:
1 1
L
5

R; operujgca na j- tym bicie:

N



Kwantowa transformata Fouriera cd.

» oraz S;, operujgcy na bitach j < k:

1 0 O 0

010 0 gdzie ,_;=
0O 0 1 0 -
0 0 0 exp(ik)



Kwantowa transformata Fouriera cd.

> oraz S;, operujgcy na bitach j < k:

1 0 O 0
0 1 0 0 ,
0 0 1 0 gdZ|e k—j = %

0 0 O exp(i kfj)
» Aplikujemy je w porzadku:

Ri_1S1—2,1-1R—25/-3,1-1S/-3,/—2R1—3--- R1 S0, 1-1S0,1—2 - - -

So,250,1Ro;
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» Dane n, x, oblicz najmniejsze takie r, ze x" =1 (mod n).
» Jesli potrafimy znajdowaé szybko rzad elementu to (o ile n
nie jest potegq liczby pierwszej) z duzym
prawdopodobienstwem, r bedzie parzysty i:
(x"/2 —1)(x"/2 +1) = x* — 1 =0 (mod n) bedzie
rozktadato nietrywialnie n.
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» Bedziemy mieli jeden rejestr (mod q) i drugi (mod n) oraz
jeden rejestr roboczy.

» Zaczynamy od jednostajnego rozkfadu
prawdopodobienstwa:

1
1 Z ‘aa 0>
g2 a=0
osiggamy to poprzez aplikowanie do kazdego bitu

transformacji |a;) — %(\m + [1)).
» podnosimy do potegi

1
— > _la,x? (mod n))
gz a—o
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Algorytm cd.

» stosujemy transformate Fouriera

q—1qg-1

q > ) exp(2lliac/q)|c, x* (mod n))
a=0c=0

» i patrzymy na liczbe zapisang w pierwszym rejestrze - z duzym
prawdopodobienstwem bedzie ona taka, ze:

c d 1
- 1< 5
q r 2q

» szukamy teraz rozwiniecia g do pierwszego takiego reduktu,
ktérego mianownik jest mniejszy od n. Z duzym
prawdopodobienstwem to jest r.
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Algorytm

» Dane p, x, g, znajdz takie r, ze g" = x(mod p).

» Znajdujemy takie g = 2/, ze p < g < 2p. Bedziemy mieli
dwa rejestry (mod p — 1) i jeden (mod p).

» Zaczynamy od jednostajnego rozktadu
prawdopodobienstwa po wszystkich a i b, a nastepnie
obliczamy g@x—?(mod p) w trzecim rejestrze:

p—2p-2

—ZZ|ang (mod p))

a=0 b=0

» stosujemy transformate Fouriera na pierwszy i drugi rejestr
(osobno) otrzymujac dla |a, b) stan:

g—1qg-—1

1 > ) exp(21li/q(ac + bd))|c, d)
qc:Od:O



Algorytm cd.

» czyli catos¢ jest w stanie:

p—2 g-1

Z Z exp(211i/q(ac + bd))|c, d, g?x~P(mod p))
AD=0 c.dm



Algorytm cd.

» czyli catos¢ jest w stanie:

1 p—2 qg—1
—— > ) exp(2li/q(ac + bd))|c, d, g°x P (mod p))
P a,b=0 ¢,d=0

» i patrzymy na liczby |c, d, y) w rejestrach i zaokraglamy g
do najblizszej wielokrotnosci p%1 i dzielimy (mod p—1)
przez

o cp—1)—clp—1),
q
otrzymujac z duzym prawdopodobienstwem r.




Czemu nie mamy (jeszcze) komputeréw kwantowych

» rozstrojenie uktadu kwantowego

> precyzja przeksztatcen

» zbudowanie uktadu n-poziomowego (na razie) wymaga
wyktadniczej ilosci kubitow

» problemy NP-zupetne
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