
Information Processing Letters 75 (2000) 243–246

A fast algorithm for computing large Fibonacci numbers

Daisuke Takahashi
Department of Information and Computer Sciences, Saitama University, 255 Shimo-Okubo, Urawa-shi, Saitama 338-8570, Japan

Received 13 March 2000; received in revised form 19 June 2000
Communicated by K. Iwama

Abstract

We present a fast algorithm for computing large Fibonacci numbers. It is known that the product of Lucas numbers algorithm
uses the fewest bit operations to compute the Fibonacci numberFn. We show that the number of bit operations in the
conventional product of Lucas numbers algorithm can be reduced by replacing multiplication with the square operation. 2000
Elsevier Science B.V. All rights reserved.

Keywords:Program derivation; Fibonacci numbers

1. Introduction

Many algorithms for computing Fibonacci numbers
have been well studied [11,12,5,8,4,3,7,9,2]. It is
known that the product of Lucas numbers algorithm
uses the fewest bit operations to computeFn [2].

In this paper, we present a fast algorithm for com-
puting large Fibonacci numbers. This algorithm is
based on the product of Lucas numbers algorithm [9,
2]. The conventional product of Lucas numbers algo-
rithm uses multiplication and square operation. In gen-
eral, it is known that the number of bit operations used
to square ann-bit number is less than that used to mul-
tiply two n-bit numbers. Thus, the number of bit op-
erations in the conventional product of Lucas numbers
algorithm can be reduced by replacing multiplication
with the square operation.

E-mail address:daisuke@ics.saitama-u.ac.jp (D. Takahashi).

1.1. Fibonacci and Lucas numbers

We define the Fibonacci numbers as

F0= 0, F1= 1,

Fn+2= Fn+1+Fn, n> 0. (1)

The Lucas numbers are defined as

L0= 2, L1= 1,

Ln+2= Ln+1+Ln, n> 0. (2)

We also have the formulas

Fn = α
n − βn
α − β , (3)

Ln = αn + βn, (4)

whereα = (1+√5)/2 andβ = (1−√5)/2.
We will useγ n to represent the number of bits inFn

whereγ = log2α ≈ 0.69424 sinceFn is asymptotic to
αn/5 [2].

0020-0190/00/$ – see front matter 2000 Elsevier Science B.V. All rights reserved.
PII: S0020-0190(00)00112-5



244 D. Takahashi / Information Processing Letters 75 (2000) 243–246

1.2. Multiplication and square operations

It is known that multiplication ofn-bit numbers can
be performed in O(n logn log logn) bit operations by
using the Schönhage–Strassen algorithm [10] which
is based on the fast Fourier transform (FFT) [1]. In
multiplication of many thousand bits or more, FFT-
based multiplication is the fastest.

In this paper, we use FFT-based multiplication for
computing large Fibonacci numbers. We denote the
number of bit operations used to multiply twon-
bit numbers asM(n), and the number of bit opera-
tions used to square ann-bit number asS(n). Also,
we assumeM(n) = O(n logn log logn) and S(n) =
O(n logn log logn). In general, we haveS(n)6M(n).

From

ab= (a + b)
2− (a − b)2

4

we haveM(n)6 2S(n).
Then, we have

1
2M(n)6 S(n)6M(n).

In FFT-based multiplication and square operations,
computation of FFTs consumes the most computa-
tion time. Although three FFTs are needed to multi-
ply two n-bit numbers, only two FFTs are needed to
square ann-bit number. Therefore we assumeS(n)≈
2
3M(n) in FFT-based multiplication and square opera-
tions.

Since the number of bit operations used to add/sub-
tract twon-bit numbers is O(n) and the number of bit
operations used to multiply/divide ann-bit number by
an O(1)-bit number is also O(n), no consideration of
these is made in this paper.

2. Conventional product of Lucas numbers
algorithm

Cull and Holloway [2] presented the product of
Lucas numbers algorithm.

The identity

F2k = FkLk (5)

follows directly from (3) and (4).
From (4),

fib (n)

f ← 1
l← 3
for i = 2 to log2n− 1
f ← f ∗ l
l← l ∗ l − 2

f ← f ∗ l
return f

Fig. 1. Conventional product of Lucas numbers algorithm [2].

L2k = α2k + β2k

= (αk + βk)2− 2(αβ)k

=L2
k − 2 · (−1)k. (6)

We can computeF2i [2] by

F2i =
i−1∏
j=0

L2j . (7)

The conventional product of Lucas numbers algo-
rithm to computeFn (n = 2i , i > 2) is shown in
Fig. 1. One multiplication and one square operation
are needed in the conventional product of Lucas num-
bers algorithm in each iteration.

The number of bit operations used by the conven-
tional product of Lucas numbers algorithm is as fol-
lows:

T (n)=
log2n−1∑
i=2

(
M(γ · 2i−1)+ S(γ · 2i−1)

)
+M(γ · n/2)6 4

3M(γn). (8)

3. Presented product of Lucas numbers algorithm

In this section, we show that the number of bit op-
erations in the conventional product of Lucas numbers
algorithm can be reduced by replacing multiplication
with the square operation.

The identities

Fn+m = 1
2(FnLm + FmLn), (9)

Ln+m = 1
2(LnLm + 5FnFm) (10)

follow from (3) and (4).
Then, the identities

Fk+1= 1
2(Fk +Lk), (11)



D. Takahashi / Information Processing Letters 75 (2000) 243–246 245

fib (n)

f ← 1
l← 3
for i = 2 to log2n− 1

temp← f ∗ f
f ← (f + l)/2
f ← 2∗ (f ∗ f )− 3∗ temp− 2
l← 5∗ temp+ 2

f ← f ∗ l
return f

Fig. 2. Presented product of Lucas numbers algorithm.

Lk+1= 1
2(5Fk +Lk)
= Fk+1+ 2Fk (12)

follow from (9) and (10).
From (3) and (4),

L2
k = (αk + βk)2

= 5

(
αk − βk
α − β

)2

+ 4(αβ)k

= 5F 2
k + 4 · (−1)k. (13)

Then, the identity

F2k = FkLk
= (Fk +Lk)

2− (F 2
k +L2

k)

2

= (Fk +Lk)
2− (F 2

k + 5F 2
k + 4 · (−1)k)

2
= 2F 2

k+1− 3F 2
k − 2 · (−1)k (14)

follows from (5), (11) and (13).
Furthermore, the identity

L2k = 5F 2
k + 2 · (−1)k (15)

follows from (6) and (13).
Since F 2

k is a number that should be computed
in (14) and (15), the multiplication ofF2k = FkLk will
be substantially obtained from the calculation ofF 2

k+1.
That is, we can computeF 2

k+1 instead ofFkLk .
The presented product of Lucas numbers algorithm

to computeFn (n = 2i , i > 2) is shown in Fig. 2.
In the algorithm shown in Fig. 2, although a pair of
Fibonacci and Lucas numbers is calculated in thefor
loop, we need onlyFn after thefor loop. Therefore
we use (5) instead of (14) after thefor loop.

Table 1
Comparison between operation counts in each iteration of the
product of Lucas number algorithms

Conventional Presented

Multiplication 1 0

Square 1 2

The number of bit operations used by the presented
product of Lucas numbers algorithm is as follows:

T (n)=
log2n−1∑
i=2

2S(γ · 2i−1)+M(γ · n/2)

6 7
6M(γn). (16)

Table 1 compares the number of operations in each
iteration of the product of Lucas numbers algorithms.
We note that the presented algorithm requires only two
square operations in each iteration.

We conclude that our algorithm is better than the
conventional product of Lucas numbers algorithm if
S(n) <M(n).

To computeFn for arbitrary n, we can use the
binary method for exponentiation [6]. We need four
numbers:Fk+1, Lk+1, F2k , and L2k where k > 0.
These numbers can be obtained from (11), (12), (14),
and (15).

As with the algorithm in Fig. 2, although a pair
of Fibonacci and Lucas numbers is calculated in the
for loop, we need onlyFn finally. If n is even, we
can use (5) to computeF2k wherek = n/2. On the
other hand, ifn is odd, we need a number ofF2k+1

where k = bn/2c. We have derived a formula for
computingF2k+1 in terms ofFk+1 andLk with one
multiplication:

F2k+1= 1
2(F2k +L2k)

= 1
2

(
FkLk +L2

k − 2 · (−1)k
)

= Fk+1Lk − (−1)k. (17)

The product of Lucas numbers algorithm to com-
puteFn for arbitraryn is presented in Fig. 3. Some
additions, subtractions, multiplications by 2 and divi-
sions by 2 are added to this algorithm compared with
the presented algorithm shown in Fig. 2.



246 D. Takahashi / Information Processing Letters 75 (2000) 243–246

fib (n)

if n= 0 return 0
else if n= 1 return 1
else if n= 2 return 1
else
f ← 1
l← 1
sign←−1
mask← 2blog2nc−1

for i = 1 to blog2nc − 1
temp← f ∗ f
f ← (f + l)/2
f ← 2∗ (f ∗ f )− 3∗ temp− 2∗ sign
l← 5∗ temp+ 2∗ sign
sign← 1
if (n& mask) 6= 0

temp← f

f ← (f + l)/2
l← f + 2∗ temp
sign←−1

mask←mask/2
if (n& mask)= 0
f ← f ∗ l

else
f ← (f + l)/2
f ← f ∗ l − sign

return f

Fig. 3. Presented product of Lucas numbers algorithm to compute
Fn for arbitraryn.

References

[1] J.W. Cooley, J.W. Tukey, An algorithm for the machine
calculation of complex Fourier series, Math. Comput. 19
(1965) 297–301.

[2] P. Cull, J.L. Holloway, Computing Fibonacci numbers quickly,
Inform. Process. Lett. 32 (1989) 143–149.

[3] M.C. Er, Computing sums of order-k Fibonacci numbers in log
time, Inform. Process. Lett. 17 (1983) 1–5.

[4] M.C. Er, A fast algorithm for computing order-k Fibonacci
numbers, Comput. J. 26 (1983) 224–227.

[5] D. Gries, G. Levin, Computing Fibonacci numbers (and
similarly defined functions) in log time, Inform. Process.
Lett. 11 (1980) 68–69.

[6] D.E. Knuth, The Art of Computer Programming, Vol. 2:
Seminumerical Algorithms, Addison-Wesley, Reading, MA,
1997.

[7] A.J. Martin, M. Rem, A presentation of the Fibonacci algo-
rithm, Inform. Process. Lett. 19 (1984) 67–68.

[8] A. Pettorossi, Derivation of an O(k2 logn) algorithm for
computing order-k Fibonacci numbers from the O(k3 logn)
matrix multiplication method, Inform. Process. Lett. 11 (1980)
172–179.

[9] M. Protasi, M. Talamo, On the number of arithmetical opera-
tions for finding Fibonacci numbers, Theoret. Comput. Sci. 64
(1989) 119–124.

[10] A. Schönhage, V. Strassen, Schnelle Multiplikation grosser
Zahlen, Computing (Arch. Elektron. Rechnen) 7 (1971) 281–
292.

[11] J. Shortt, An iterative program to calculate Fibonacci numbers
in O(logn) arithmetic operations, Inform. Process. Lett. 7
(1978) 299–303.

[12] F.J. Urbanek, An O(logn) algorithm for computing thenth
element of the solution of a difference equation, Inform.
Process. Lett. 11 (1980) 66–67.


