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Abstract

The thesis is devoted to polynomial time approximation algorithms for a few NP-hard
discrete optimization problems that model real-world issues such as clustering and
multiwinner elections.

Multiwinner elections and clustering problems have very similar settings. Our goal
in both is to choose a fixed number of objects among a finite set of alternatives. We
want to optimize the function of distances/disagreement between input points/voters
and cluster centers/winners.

We exploit similarities and explore the differences in order to understand when
efficient algorithms in one model can be useful in another. The main contributions of
the thesis are the following algorithms and proofs of their approximation factors:

1. The first polynomial time constant-factor approximation algorithm for the OR-
DERED k-MEDIAN problem. The constant achieved is equal to 38 + € for any
e > 0. This improves the previous best O(logn)-approximation achieved by
Aouad and Segev [7].

2. The first polynomial time constant-factor approximation algorithm for the RECT-
ANGULAR ORDERED k-MEDIAN problem. The constant achieved is equal to
15. The previous best approximation was O(logn) [7].

3. The first polynomial time constant-factor approximation for the HARMONIC
k-MEDIAN problem in general spaces (not only metric). The constant is up-
perbounded by 2.36. To the best of our knowledge this is the first natural
variant of k-MEDIAN that has constant-factor approximation without assuming
the triangle inequality.

4. The first PTAS (polynomial time approximation scheme) for the MINIMAX AP-
PROVAL VOTING problem. This improves the previous best 2-approximation [39].

5. A parameterized approximation scheme for MINIMAX APPROVAL VOTING pa-
rameterized by the value d of an optimal solution. The running time is upper-
bounded by (3/€)?(nm)°WY. Tt is essentially optimal assuming the Exponential
Time Hypothesis due to Cygan et al. [56]. The parameterized approximation
scheme allows us to construct a faster PTAS for MINIMAX APPROVAL VOTING.

We believe that the ideas and algorithm analysis techniques developed in this
thesis will be useful in further work on approximation algorithms. We also hope our
results will stimulate more interdisciplinary research on relations between clustering
problems and multiwinner elections.
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Keywords: approximation algorithms, linear programming, LP-rounding, parame-
terized algorithms, clustering, k-median, facility location, multiwinner election, pro-
portional approval voting, minimax approval voting, computational social choice



Streszczenie

Rozprawa doktorska jest po$wiecona algorytmom aproksymacyjnym rozwigzujacym
wybrane NP-trudne problemy optymalizacji dyskretnej w czasie wielomianowym.

Rozwazane problemy obliczeniowe modeluja zagadnienia znane z przemystowych
i spotecznych zastosowan: klastrowanie oraz wybér wielu zwyciezcéw. W obu rodza-
jach problemow naszym celem jest wybranie okreslonej liczby obiektéw sposrod skoric-
zonego zbioru alternatyw; przy tym wyborze kierujemy si¢ optymalizowaniem pewnej
funkcji odlegtosci (niezadowolenia) pomiedzy punktami danych (gtosujacymi), a cen-
trami klastrow (zwyciezcami).

W trakcie pracy nad nowymi algorytmami rozwazaliSmy powyzsze podobienstwa,
jak i réznice pozwalajace lepiej zrozumieé, kiedy algorytmy efektywne dla jednego za-
gadnienia moga by¢ uzyteczne tekze w drugim. Gléwnym wktadem tej rozprawy dok-
torskiej jest konstrukcja ponizej wymienionych algorytmow oraz analiza ich wspotezyn-
nikéw aproksymacji:

1. Pierwszy algorytm o stalym wspoétczynniku aproksymacji dla problemu OR-
DERED k-MEDIAN. Osiagnigta stata wynosi 38 4 € dla dowolnego ¢ > 0. W
ten spos6b poprawiliSmy poprzedni najlepszy wspotcezynnik aproksymacji, ktory
wynosit O(logn), a zostal osiagniety przez Aouada oraz Segeva [7].

2. Pierwszy algorytm o statym wspotczynniku aproksymacji dla problemu RECT-
ANGULAR ORDERED k-MEDIAN. Osiagnieta stala wynosi 15. Poprzedni na-
jlepszy wspétezynnik aproksymacji wynosit O(logn) [7].

3. Pierwszy algorytm o stalym wspotezynniku aproksymacji dla problemu HAR-
MONIC k-MEDIAN w ogélnych przestrzeniach (nie tylko metrycznych). Osiag-
nieta stala jest ograniczona z gory przez 2.36. Zgodnie z nasza wiedzg jest
to pierwszy naturalny wariant problemu k-MEDIAN, ktory potrafimy aproksy-
mowac ze staltym wspotezynnikiem bez zaktadania nieréwnosci trojkata.

4. Pierwszy schemat aproksymacji wielomianowej (PTAS) dla problemu MINIMAX
APPROVAL VOTING. Poprzedni najlepszy wspdtczynnik aproksymacji osiag-
niety przez Caragiannisa i innych autoréw [39] wynosit 2.

5. Schemat aproksymacji w czasie parametryzowanym dla problemu MINIMAX
APPROVAL VOTING parametryzowanego warto$cia optymalnego rozwigzania,
ktéra oznaczamy d. Czas dzialania jest ograniczony z géry przez (3/¢€)%?(nm)°W,
Cygan i inni autorzy [56] pokazali, Zze zasadniczo jest to najszybszy tego typu

ix



algorytm przy zalozeniu Hipotezy Czasu Wyktadniczego. Skonstruowany algo-
rytm pomogt nam w opracowaniu szybszego schematu aproksymacji wielomi-
anowej dla MINIMAX APPROVAL VOTING.

Wierzymy, ze uzyte pomysty i techniki analizy algorytmow zawarte w tej rozprawie
beda uzyteczne w dalszych pracach nad algorytmami aproksymacyjnymi. Mamy
rowniez nadzieje, ze nasze wyniki beda stymulowaly nastepne badania nad relacjami
pomiedzy problemami klastrowania oraz wyborami wielu zwycigzcow.

Stowa kluczowe: algorytmy aproksymacyjne, programowanie liniowe, zaokraglanie

rozwigzan programow liniowych, algorytmy parametryzowane, klastrowanie, k-median,
umiejscawianie fabryk, wybory wielu zwyciezcéw, proportional approval voting, min-

imax approval voting, obliczeniowa teoria wyboru spotecznego
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Chapter 1

Introduction

“All models are wrong but some are useful”. This sentence was stated by British
statistician George Box in the late '70s [24]. There is a lot of motivation for research
on mathematical modelling because of practical needs. Unfortunately, modelling
complex systems can be too difficult and therefore often we do so by using only a
few mathematical formulas and making strong assumptions. Mathematical models
are often just a simplification and idealization of a system or natural phenomena that
one wants to understand and simulate. As a consequence, it seems to be clear that all
models are wrong as they do not describe the complexity of a problem exactly as it
is in reality. On the other hand, depending on the purpose of the modelling, a model
can be less or more accurate, i.e., useful.

Mathematical optimization is useful in modelling different issues in economics,
mechanics, civil engineering, operations research, machine learning, etc. Choosing a
proper optimization problem that models a real-world optimization issue is a crucial
step. Once the problem is chosen, there are two primarily questions one can ask:
how to find an optimal solution and how effectively (quickly) can it be done? Here
computer science can provide some help. Computer science is not about choosing a
proper model and making fair assumptions, but it focuses on effective solving and
understanding the structure of computational problems.

Computing an optimal solution may need a lot of computational resources (time,
memory, etc.). Computational complexity theory (a subfield of computer science)
studies the hardness of finding solutions to computational problems. For example, it
has been proven that many fundamental optimization problems like the MAXIMUM
SATISFIABILITY PROBLEM, the TRAVELLING SALESMAN PROBLEM and the MAXI-
MUM CLIQUE PROBLEM are NP-hard [51, 93, 105], i.e., they are at least as hard as
any problem contained in a complexity class called NP (Nondeterministic Polynomial
time) [8]. NP-hard problems cannot be solved in time polynomial in the input size,
assuming P # NP. Indeed, it is widely believed that P # NP [76]. The “P versus
NP” problem stated by Stephen Cook [51] seems to be the most important open
problem in computer science. It is one of the Millennium Prize Problems listed by
Clay Mathematics Institute in 2000 [40]. The institute funds a prize of 1 milion US
dollars for the discoverer(s). For more about computational complexity theory see a
classical book of Arora and Barak [8].
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In recent years researchers in computational complexity theory intensively ex-
amine the answers to the questions: how good solution can we find using limited
computational resources? There is a tradeoff between the quality of the solution and
the running time of finding it. We say that an algorithm A is an a-approximation
algorithm for a minimization problem P if for any instance J of P we have

cost(A(J)) < a- OPT(J),

where cost(+) is an objective function of P, A(J) is a solution returned by an algorithm
A and OPT(J) is the value of an optimal solution to an instance J. We are focused on
polynomial time approximation algorithms (unless we state otherwise) as polynomial
time algorithms are seen to be efficient.

a-approximation algorithm gives a solution that is at most « times worse than an
optimal solution. « is called the approximation ratio or the approximation factor and
in general, a can be a function of an instance’s parameters. The closer «a to 1, the
better. Achieving an approximation ratio equal to a constant is often a primarly goal
because then the quality of a solution is independent of the input size. The secondary
goal is to have the constant as small as possible. Ideally if we can get a polynomial
time approximation scheme (PTAS) that is an algorithm which takes any € > 0 (as an
additional input) and returns (1 + €)-approximate solution in time polynomial in the
input size. Note that there can be any dependence on € in the running time, i.e., it
can be exponential in 1/e. For more about approximation algorithms see for example
the book by Williamson and Shmoys [148].

The main issue considered in this thesis is computing in polynomial time an ap-
proximation of an optimal solution to a few NP-hard discrete optimization problems
that model real-world issues such as clustering and multiwinner elections.

Clustering

Clustering a given set of objects into k groups that display a certain internal proximity
is a profound combinatorial optimization setting. In a typical setup, we represent the
objects as points in a metric space and evaluate the quality of the clustering by a
certain function of distances within the clusters. There are many objective functions
and assumptions considered dependent on the application. In a centroid based model
of clustering, every cluster has a center. Probably the best known centroid clustering
problem is the k-MEANS problem [85, 141] which objective function is to minimize
the sum of squared distances from objects to their cluster centers. If the objective
is to minimize the sum of the distances to a cluster center, we call the resulting
optimization problem k-MEDIAN [46, 79, 80, 91]. If the objective is to minimize the
maximal distance to a cluster center, then we talk about the k-CENTER problem [79,
82].

Facility Location

The setting of clustering is similar to facility location problems [14, 72] which have
as a goal opening facilities (centers) that serve the clients (demands). Each possible



facility location has price for opening a facility. It can model the cost of building a
service center. After opening a set of facilities, a client is served by their closest open
facility and the cost of service is equal to the distance between them (cost of transport
can be modeled as a linear function of distance). The objective function in the
UNCAPACITATED FACILITY LOCATION problem [14, 53, 135] is to minimize the sum of
total connection (service) cost and total opening cost. Adding one more assumption,
i.e., capacities of the facilities (the number of clients that can be served simultanously
by a particular facility) we get a problem called CAPACITATED FACILITY LOCATION
(CFL) [123]. We can use CFL to model locating hospitals, schools or warehouses
which have limited capacity.

Multiwinner Elections

Clustering problems such as k-MEDIAN, k-MEANS or k-CENTER can be seen as
multiwinner elections in which we want to choose exactly k winners (cluster centers)
from a set of candidates. In many multiwinner election rules, our goal is to minimize
the function of dissatisfaction (corresponding to distance) over voters (corresponding
to data points). Indeed, k-MEDIAN problem corresponds to a minimization variant
of the well known Chamberlin-Courant voting rule [45] in which we care only about
utility to its closest winning candidate.

Approximation algorithms for many election rules have been extensively studied
in the literature. In the world of single-winner rules, there are already very good
approximation algorithms known for the Kemeny rule [2, 52, 96] which minimizes the
sum of the Kendall’s tau distances' [94, 95] and for the Dodgson rule [37, 38, 68, 83,
114] which minimizes the number of swaps needed to achieve a Condorcet winner,
i.e., a candidate that wins all pairwise comparisons with all the other candidates [21,
59]. A hardness of approximation has been proven for the Young rule [37]. For
the multiwinner case we know good (randomized) approximation algorithms for the
Chamberlin-Courant rule [137], the Monroe rule [137], or the maximization variant
of PROPORTIONAL APPROVAL VOTING [136].

Using approximation and randomized algorithms for finding winners of elections
requires some comment because their outcome can be non-optimal and additionally
it can be different for different random bits. While using approximation or ran-
domization in domains similar to political elections may appear controversial, mul-
tiwinner elections have much more diverse applications—such applications include
aggregating preferences of individual agents [50], finding a set of results a search en-
gine should display [64], recommending a set of products a company should offer to
its customers [111, 112], allocating shared resources among agents [117, 136], solving
variants of segmentation problems [98], or even improving genetic algorithms [70].

However, even for political elections, the use of approximation algorithms is a
promising direction. One approach is to view an approximation algorithm as a new,
full-fledged voting rule. Indeed, SEQUENTIAL PROPORTIONAL APPROVAL VOT-
ING [147], that was used briefly in Sweden during the early 1900s [12], is a greedy

I Also called “bubble sort” distance as it measures similarity of two ranking lists by the number
of pairwise disagreements.
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algorithm that gives an approximate solution to PROPORTIONAL APPROVAL VOT-
ING. For more discussion and examples of approximation algorithms as full-fledged
voting rules we refer to the following papers [12, 37, 38, 65, 137].

The use of randomized algorithms in multiwinner elections has been advocated
in the literature as well—e.g., one can arrange an election where each participant is
allowed to suggest a winning committee, and the best out of the suggested committees
is selected; in such case the approximation guaranty of the algorithm corresponds to
the quality of the outcome of elections. For a more detailed discussion see the work
of Skowron et al. [137].

Finally, randomized and approximation algorithms seem to be well justified for
high-frequency decisions [11], e.g., online scheduling or online systems.

Relations Between Multiwinner Elections and Clustering Problems

The same objects are given different names in different research areas such as: op-
erations research, artificial intelligence or social choice theory. Computational issues
in the just mentioned research areas formed new interdisciplinary research topics,
i.e., combinatorial optimization [134], machine learning [4] and computational social
choice [28, 66] respectively. In Table 1.1 we systematize terminology mentioned previ-
ously and which will be used interchangeably in this thesis. The purpose of Table 1.1
is to highlight problems considered in this thesis that come from different research
fields but have similar settings. Some entries are debatable, for example many voting
rules for multiwinner elections do not define representants of particular candidates.
The table is not complete and obviously there are some simplifications. For example,
in clustering and facility location problems it is almost always assumed that objects lie
in a metric space. This assumption is too strong for multiwinner elections, although
often instances are restricted in other ways, for example, every voter defines the util-
ity of choosing particular candidates assigning rates from a fixed set of rates. In the
Borda rule [150] a voter define bijection between set of rates {m —1,m —2,...,1,0}
and all the candidates®. The space defined is not necessarily metric but has another
useful structure.

In the discussion above, we do not claim that the models from different fields are
the same. In fact they reflect different purposes of introducing these models. We are
going to take advantage of the similarities of the models to provide solutions used
successfully in different areas. From the other side, the differences are explored in
order to understand why efficient solutions in one model do not work well for another.

2In fact the rates in the Borda rule follows directly from the orders over candidates. Each voter
gives his or her preference order over all candidates. Each candidate gets as many points as many
candidates are below in the preference orders. This means the top candidate wins with m — 1 other
candidates, the second top candidate wins with m — 2 other candidates, etc.



1.1. MAIN CONTRIBUTIONS )

combinatorial | machine computational
optimization learning social choice
problem facility location | (centroid) multiwinner
name clustering elections
object facility potential candidate/item
to be chosen cluster center
input object client/demand data point voter /agent
measure connection cost | distance function | dissatisfaction/utility
object chosen | open facility cluster center winner
group of clients served by | cluster voters represented
similar objects | the same facility by the same winner
size capacity max. size of max. number of
upper bound a cluster represented voters

Table 1.1: Objects considered in this thesis have different names in different
research fields. Each column contains terminology used in a particular research
area.

1.1 Main Contributions

The main contributions of the thesis are the following algorithms and proofs of their
approximation factors.

1. The first polynomial time constant-factor approximation algorithm for the OR-
DERED k-MEDIAN problem. The constant achieved is equal to 38 + € for any
e > 0. This improves the previous best O(logn)-approximation achieved by
Aouad and Segev [7].

2. The first polynomial time constant-factor approximation algorithm for the RECT-
ANGULAR ORDERED k-MEDIAN problem. The constant achieved is equal to
15. The previous best approximation was O(logn) [7].

3. The first polynomial time constant-factor approximation for the HARMONIC
k-MEDIAN problem in general spaces (not only metric). The constant is up-
perbounded by 2.36. To the best of our knowledge this is the first natural
variant of k-MEDIAN that has constant-factor approximation without assuming
the triangle inequality.

4. The first PTAS (polynomial time approximation scheme) for the MINIMAX AP-
PROVAL VOTING problem. This improves the previous best 2-approximation [39].

5. A parameterized approximation scheme for MINIMAX APPROVAL VOTING pa-
rameterized by the value d of an optimal solution. The running time is upper-
bounded by (3/€)?(nm)°M. It is essentially optimal assuming the Exponential
Time Hypothesis due to Cygan et al. [56]. The parameterized approximation
scheme allows us to construct a faster PTAS for MINIMAX APPROVAL VOTING.
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Developed algorithmic techniques might be of independent interest as they can
be useful in further work on approximation algorithms. Also we hope our results will
stimulate more interdisciplinary research on relations between clustering problems
and multiwinner elections.

1.2 Outline

This thesis is organized as follows. In Section 1.3, we introduce the problems consid-
ered in the thesis. In each subsection, we formally define problems, give the motiva-
tion, describe related works and state the main theorems of the thesis. We also sum-
marize the ideas that led us to our solutions and give intuitions behind our algorithms.
This should be enough for understanding the main problems solved, techniques used
and overall contribution. Formal and detailed proofs for each of the theorems are
contained in Chapters 2-4. In Section 1.4, we point out research papers in which the
results of the thesis have appeared. In Chapter 5, we conclude the thesis by final
remarks and we state open questions for further work.

1.3 Problems Considered

In this section we define problems formally, give motivation for studying them, point
out related works and state the main results of the thesis. For full proofs we refer to
Chapters 2-4 but here we summarize the main ideas used in the proofs.

1.3.1 ORDERED k-MEDIAN

k-MEDIAN and k-CENTER® are two approaches to clustering that represent two ex-
trems in their dependence on the variance between the indiviual connection costs in
the evaluated solution. They are defined as follows.

k-MEDIAN
Input:
F: a set of facilities, |F| = m,
C: a set of clients, |C| = n,
k: a positive integer as the number of facilities to open,
¢ a metric cost function, ¢: (FUC) x (FUEC) — Rxy.

Notation:
¢;(W) = min;ew ¢;j, for W C F, j € €, is the smallest connection cost of j
to a facility in W.
Output: A set W C JF,|W| = k that minimizes the sum of connection costs:

> (W),

jee

3We note that k-CENTER is often defined as a clustering problem, i.e., § = C is assumed [82].
k-SUPPLIER is a more general problem in which F and € can be different [148].
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k-SUPPLIER (k-CENTER)
Input: The same as in k-MEDIAN.
Output: A set W C F,|W| = k that minimizes the mazimal connection cost:

max ¢; (W).

We study a generalization of both k-MEDIAN and k-CENTER, called the ORDERED
k-MEDIAN problem, where the connection costs are sorted non-increasingly and a
non-increasing weight vector is applied to flexibly penalize the desired fraction of the
highest costs.

ORDERED k-MEDIAN
Input: The same as in k-MEDIAN, and additionally
w = (wy, ..., w,): anon-increasing weight vector, w; > 0.
Notation:
(W) = (¢;7(W) : 1 < j < n) is a non-increasing vector of elements from
{¢j(W) : j € C}, where WC F.
Output: A set W C F,|W| = k that minimizes the total connection cost:

Z w;j - 07 (W).
=1

We consider metric cost functions because the non-metric cost function does not
allow us to obtain any non-trivial approximation (unless P = NP).

Works Related to ORDERED k-MEDIAN.

The ORDERED k-MEDIAN problem generalizes many fundamental clustering and
location problems [9, 31, 46, 82, 86, 107, 145, 146] such as k-MEDIAN, k-CENTER
problems, the k-CENTDIAN problem where the objective is a convex combination of
the k-MEDIAN and the k-CENTER objective, or the k-FACILITY ¢-CENTRUM problem
where the objective accounts for the ¢ highest connection costs. The ordered median
objective function has also been considered in robust optimization [17, 18, 19, 129]
and multi-objective optimization [73]. For a comprehensive overview we refer the
reader to the books [101, 121] on ORDERED k-MEDIAN problems and to dedicated
works [25, 119, 120, 124].

The generality of ORDERED k-MEDIAN renders it intriguing from the compu-
tational perspective [7]. For example, whereas k-MEDIAN and k-CENTER can be
solved efficiently on trees by dynamic programming, such approaches seem to fail
for ORDERED k-MEDIAN due to the lack of separability properties [130]. Regarding
approximability in general metric spaces, constant-factor approximation algorithms
are long known for k-MEDIAN [46] and k-CENTER [82]. In contrast, even develop-
ing constant-factor approximations for ORDERED k-MEDIAN with seemingly simple
topologies such as trees turned out to be non-trivial [7]. In particular, due to the
non-linearity of the objective function there seems to be no obvious way to apply
tools such as metric tree embeddings [7, 15]. Not even non-trivial super-constant ap-
proximability results were known for ORDERED k-MEDIAN until very recently, when
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Aouad and Segev [7] were able to devise an O(logn) approximation algorithm for
the problem using a sophisticated local-search approach and the concept of surrogate
models.

To demonstrate the highly non-local and dependent structure of the objective
function, note that even if the clusters are given, the selection of the cluster centers
cannot be made solely on a per-cluster basis but depends on the decision in other
clusters due to the ranking of distances in the objective.

Due to the above-outlined difficulties in obtaining algorithmic results for the gen-
eral problem, structural properties of continuous network spaces have been stud-
ied [61, 67, 127, 132] where facilities may be placed at interior points on edges,
single-facility models [62, 67, 89, 120], and multi-facility models on special topologies
such as trees [88, 129, 145]. Furthermore, integer programming formulations [119],
branch-and-bound methods [22, 126], heuristics [60, 100, 125, 140], and related lo-
cation models [128, 130] have been studied. For a survey on the topic we refer the
reader to [121].

Below, we list approximability results for certain specific objective functions that
fall under the framework of ORDERED k-MEDIAN or closely related and where ap-
proximability has been studied for general metrics.

Approximation Algorithms for k-MEDIAN, k-CENTER, and k-MEANS.

k-MEDIAN admits constant-factor approximations via local-search [9], or a direct
rounding of the standard LP [48]. The current best ratio of (2.675+¢) [31] is obtained
by combining a primal-dual algorithm [86], and a nontrivial rounding of a so-called
bi-point solution based on preprocessing introduced in [107].

The situation with the k-CENTER setting is simpler. A simple 2-approximation
is obtained via guessing the longest connection distance in the optimal solution [82],
and this is tight assuming P # NP (the result holds when & = €). In the setting
F # € (called k-SUPPLIER) the Hochbaum and Shmoys method [82] gives a tight 3-
approximation [148]. Notably, by contrast to the k~-MEDIAN setting, the most natural
LP for k-CENTER has unbounded integrality gap.

Also k-MEANS admits a constant-factor approximation. The (9+¢)-approximation
local search algorithm for EUCLIDEAN k-MEANS [90] can be shown to provide 25-
approximation in general metrics. The recent work of Ahmadian et al. [1] decreases
these ratios to 6.357 and 9 + ¢, respectively.

Approximation Algorithms for Further Specific Objective Functions.

A special case of ORDERED k-MEDIAN that we call the RECTANGULAR ORDERED
k-MEDIAN problem was considered by Tamir [145] (who called it k-FAcILITY /-
CENTRUM). In this setting, we have to open exactly k facilities and the objective
function is just a sum of ¢ largest client connection costs. We state the problem
formally as follows.
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RECTANGULAR ORDERED k-MEDIAN (k-FACILITY ¢(-CENTRUM)
Input: The same as in ORDERED k-MEDIAN with the following restriction:
w; = 1 for i < /¢ and w; = 0 otherwise, for some ¢ € {1,2,... n}.

Output: A set W C F,|W| = k that minimizes the total connection cost:

Note that RECTANGULAR ORDERED k-MEDIAN with £ = 1 and ¢ = n is equiv-
alent to k-CENTER and k-MEDIAN respectively. Tamir [145] gives polynomial time
algorithms that solve the problem (optimally) on path and tree graphs. Obtaining
a constant-factor approximation for RECTANGULAR ORDERED k-MEDIAN, however,
has been an open problem [7, 145].

One should also notice at least two further, very recent works combining the k-
CENTER objective and the k-MEDIAN objective. First, Alamdari and Shmoys [3]
considered a bicriteria approximation algorithm for the k-CENTER and k-MEDIAN
problems, i.e., the objective function is a linear combination of two objectives that are
maximal connection cost in use and sum of all used connection costs. This problem
is known as k-CENTDIAN [146]. They obtained polynomial time bicriteria approxi-
mation of (4,8), where the first factor is in respect to the k-CENTER objective and
the second factor is in respect to the k-MEDIAN objective. (Alamdari and Shmoys
note, however, that the two problems k-MEDIAN and k-CENTER are not approx-
imable simultaneously.) Also k-CENTDIAN is a special case of ORDERED k-MEDIAN.
The second recent work combining the k-MEDIAN and the k-CENTER objective is the
work of Haris et al. [81] who propose a method to select k facilities that determinis-
tically guarantees each client to have a connection within a certain fixed radius but
also provides a stronger per client bound on cost expectation.

Our Results and Techniques

Our main result is the first constant-factor approximation algorithm for the OR-
DERED k-MEDIAN problem (Theorem 16) which improves the previous best O(logn)-
approximation [7].

Theorem 16. For any € > 0, there exists a randomized algorithm for ORDERED

k-MEDIAN that computes expected (38 + €)-approzimate solution in polynomial time
(specifically (nm)00/clos(1/e) ),

We are not aware of an LP relaxation for ORDERED k-MEDIAN with bounded
integrality gap. In our approach we guess a reduced cost function roughly mimicking
the weighting of distances in an optimum solution and solve the natural LP relaxation
for k~~-MEDIAN under this reduced cost function (rather than under the original met-
ric). Subsequently, we round this solution via a dependent LP rounding process by
Charikar and Li [48] for k-MEDIAN operating on the original (unweighted) metrics.

The challenge and our main technical contribution consists in analyzing the ap-
proximation performance of this approach. In the original analysis of Charikar and
Li [48] for the k-MEDIAN objective, a per-client bound on the expected connection cost
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of this client with respect to its fractional connection cost is established. The global
approximation ratio is then obtained by linearity of expectation. The above-described
non-linear, ranking-based character of the objective of ORDERED k-MEDIAN poses
an obstacle to apply an analogous reasoning also in our more general setting as the
actual weight that is applied to the connection cost of a client depends highly on the
(random) connection costs of the other clients.

We use four key ingredients to overcome this technical hurdle.

First, we show in Theorem 5 that the algorithm provides a constant-factor ap-
proximation for rectangular weight vectors.

Theorem 5. There exists a randomized algorithm for RECTANGULAR ORDERED
k-MEDIAN that computes expected 15-approximate solution in polynomial time.

This already answers the open problem stated in [3, 7]. In our analysis, the
connection cost of a single client is partly charged to a deterministic budget related to
a combinatorial bound based on guessing, and partly to a probabilistic budget whose
expected value is bounded with respect to the fractional LP-solution. This approach
allows us to limit the above-described problematic effect of the variance of individual
client connection costs on the value of the ordered objective function of ORDERED
k-MEDIAN.

Second, we show a surprising modularity of Charikar and Li’s rounding process
(Lemma 11). The solution computed by this process can be related to the above-
mentioned combinatorial and fractional bounds simultaneously with respect to all
rectangular objectives. This property is oblivious to the objective with respect to
which the input fractional solution was optimized.

Third, we decompose an arbitrary non-increasing weight vector into a convex com-
bination of rectangular objectives. The aforementioned modularity property provides
a bound for each of those objectives. We show that those bounds nicely combine
to a global bound on the approximation ratio giving a constant-factor approximation
with respect to a combinatorial bound and a fractional bound both under the original,
general weight objective.

Theorem 13. Let J be an instance of ORDERED k-MEDIAN with a constant number
of different weights in w. There exists a randomized algorithm for ORDERED k-
MEDIAN on J that computes expected 38-approximate solution in polynomial time.

A straightforward application of this approach incorporating weight bucketing
gives only a quasi-polynomial time algorithm (Theorem 15) due to the guessing part.

Theorem 15. For any € > 0, there exists a randomized algorithm for ORDERED k-
MEDIAN that computes expected 38(1 + €)-approzimate solution in quasi-polynomial
time (specifically (nm)°Uo81+™) ),

To achieve a truly polynomial time algorithm we apply a clever distance bucketing
approach by Aouad and Segev [7], which guesses for each distance bucket the average
weight applied to this bucket by some optimal solution. Our analysis approach applies
also to this more intricate setting but turns out technically more involved.



1.3. PROBLEMS CONSIDERED 11

Relation to the Works of Chakrabarty and Swamy [41, 43], [42, 44].

Soon after the submission of our paper [35, 36], Chakrabarty and Swamy [41, 43]
announced constant-factor approximation algorithms for RECTANGULAR ORDERED
k-MEDIAN and also for ORDERED k-MEDIAN. The result for RECTANGULAR OR-
DERED k-MEDIAN appears to be obtained independently. Instead of the LP-rounding
process of Charikar and Li [48], they either use a primal-dual approach or a black-box
reduction to k-MEDIAN.

A few months later Chakrabarty and Swamy [42, 44] improved an approximation
constant for ORDERED k-MEDIAN to 5+ €. One of the crucial differences is designing
a deterministic LP-rounding procedure while we constructed a randomized one.

1.3.2 HARrRMONIC k-MEDIAN and OWA k-MEDIAN

We introduce a general unified framework for two classes of problems: (i) extensions
of the k-MEDIAN problem, where clients care about having multiple facilities in their
vicinity, and (ii) finding winning committees according to a number of well-known,
but hard-to-compute multiwinner election rules. Let us first formalize our framework
defining the OWA k-MEDIAN problem.

In the OWA k-MEDIAN problem we have the same input as in k-MEDIAN and also
our goal is to choose a k-subset of facilities. The difference is in the objective function:
in k-MEDIAN the cost of a client depends only on the closest opened facility, but in
ORDERED k-MEDIAN the cost depends on all open facilities. Following Yager [149],
we use ordered weighted average (OWA) operators to define the cost of a client for a

bundle of k facilities W. Formally, let w* = (w¥,...,wF) be a non-increasing vector
of k weights. We define the w*-cost of a client j for a k-size set of facilities W as
wh(W, 7) = S8 whe;7 (W, 5), where ¢ (W, 5) is a non-decreasing permutation of the

costs of client j for the facilities from W. Informally speaking, the highest weight is
applied to the lowest cost, the second highest weight to the second lowest cost, etc.
In this thesis we study the following computational problem.

OWA k-MEDIAN
Input:
JF,C, k,c: the same as in k-MEDIAN, but a cost function c: F x € — Ry
can be general (not necessarily metric),

wh = (wh, ..., wy): a non-increasing weight vector, w¥ > 0.

Notation:
W, j) = (e (W, j),...,cx (W, J)) is a non-decreasing permutation of
the costs from {¢;;: i € W} for j € Cand W C F, |W| = k.
Output: A set W C F,|W| = k that minimizes the total connection cost:

SN whe (W, ).

jeei=1

We stress the differences with the definition of ORDERED k-MEDIAN. Here wF is a

vector of k elements (in contrast to w that has n elements). In OWA k-MEDIAN the



12 CHAPTER 1. INTRODUCTION

vector of weights w* is applied to a sorted vector of k& connection costs of a particular
client j to all open facilities W. In ORDERED k-MEDIAN each client is connected only
to the closest open facility, hence we consider n connection costs that are multiplied
by a vector w of n elements. In OWA k-MEDIAN we consider general cost functions
(not necessarily metric).

Note that OWA k-MEDIAN in a metric space with weights (1,0, ...,0) is exactly
the k-MEDIAN problem. We are specifically interested in the following two sequences
of weights:

(1) harmonic: (1,1/2,1/3,...,1/k). By the HARMONIC k-MEDIAN problem we denote
the OWA k-MEDIAN problem with the harmonic vector of weights.

kfl)

(2) p-geometric: (1,p,p?,...,p" 1), for some p < 1.

The two aforementioned sequences of weights, harmonic and p-geometric, have their
natural interpretations, which we discuss later on (for instance, see Examples 1 and 2).

In the following two subsections we discuss the applicability of the studied model
in two settings: multiwinner elections and clustering/facility location.

Multiwinner Elections

Different variants of the OWA k-MEDIAN problem are very closely related to the
preference aggregation methods and multiwinner election rules studied in the compu-
tational social choice, in particular, and in Al, in general—we summarize this relation
in Table 1.2 and in Figure 1.1. In particular, one can observe that each “median”
problem is associated with a corresponding “winner” problem. Let us now explain
the differences between the winner (“election”) and the median (“centroid clustering”)
problems:

1. The election problems are usually formulated as maximization problems, where
instead of (negative) costs we have (positive) utilities. The two variants, the
minimization (with costs) and the maximization (with utilities) have the same
optimal solutions. Yet, there is a substantial difference in their approximability.

Approximating the minimization variant is usually much harder. For instance,
consider the Chamberlin-Courant (CC) rule which is defined by using the se-
quence of weights (1,0, ...,0). In the maximization variant standard arguments
can be used to prove that a greedy procedure yields the approximation ratio
of (1 —1/e). This stands in sharp contrast to the case when the same rule is
expressed as the minimization one; in such a case we cannot hope for virtually
any approximation [137]. Approximating the minimization variant is also more
desired. E.g., a /2-approximation algorithm for (maximization) CC can effec-
tively ignore half of the population of voters, whereas it was argued [137] that
a 2-approximation algorithm for the minimization (if existed) would be more
powerful. In this thesis we study the harder minimization variant, and give
the first constant-factor approximation algorithm for the minimization OWA-
Winner with the harmonic weights.
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centroid clustering
problem

multiwinner
election rule

comment

13

OWA k-MEDIAN
(this thesis)

OWA-Winner [1306]

Thiele methods [147]

Finding winners according to OWA-Winner
rules is the maximization variant of OWA k-
MEDIAN (utilities instead of costs).

Thiele methods are OWA-Winner rules for
binary costs.

PROPORTIONAL PAV is the maximization variant of HAR-
HARMONIC k-MEDIAN .
(this thesis) APPROVAL VOTING | MONIC k-MEDIAN and in PAV we assume
(PAV) [147] additionally binary costs.

k-MEDIAN
[79, 80, 91]

Chamberlin—Courant
(CC) [45]

In CC, usually some specific form of utilities
is assumed—different utilities have been con-
sidered, but always in the maximization vari-

ant (utilities instead of costs).

Table 1.2: The relation between clustering problems and the corresponding mul-
tiwinner election problems studied in AI, in particular in the computational social
choice community.

The relationship between the
considered models. OWA k-MEDIAN is the
most general model. PROPORTIONAL AP-
PROVAL VOTING and HARMONIC k-MEDIAN
due to the use of harmonic weights can be
viewed as natural extensions of the well-
known and commonly used D’Hondt method
of apportionment [30].

OWA k-MEDIAN Figure 1.1:

HARMONIC k-MEDIAN
(harmonic weights)

PROPORTIONAL APPROVAL VOTING
(0-1 costs)

d’Hondt method
(approvals for a single party)

2. In clustering problems it is usually assumed that the costs satisfy the triangle
inequality. This relates to the previous point: since the problem cannot be well
approximated in the general setting, one needs to make additional assumptions.
One of our main results is showing that there is a k-median problem (HARMONIC
k-MEDIAN) that admits a constant-factor approximation without assuming that
the costs satisfy the triangle inequality; to the best of our knowledge this is the
first known result of this kind.

The special case of HARMONIC k-MEDIAN where each cost belongs to the binary
set {0,1} is equivalent to finding winners according to PROPORTIONAL APPROVAL
VOTING (PAV). The harmonic sequence (1,1/2,1/3, ... 1/k) is in a way exceptional:
indeed, PAV can be viewed as an extension of the well-known D’Hondt method of
apportionment (used for electing parliaments in many contemporary democracies) to
the case where the voters can vote for individual candidates rather than for politi-
cal parties [30]. Further, PAV satisfies several other appealing properties, such as
extended justified representation [12]. This is one of the reasons why we are specif-
ically interested in the harmonic weights. For more discussion on PAV and other
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approval-based rules, we refer the reader to the survey of Kilgour [97].

OWA k-MEDIAN as an Extension of k-MEDIAN

Intuitively, our general formulation extends k-MEDIAN to scenarios where the clients
not only use their most preferred facilities, but when there exists a more complex
relationship of “using the facilities” by the clients. Similar intuition is captured by
the FAULT TOLERANT version of the k-MEDIAN problem introduced by Swamy and
Shmoys [143] and recently studied by Hajiaghayi et al. [78]. There, the idea is that
the facilities can be malfunctioning, and to increase the resilience to their failures each
client needs to be connected to several of them. The FAULT TOLERANT k-MEDIAN
problem is defined as follows.

FAULT TOLERANT k-MEDIAN
Input: The same as in k-MEDIAN, and additionally
rj: a positive integer as the connectivity requirement of client j € C, r; < k.
Notation:
r;(W): the sum of r; largest values from {¢;;: i € W} for
jeCand WC F |W| =k.
Output: A set W C F,|W| = k that minimizes the total connection cost:

> ri(W).

jee

When the values (7;)jce are all the same, i.e., if r; = r for all j, then FAULT
TOLERANT k-MEDIAN is called the r-FAULT TOLERANT k-MEDIAN problem and
it can be expressed as OWA k-MEDIAN for the weight vector w* with 7 ones fol-
lowed by k — r zeros. Yet, in the typical setting of k-MEDIAN problems one assumes
that the costs between clients and facilities behave like distances, i.e., that they
satisfy the triangle inequality. Indeed, the (2.675+ €)-approximation algorithm for k-
MEDIAN [31], the 93-approximation algorithm for FAULT TOLERANT k-MEDIAN [78§],
the 2-approximation algorithm for k-CENTER [82], and the (9 + €)-approximation al-
gorithm for k-MEANS [1], they all use the triangle inequality. Moreover it can be
shown by straightforward reductions from the SET COVER problem that there are
no constant factor approximation algorithms for all these settings with general (non-
metric) connection costs unless P = NP.

Using harmonic or geometric OWA weights is also well-justified in case of facility
location problems, as illustrated by the following examples.

Example 1 (Harmonic weights: proportionality). Assume there are { < k cities, and
fori € {1,2,...,0} let N; denote the set of clients who live in the i-th city. For the
sake of simplicity, let us assume that k - |N;| is divisible by n. Further, assume that
the cost of traveling between any two points within a single city is negligible (equal
to zero), and that the cost of traveling between different cities is equal to one. Our
goal is to decide in which cities the k facilities should be opened; naturally, we set
the cost of a client for a facility opened in the same city to zero, and—in another
city—to one. Let us consider the HARMONIC k-MEDIAN problem. Let n; denote the



1.3. PROBLEMS CONSIDERED 15

number of facilities opened in the i-th city in the optimal solution. We will show that
for each v we have n; = k'iv”, i.e., that the number of facilities opened in each city is
proportional to its population. Towards a contradiction assume there are two cities, 1
and 7, with n; > % +1 andn; < @ — 1. By closing one facility in the i-th city

and opening one in the j-th city, we decrease the total cost by at least:

Ni| N [Njn [Niln
N< . k — NZ . k = | L - - 2 - l :O
| j| Wn;+1 | Nil Wn, n; +1 g k|Nj’ kINi|

Since we decreased the cost of the clients, this could not be an optimal solution. As a
result we see that indeed for each i we have n; = LBAY

Example 2 (Geometric weights: probabilities of failures). Assume that we want to
select k facilities and that each client will be using his or her favorite facility only. Yet,
when a client wants to use a facility, it can be malfunctioning with some probability
p; in such a case the client goes to her second most preferred facility; if the second
facility is not working properly, the client goes to the third one, etc. Thus, a client
uses her most preferred facility with probability 1—p, her second most preferred facility
with probability p(1 — p), the third one with probability p*(1 — p), etc. As a result,
the expected cost of a client j for the bundle of k facilities W for the weight vector

(L—p,(A=pp,....,(L=p)p" ") is equal to

k
DD (L=pp' e (W, )).

jECi=1

Therefore finding a set of facilities that minimize the expected cost of all clients is
equivalent to solving OWA k-MEDIAN for the p-geometric sequence of weights (in
fact, the sequence that we use is a p-geometric sequence multiplied by (1 — p), yet
multiplication of the weight vector by a constant does not influence the structure of
the optimal solutions).

Our Results and Techniques

Our main result is a 2.36-approximation algorithm for the HARMONIC k-MEDIAN
problem (Theorem 23). We do not assume the triangle inequality. This is in contrast
to the innaproximability of most clustering settings with general connection costs.

Theorem 23. There exists a randomized algorithm for HARMONIC k-MEDIAN that
computes expected 2.36-approximate solution in polynomial time.

Our algorithm is based on dependent rounding of a solution to a natural linear
program (LP) relaxation of the problem. We use the dependent rounding (DR) studied
by Srinivasan et al. [75, 139], which transforms in a randomized way a fractional vector
into an integral one. The sum-preservation property of DR ensures that exactly &
facilities are opened.

DR satisfies what is well known as negative correlation (NC)—intuitively, this
implies that the sums of subsets of random variables describing the outcome are more
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centered around their expected values than if the fractional variables were rounded
independently. More precisely, negative correlation allows one to use standard con-
centration bounds such as the Chernoff-Hoeffding bounds. Yet, interestingly, we find
out that NC is not sufficient for our analysis in which we need a conditional variant
of the concentration bounds. The property that is sufficient for conditional bounds
is negative association (NA) [87]. In fact its special case that we call binary nega-
tive association (BNA), is sufficient for our analysis. It captures the capability of
reasoning about conditional probabilities. Thus, our work demonstrates how to ap-
ply the (B)NA property in the analysis of approximation algorithms based on DR.
To the best of our knowledge, HARMONIC k-MEDIAN is the first natural computa-
tional problem, where it is essential to use BNA in the analysis of the algorithm. In
Section 3.1 we discuss in detail the process of dependent rounding (including a few
illustrative examples).

We additionally show in Theorem 29 that the 93-approximation algorithm for
FauLT TOLERANT k-MEDIAN of Hajiaghayi et al. [78] can be extended to METRIC
OWA k-MEDIAN (OWA k-MEDIAN where the costs satisfy the triangle inequality).

Theorem 29. There exists a randomized algorithm for METRIC OWA k-MEDIAN
that computes expected 93-approximate solution in polynomial time.

The additional assumption for the costs is crucial. Indeed, OWA k-MEDIAN is
hard to approximate with any constant for a large class of weight vectors; for instance,
for p-geometric sequences with p < 1/e (Theorem 22 and Corollary 23 in [32]) or for
sequences where there exists A € (0, 1) such that clients care only about the A-fraction
of opened facilities (Theorem 21 in [32]).

1.3.3 MINIMAX APPROVAL VOTING

We restrict our attention to approval-based multiwinner rules, i.e., rules where each
voter expresses his or her preferences by providing a subset of the candidates which
he or she approves. Various voting rules are studied in the literature [13, 26]. In
the simplest one, Approval Voting, occurrences of each candidate are counted and
k most often approved candidates are selected. While this rule has many desirable
properties in the single winner case [74], in the multiwinner scenario its merits are
often considered less clear [102], e.g., because it fails to reflect the diversity of interests
in the electorate [97]. Therefore, numerous alternative rules have been proposed,
including Satisfaction Approval Voting, PROPORTIONAL APPROVAL VOTING, and
Reweighted Approval Voting (for details see book chapter [97]).

We study a multiwinner voting rule called Minimax Approval Voting (MAV),
introduced by Brams et al. [27]. Here, we see the votes and the choice as binary strings
of length m (characteristic vectors of the subsets, i.e., the candidate i is approved if
the string contains 1 at position ). For two strings = and y of the same length
the Hamming distance H(z,y) is the number of positions where x and y differ, e.g.,
H(011,101) = 2. In MAV, we look for a binary string with k£ ones that minimizes
the maximum Hamming distance to a vote. In other words, MAV minimizes the
disagreement with the least satisfied voter and thus it is highly egalitarian: no voter is
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ignored and a majority of voters cannot guarantee a specific outcome [103, 142]. John
Rawls in his classic book “A Theory of Justice” [131] states that welfare is maximized
when the utility of those society members that have the least is the greatest, so
MAV is a Rawlsian social welfare function. For more general studies on minisum
(utilitarian) and minimax (egalitarian) objectives see the work of Brams et al. [142].
Other egalitarian voting rules have been also studied by Betzler et al. [20].

Much recent research has been devoted to the axiomatic properties of multiwinner
voting rules [65, 71, 133]. The goal is to classify and describe properties of voting
rules because different voting rules have different properties, thus they should be used
in proper scenarios. Let us look at some properties of MAV. MAV is not a propor-
tional type of voting rule. A large group of voters with similar preferences can be
not represented by the number of committee members proportional to the size of the
group. Formally, it was shown that MAV does not satisfy Justified Representation
property [12]. MAV is not strategy-proof [39], i.e., voters can vote strategically to be
less dissatisfied by the outcome. On the other hand MAV supports strong monotonic-
ity with population increase and weak monotonicity without population increase [133],
and it is insensitive to clones [97].

MAYV could be used when, for example, proportionality is not needed, agents are
not selfish, but the outcome is required to be acceptable by every voter. A natural
such scenario is when a group of experts have to make a decision or a group of friends
want to choose activities for a holiday. Brams et al. [142, page 403] “commend the
minimax procedure to colleges, universities, and other organizations”.

We focus on the computational complexity of computing the choice based on
the MAV rule. We consider an optimization problem called MINIMAX APPROVAL
VOTING which is defined as follows (in a natural way we also define a decision version).

MINIMAX APPROVAL VOTING

Input:
S ={s1,...,s,}: amultiset of binary strings of length m (also called votes),
k: a positive integer as the number of winners to choose.

Notation:

x[i]: is an i-th letter in a string =z,

H(x,y) := {i: x[i] # y[i]} is the Hamming distance for two strings x and y.
Output: A string s € {0,1}™ with exactly & ones that minimizes:

el M)

A reader familiar with string problems might recognize that MINIMAX APPROVAL
VOTING is closely related to the classical NP-hard problem called CLOSEST STRING
which is studied in bioinformatics as a string problem with motivation in DNA-
sequence-related topics and in the context of coding theory [106].
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CLOSEST STRING
Input:

S ={s1,...,s,}: a multiset of m-length strings over an alphabet .
Notation:

x[i]: is an i-th letter in a string =z,

H(x,y) := {i: x[i] # y[i]} is the Hamming distance for two strings x and y.
Output: A string s € ¥™ that minimizes:

ie{rll,lg.}.{.,n} Hs, 51).

Indeed, LeGrand et al. [104] showed that MINIMAX APPROVAL VOTING is NP-
hard as well by reduction from CLOSEST STRING with a binary alphabet. The first
proof of NP-hardness of MINIMAX APPROVAL VOTING was shown using reduction
from VERTEX COVER [103]. This motivated the study on MINIMAX APPROVAL
VOTING in terms of approximability and fixed-parameter tractability.

Previous Results on MINIMAX APPROVAL VOTING

The first approximation result for MINIMAX APPROVAL VOTING was a simple 3-
approximation algorithm due to LeGrand et al. [104], obtained by choosing an arbi-
trary vote and taking any k approved candidates from the vote (extending it arbitrar-
ily to k candidates if needed). Next, a 2-approximation was shown by Caragiannis
et al. [39] using a deterministic LP-rounding procedure. They solve the natural LP
relaxation of the problem and round the £ highest values to 1 and the rest to 0. Ob-
tained approximation ratio matches the integrality gap of the LP. This is achieved,
for example, when all strings of length m with exactly m/2 ones are given as an input
and k = m/2. Then the optimal solution of the LP is a vector of halves, hence the
LP solution is located exactly in the middle of pairs of complementary strings.

In the area of fixed parameter tractability (FPT) every instance I of a decision
problem P contains additionally an integer r, called a parameter. The goal is to
find a fized parameter algorithm (also called FPT algorithm), i.e., an algorithm with
running time of the form f(r)(]7])°"), where f is a computable function, which is
typically at least exponential for NP-complete problems. If such an algorithm exists,
we say that the problem P parameterized by r is fixed parameter tractable (FPT).
For more details about FPT algorithms see the textbook of Cygan et al. [54] or the
survey of Bredereck et al. [29] (in the context of computational social choice). The
study of FPT algorithms for MINIMAX APPROVAL VOTING was initiated by Misra et
al. [116]. They show, for example, that MINIMAX APPROVAL VOTING parameterized
by k (the number of ones in the solution) is W[2]-hard, which implies that it does
not admit an FPT algorithm, unless there is a highly unexpected collapse in param-
eterized complexity classes. From a positive perspective, they show that the problem
is FPT when parameterized by the number of votes n or by the maximum allowed
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distance d. Their algorithm runs in time* 0*(d??). ® For a study on FPT complexity
of generalizations of MINIMAX APPROVAL VOTING see the work of Baumeister et
al. [16].

Previous Results on CLOSEST STRING

It is interesting to compare the known results on MINIMAX APPROVAL VOTING with
the corresponding ones on the better researched CLOSEST STRING. The first PTAS
for CLOSEST STRING was given by Li et al. [106] with the running time bounded

by n91/ ) where n is the number of the input strings. This was later improved by
log1/e

Andoni et al. [6] to n°= ) and then by Ma and Sun [113] to n®1/<*).

The first FPT algorithm for CLOSEST STRING, running in time O*(d¢) was given
by Gramm et al. [77]. This was later improved by Ma and Sun [113], who gave an
algorithm with running time 0*(2°@ . |3|9), which is more efficient for constant-size
alphabets. Further substantial progress is unlikely, since Lokshtanov et al. [110] have
shown that CLOSEST STRING admits no algorithms running in time O*(2°(¢184)) or
O* (20108 =D)) "unless the Exponential Time Hypothesis (ETH) [84] fails.

Open Questions

The discrepancy between the state of the art for CLOSEST STRING and MINIMAX
APPROVAL VOTING raises interesting questions.

First, does the additional constraint on the number of ones in MINIMAX AP-
PROVAL VOTING really make the problem harder? Is MINIMAX APPROVAL VOTING
hard to approximate below 2 as it is for k-CENTER [82]7 Note that MINIMAX AP-
PROVAL VOTING (as well as CLOSEST STRING) is a special case of the 1-CENTER
problem on a hypercube that has an exponentially large set of facilities (2) but the
input size is only nm.

Similarly, although in MINIMAX APPROVAL VOTING the alphabet is binary, no
O9*(29(9))-time algorithm is known, in contrast to CLOSEST STRING. Can we find such
an algorithm? In this thesis we answer the question on approximability of MINIMAX
APPROVAL VOTING by presenting the following results.

Our Results and Techniques

We show the first polynomial time approximation scheme (PTAS) for MINIMAX AP-
PROVAL VOTING (Theorem 39) which improves the previous best 2-approximation [39].

Theorem 39. For any e > 0 we can find (14 €)-approximation solution for MINIMAX
APPROVAL VOTING in polynomial time nOW/e) 0 4 O/ O/ yith, probability
at least 1 — p, for any fized p > 0.

4The O* notation suppresses factors polynomial in the input size.

% Actually, Misra et al. [116] claim the slightly better running time of O*(d¢). However, there is a
flaw in the analysis [108, 115]: it states that the initial solution v is at distance at most d from the
solution, while it can be at distance 2d because of, what we call here, the k-completion operation.
This increases the maximum depth of the recursion to d (instead of the claimed d/2).
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Our approximation scheme is based on the PTAS for CLOSEST STRING [106].
Technically, our contribution is the method of handling the number of ones in the
output. We also believe that our presentation is somewhat more intuitive.

The general idea behind our PTAS is to find a small enough subset X of votes
that is a “good representation” of the whole set of votes S. Then the candidates
are partitioned into those for which voters in X agree and the remaining candidates.
For the “consensus candidates” we fix our decision to the decision induced by votes
in X (additionally correcting the number of selected candidates in the “consensus”
set). Next, we consider the optimization problem of finding a proper subset of the
remaining candidates to join the committee. The key insight is that there exists a
small enough subset X such that the induced decision for the “consensus candidates”
will not be a big mistake.

For a description of our further results, let us recall the Exponential Time Hypoth-
esis (ETH) of Impagliazzo and Paturi [84]. ETH states that there exists a constant
¢ > 0, such that there is no algorithm solving 3-CNF-SAT in time O*(2°*), where n
is the number of variables in the given 3-CNF-SAT instance. In recent years, ETH
became the central conjecture used for proving tight bounds on the complexity of
various problems, see the survey of Lokshtanov et al. [109]. Nevertheless, ETH-based
lower bounds seem largely unexplored in the area of computational social choice [122].
Cygan et al. [56] showed that, unless ETH fails, there is no algorithm for MINIMAX
APPROVAL VOTING running in time 0*(2°@ed)) The result uses a reduction from
the k x k-CLIQUE problem. Socala [138] provides an alternative reduction directly
from (3,4)-CNF-SAT. As a corollary, the algorithm of Misra et al. [116] is essen-
tially optimal, and indeed, in this sense MINIMAX APPROVAL VOTING is harder than
CLOSEST STRING.

Motivated by this, we show a parameterized approximation scheme for the decision
version of MINIMAX APPROVAL VOTING.

Theorem 40. There exists a randomized algorithm which, given an instance (S =
{si}icm)s K, d) of the decision version of MINIMAX APPROVAL VOTING (d is the re-

2d
quired mazimal distance) and any € € (0,3), runs in time O <(i’> -(m+mn)+ mn)

and either
(1) reports a solution at a distance at most (1 + €)d from S, or
(i7) reports that there is no solution at a distance at most d from S.

In the latter case, the answer is correct with probability at least 1 — p, for arbitrarily
small fized p > 0.

Our algorithm uses a branching tree technique similarly to the O*(d??)-time algo-
rithm of Misra et al. [116] but instead of considering all possible branches for a swap
of 0 and 1 (deterministically) we sample uniformly at random a pair for a swap. We
show that while there can be only one “good” branch for an optimal solution there is
a constant fraction (dependent on €) of “good” branches for the (1 + €)-approximate
solution.
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Note that the lower bound of Cygan et al. [56] implies that, under (a randomized
version of) ETH, this is essentially optimal, i.e., there is no parameterized approxi-
mation scheme running in time ©0*(2°(@1°¢(1/€)) Indeed, if such an algorithm existed,
by picking € = 1/(d+ 1) we would get an exact algorithm which contradicts our lower
bound.

Finally, we get a faster PTAS for MINIMAX APPROVAL VOTING.

Theorem 46. For any e > 0 we can find (1+¢€)-approximation solution for MINIMAX
APPROVAL VOTING in polynomial time n®1/<*10e(1/9) . O0W) wyith probability at least
1 —r, for any fized r > 0.

The idea is to use our parameterized approximation scheme for small values of an
optimal solution. For large enough values of an optimal solution we use independent
rounding of a solution to the natural LP relaxation of the problem and apply the
Chernoff-Hoeffding bounds which might be of independent interest (Theorem 43).

The new PTAS is much faster than the previous one. In particular, the new
running time does not contain the m°/ <) term, so one should expect a considerable
speed-up when the number of votes is large. The running time of our faster PTAS
almost matches the one of the fastest known PTAS for CLOSEST STRING (up to a
log(1/€) factor in the exponent).
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1.4 Research Papers Being a Base of the Thesis

This thesis is based on the results contained in the following papers:

e All results contained in Chapter 2 were published in a conference paper:
Jarostaw Byrka, Krzysztof Sornat and Joachim Spoerhase.
Constant-Factor Approzimation for Ordered k-Median. STOC 2018 [36].

e A preliminary version of the results contained in Chapter 3 appeared in a con-
ference paper:
Jarostaw Byrka, Piotr Skowron, Krzysztof Sornat.
Proportional Approval Voting, Harmonic k-Median, and Negative Association.
ICALP 2018 [33].

e A preliminary version of the first PTAS for MINIMAX APPROVAL VOTING
contained in Section 4.1 appeared in a conference paper:
Jarostaw Byrka, Krzysztof Sornat.
PTAS for Minimaz Approval Voting. WINE 2014 [34].

e A parameterized approximation scheme and a faster PTAS for MINIMAX AP-
PROVAL VOTING, contained in Section 4.2 and 4.3 respectively, were published
in a journal paper:

Marek Cygan, Yukasz Kowalik, Arkadiusz Socata and Krzysztof Sornat.
Approximation and Parameterized Complexity of Minimax Approval Voting.
Journal of Artificial Intelligence Research 63, 2018 [56].

A preliminary version of both results appeared in a conference paper:

Marek Cygan, f.ukasz Kowalik, Arkadiusz Socata and Krzysztof Sornat.
Approximation and Parameterized Complexity of Minimax Approval Voting.
AAAT 2017 [55].

During my PhD studies I also worked on other topics which resulted in the fol-
lowing papers:

e Georgios Amanatidis, Evangelos Markakis and Krzysztof Sornat.
Inequity Aversion Pricing over Social Networks: Approximation Algorithms and
Hardness Results. MFCS 2016 [5].
The paper contains approximation algorithms and APX-hardness proof for a
social network (graph) problem called INEQUITY AVERSION PRICING.

e Piotr Faliszewski, Pasin Manurangsi and Krzysztof Sornat.
Approzimation and Hardness of Shift-Bribery. AAAT 2019 [69].
The paper contains the first PTAS for the SHIFT-BRIBERY problem with gen-
eral positional scoring rules and inapproximability results for the COPELAND®*-
SHIFT-BRIBERY problem assuming ETH or Gap-ETH.



Chapter 2

ORDERED k-MEDIAN

In this chapter we show the first constant-factor approximation algorithm for OR-
DERED k-MEDIAN (Theorem 16) which improves the previous best O(logn)-approxi-
mation due to Aouad and Segev [7].

In Section 2.1 we describe the algorithmic framework used in this chapter.

In Section 2.2 we show a 15-approximation algorithm for a special case called
RECTANGULAR ORDERED k-MEDIAN (Theorem 5) which generalizes k-MEDIAN and
k-CENTER. Then, we show a surprising modularity of Charikar and Li’s rounding pro-
cess (Lemma 11). The solution computed by this process is related to all rectangular
objectives.

In Section 2.3 we decompose an arbitrary non-increasing weight vector into a con-
vex combination of rectangular objectives. The aforementioned modularity property
provides a bound for each of those objectives. This gives a polynomial time algorithm
for ORDERED k-MEDIAN with a constant number of different weights (Theorem 13)
Then, we use weight bucketing to get a quasi-polynomial time algorithm due to the
guessing part (Theorem 15).

In Section 2.4 we apply a clever distance bucketing approach by Aouad and
Segev [7] with technically more involved analysis. This results in a polynomial time
algorithm for ORDERED k-MEDIAN (Theorem 16).

Additional notation for this chapter.

cost(W) := 3%, w; - ¢;7 (W) is the total connection cost in ORDERED k-MEDIAN
objective for a solution W C F.

costy(W) := >{_; ¢;7 (W) is the total connection cost in RECTANGULAR ORDERED
k-MEDIAN objective with parameter ¢ (i.e. w, = 1 and wyy; = 0) for a solution
W C 7.

In cost(-) and cost,(-) notation we ommit w, ¢, € and ¢, € respectively because they
can be deduced from the context.

Let j € C be a client. Then B(j,r) denotes the set of all facilities i € F with
¢;; < r, that is, B(j,r) is an open ball (in the set of facilities) of radius r around j.

We will assume w.l.o.g. that w; = 1 in the definition of ORDERED k-MEDIAN.

23
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Definition 1. Consider an instance of ORDERED k-MEDIAN. A reduced cost func-
tion ¢" is a (not necessarily metric) function ¢: D x D — Rsq such that for all
i,i', j, j' € D we have that cj; < ¢;; and that ci; < ey implies ¢j; < Cjyj.

Reduced cost functions arise naturally for ORDERED k-MEDIAN since in its ob-
jective function non-increasingly sorted distances are multiplied by non-increasing
weights which are smaller or equal to 1.

2.1 Algorithmic Framework

In what follows we describe the algorithmic framework used in this chapter. Some
parts of this framework will be tailored to specific settings and are thus described
later.

Our algorithms consist of two parts: an LP-solving and an LP-rounding part.

In the LP-solving part, we compute an optimal solution to an LP-relaxation, which
is (apart from the objective function) identical to the standard LP relaxation for k-
MEDIAN. However, instead of using the input metrics ¢ in the objective function, we
employ a reduced cost function ¢'. Intuitively, in ¢ the distances are multiplied by
roughly the same weights as in a guessed optimal solution.

In the LP-rounding part the fractional solution provided by the above-described
guessing will be rounded to an integral solution by applying the algorithm of Charikar
and Li [48]. In contrast to the LP-solving part, this algorithm operates, however, in
the original metric space rather than in the (generally non-metric) reduced cost space.

2.1.1 LP-Relaxation

Let LP(c¢") be the following relaxation of a natural ILP formulation of k-MEDIAN
under some reduced cost function c'.

minimize Y ¢z s.t. (2.1)
ie7,jee

Tij < Y 1€F,j€C

i€F
Yyi=k (2.4)
i€F

OSIZ],ylél 263’“,]6(3 (25)

Here, y; denotes how much facility ¢ is open (0—closed, 1-—opened) and z;; in-
dicates how much client j is served by facility ¢ (0—mnon-served, 1—served). Equal-
ity (2.4) ensures that exactly k facilities are opened (possibly fractionally), (2.3)
guarantee that each client is served (possibly fractionally). (2.2) do not allow a fa-
cility to serve a client more than how much it is opened. For each client j € € let
Che(J) = Yieg Ci;7i; denote the fractional (or average) reduced connection cost of j.

av
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2.1.2 Guessing and LP-Solving

Note that if ¢ = ¢ where ¢ is the input metrics, LP(¢) becomes the standard LP
relaxation for the classical k-MEDIAN objective. In order to obtain a valid lower
bound LP(c") for an ORDERED k-MEDIAN instance, we employ guessing of certain
distances in an optimal solution. The details of the guessing are setting-specific and
are thus described later.

Below, we describe some basic normalization steps for a feasible solution (z,y) to
LP(c").

Definition 2. Let (z,y) be a feasible solution to LP(c") where ¢" is some reduced
cost function. We call the assignment x of clients to facilities distance-optimal if x
MINIMIZES Y ;e jce CijTi; when y is kept fived.

Lemma 3. We can w.l.0.g. assume that an optimal solution (z,y) to LP(c") for some
reduced cost function ¢ satisfies the following properties.

(i) For any facility i € F we have y; > 0,
(it) for anyi e F,j € C we have z;; € {0,y;},
(7ii) the assignment x is distance-optimal.

Proof. To see the third property fix the opening vector y and some client 7. Now
sort all facilities ¢ in non-decreasing order of their distance c¢;; to j and greedily
assign as much of the remaining demand of j to the current facility ¢ (respecting the
constraint x;; < v;). Stop when the full demand of j is served and repeat this process
for all clients. Since the reduced cost function ¢' respects the order of the original
distances (see definition) the resulting assignment is optimal also under the reduced
cost function.

The first and second properties are folklore and can be achieved by removing or
duplicating facilities (see [48]). O

We define F; = {i € F : x;; > 0}. For I C F we define the volume of " as
vol(F') = Y jeq vi- Note that vol(F;) = 1 for any feasible solution.

2.1.3 LP-Rounding: Dependent Rounding Approach
of Charikar and Li

We round the fractional solution obtained in the LP-solving phase to an integral
solution by the (slightly modified) LP-rounding process of Charikar and Li [48] for
k-MEDIAN.

To apply this algorithm note that the feasibility of a solution (x,y) to LP(c") does
not depend on the cost vector ¢. This enables us to compute an optimum solution
(z,y) to LP(c") for some appropriate reduced cost function and to subsequently apply
the rounding process of Charikar and Li (which operates on the original metrics c)
to the solution (x,y). In the analysis, we have to exploit how ¢ and ¢ are related in
order to bound the approximation ratio of the algorithm.



26 CHAPTER 2. ORDERED K-MEDIAN

The rounding algorithm of Charikar and Li consists of four phases: a clustering
phase, a bundling phase, a matching phase, and a sampling phase (see Algorithm 1).

Algorithm 1: Rounding Algorithm by Charikar and Li [4§]

Data: feasible fractional solution (z,y) to LP(c") satisfying the properties of
Lemma 3
Result: set of £ facilities

/* Clustering phase */

/* run a clustering procedure to compute a set €' C € of cluster

centers so that each client j € € is "close" to some cluster center

j' € €' and so that the cluster centers are "far" from each other */
1 € « Clustering(z, y);

/* Bundling phase */
2 for j € € do
Rj < 5 minjeer jrz(cjj);
u]' — ?j N B(], Rj);

/* Matching phase */
5 M« 0;
6 while there are unmatched clients in €' do
L add to M a pair from € that is the closest pair among unmatched clients in ¢’

/* Sampling phase (dependent rounding) */
/* Apply dependent randomized rounding as described by Charikar and Li
[48] preserving the marginals for the individual facilities, bundles,
matched pairs in M, and set F */

8 return DependentRounding(z,y, {U;};, M, F)

Below we give some intuition on the different phases. More formal arguments will
be given later.

The purpose of the clustering procedure is to compute a set ¢’ C € of cluster
centers so that each client j € C is “close” to some cluster center j/ € €' and so
that the cluster centers are “far” from each other. We thus may think of the cluster
centers representing all remaining clients. The implementation of the procedure and
the meaning of “close” and “far” is application-specific and will thus be described
later.

In the bundling phase each cluster center j € € is associated with a bundle U, of
facilities. We will show that the volume of each bundle is at least 1/2 and that they
are pairwise disjoint’.

In the matching phase cluster centers are paired in a greedy manner. The total
volume of the bundles of a matched pair is at least 1. This will ensure that in the

"'We employ a simple unoptimized version of the argument, which is sufficient for constant-factor
approximations. In the original optimized version the bundles are based on larger balls that may
overlap but are made disjoint in a greedy manner. This allows Charikar and Li to obtain an improved
approximation factor.
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subsequent sampling phase at least one facility per pair is opened.
In the sampling phase we use the dependent randomized rounding procedure de-
scribed by Charikar and Li [48] to open facilities and obtain a feasible solution. The

procedure satisfies the following properties (as in the original work of Charikar and
Li):

Lemma 4. Let (x,y) be a feasible solution to LP(c") and assume that vol(U;) > 1/2
and W; N WUy = 0 for all distinct j,j" € €. There is an efficient, randomized imple-

mentation of procedure DependentRounding in Algorithm 1 such that the following
holds.

(i) Each facility i € F is opened with probability precisely y;,

(it) in each bundle W; with j € €' a facility is opened with probability precisely
vol(U;),

i1i) for each matched pair (7,5") in M at least one facility in W; UW,; will be opened,
2] Y J J
(iv) in total at most k facilities are opened.

It is used that (z,y) is a (not necessarily optimal) feasible solution to LP(c),
vol(U;UlU;/) > 1 for all distinct j, 7 € €, and that the union of set families {{y;} }:e7,
{U;}ieer, {U; UU; | (4,77) € M}, {F} forms a laminar family. The laminarity follows
from the construction in the algorithm. The property vol(U; UU;) > 1 follows from
the assumption vol(U;) > 1/2 and U; N U; = @ for all distinct j,j’ € €, which
depends on the implementation of the clustering procedure and has thus to be proven
for the specific implementation.

2.2 Rectangular Weight Vectors

In this section, we apply the algorithmic framework described in the previous section,
to obtain a constant-factor approximation algorithm for RECTANGULAR ORDERED
k-MEDIAN, which generalizes k-MEDIAN and k-CENTER. More specifically, we will
show the following.

Theorem 5. There exists a randomized algorithm for RECTANGULAR ORDERED
k-MEDIAN that computes expected 15-approximate solution in polynomial time.

To proof this theorem, we need to fill in the following two missing parts of the
framework: guessing of the reduced cost space and the clustering procedure in the
rounding part.

2.2.1 Guessing and Reduced Costs

In the LP-solving phase, we guess the value T" of /-th largest distance in an optimum
solution to RECTANGULAR ORDERED k-MEDIAN. (This is the smallest distance that
is counted in the total connection cost with non-zero weight.) As the correct guess
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of T' is the distance between a client and a facility the guessing can be performed by
considering only O(mn) options for T
For each 7 € F,j € €, we define the reduced cost

cT, _ Cij if Cij Z T, (26)
0  otherwise,

that will be used as a cost function in our LP for the ORDERED k-MEDIAN.

An optimal solution (x,y) to LP(cT) is a feasible solution for LP(c) as well. As
introduced in Section 2.1.1, we use Cav(j) = Yjeq T - ¢ and L () = Yiey Tij - ¢
to denote the average connection cost and the average reduced connection cost of a
client 5 € C, respectively.

2.2.2 Dedicated Clustering

The following two clustering methods (Algorithms 2 and 3) will be considered. The
algorithms differ only slightly and we have underlined the differences. We first analyze
using Algorithm 2.

Algorithm 2: Dedicated Clustering

Data: feasible fractional solution (z,y) to LP(c)
Result: set ¢’ C C of cluster centers

e« 0;

"+ G

Cay (1) = Yieg iy - cfj for all j € €;

while C” is non empty do
take j € " with the smallest ¢’ (j);
add j to C/;
delete from €” client j;
delete from €” all clients j/ with ¢;;» < 4cl,(j') + 4T

® N o ok W N+

return ¢’

©

Algorithm 3: Oblivious Clustering
Data: feasible fractional solution (z,y) to LP(c)
Result: set ¢’ C C of cluster centers
e« 0;
"+ G
Cav () & Dicg Tij - c;; for all j € €
while C” is non empty do
take j € €” with the smallest ¢, (j);
add j to C/;
delete from €” client j;
delete from €" all clients j" with ¢j;» < 4c,, (j')

® N O ok W N+

return ¢’

©
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This clustering procedure is very similar to the one of Charikar and Li (see also
Section 2.2.4 below) except for the fact that the procedure needs to know the threshold
T of the guessing phase?. This dependence allows a simpler and better analysis for
RECTANGULAR ORDERED k-MEDIAN. In Section 2.2.4, we will describe how to get
rid of this dependency, which allows us to generalize the result.

2.2.3 Analysis of the Algorithm

In the following we analyze Algorithm 1 using the procedure Dedicated Clustering.

Observation 6. We have cg; < < cg;- + T for any i € 3,5 € C and consequently
cr () < can(j) < el () + T

The following two lemmas and their proofs are modifications of the corresponding
claims by Charikar and Li [48].

Lemma 7. The following two statements are true for Algorithm 1 with Dedicated
Clustering .

(i) For any j,j € C" we have that
¢jjr > 4max(cy, (7). ca, (J)) + 4T

av

(i) For any j € C\ €' there is a client 7' € C with
Ca(J") < g, (4) and ¢ < Acf (5) + 4T

av

Proof. To see (i) assume w.l.o.g. that j is considered before j' as a potential clus-
ter center in the algorithm. Thus ¢l (j) < L (). If ¢;y < 4cL(f)) + 4T =
4max(cl (5),cl (47) + 4T then j' would be deleted from €” when j is considered.
A contradiction to the fact that j’ is a cluster center.

In order to see (ii), consider an arbitrary client 7 € €\ €’. As j is not a cluster
center it was deleted from €” when some cluster center j* € € was considered. For

this cluster center we have ¢;; < 4cl (j) + 4T. O

Lemma 8. The following two statements are true for Algorithm 1 with Dedicated
Clustering.

(1) vol(U;) > 0.5 for all j € €.
(it) Wy NWy =0 forall j,57' € €, 547"

Proof. To prove statement (i) consider an arbitrary j € €. Let 7/ € €' be such
that 2R; = ¢;;;. We have c¢;;r > 4cl (§) + 4T > 4cay(j) and hence, R; > 2c., (7).
Therefore, cay(§) = Zies, TijCij = Lierp\, TiCis > By Lieg, Tij = Ry - vol(F;\ Uy)
where the last inequality follows because z;; = y; for all ¢ € F and j € €’. Therefore
vol(F; \ U;) < 1/2 and vol(U;) > 1/2.

To prove (ii) consider distinct j, 7 € €. By the definition of R; we have ¢;;; > 2R;.
Hence, for any facility ¢ in B(j, R;) we have ¢;; < ¢;j-, which implies (ii). O

ZNote that we use T explicitly but also implicitly in the average reduced cost cZ (7).
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We are now ready to prove the main result of this section.

Proof of Theorem 5. Let Wopr be an optimum integer solution under the objec-
tive costy, let (z,y) be the optimum (fractional) solution to LP(c?), and let A be
the (random) solution output by Algorithm 1. Let OPT = cost,(Wopr), OPT* =
Yics jee CyTij, and ALG = costy(A) be the values of an optimal solution, LP(c") and
Algorithm 1, respectively. Note that OPT* < OPT because Wopr can be interpreted
as a feasible solution to LP(cT).

Let 7 € C be a client and let C; be the random variable denoting the distance
(according to the original metrics ¢) traveled by j in A. The idea of the analysis is
to define two separate budgets (random variables) D; and X; that together give an
upper bound on Cj, that is, C; < D;+X;. The budget D, is “deterministically” set to
5T and does not depend on the random choices of the algorithm. The “probabilistic”
budget X; is a random variable (depending on the random choices made by the
algorithm) that is constructed in an incremental way below. We will show below
that (by suitably constructing X;) the connection cost C; of j can actually be upper
bounded by D; 4+ X; and that E[X;] < 10 - ¢l (j). We claim that this will complete
our proof of a 15-approximation. To this end, note that at most ¢ clients j contribute
their deterministic budget D; to cost,(-) because at most ¢ distances are actually
accounted for in the objective function. Unfortunately, an analogous reasoning does
not hold true for the expected value of the random variables X;. (For example, note
that E[max (X7, ..., X, )] is generally unbounded in max(E[X;], ..., E[X,]) in the case
of £ = 1.) However, we can just sum over all those random variables obtaining the
following upper bound on the total expected connection cost:

E[ALG] < D; - 0+ > E[X;] <5(-T+10-) ¢l (j) <15-OPT.

jec jec

For the last inequality, note that by our guess of T" we have that OPT > ¢-T and from
the definition of LP(c¢”) we have OPT" = ";ce ¢ (j). To establish that C; < D;+ X;
consider an arbitrary client j with connection cost C;. We incrementally construct
our upper bound on C; starting with 0. Each increment will be either charged to D;
or X;.

Consider a client j and the cluster center j it is assigned to (possibly j = j'). We
have that c;; < 4cl () 4+ 4T by Lemma 7 (ii). We charge 47 to D; and 4cZ (j) with
probability 1 to Xj;.

We now describe how to pay for the transport from j' to an open facility. There
are two cases to distinguish. Either a facility within a radius 7" around j’ is opened
or not. If yes, then this cost can be covered by charging an additional amount of T’
to D;. In this case the total cost is upper bounded by D; = 5T plus X, where we
have E[X;] = 4cl () < 10¢L,(j) as desired.

If no facility within a radius 7" around j’ is opened then observe that for each
facility ¢ with ¢;y > T we have that ¢, = ¢;. We now continue to bound the
connection cost for this case. Let j” be the closest client distinct from j" in €¢’. We
consider the case where j" and j” are not matched. (The case where they are matched
is simpler.) Let j” be the client in € to which j” is matched, i.e., (5”,;") € M. By
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the dependent rounding process one facility in Uj;» U U~ will be opened. We have
that ¢j;» = 2R; =: 2R (where R; is defined as in Algorithm 1) and thus ¢ju» < 2R
and R;», Rj» < R (otherwise, 7 would not have been matched with j” but with j’).

This means that, in case no facility is opened in the bundle U, the client j travels
an additional distance of at most max(c;/ju+ Rjn, cjrju4cjmjm+Rjm) < 2R+2R+R <
S5R.

If a facility is opened in the bundle U; then we charge this additional connection
cost to X;. The contribution of this case to E[X] is (by Properties (i) and (ii) of
Lemma 4) at most

YiCijr = Tjjt Cijr = Lijr Cpir
> > > Ty

i€l \B(j",T) i€l \B(j",T) i€l \B(j",T)
<D wypel =l ().
ZG? i/

Here, the first equality follows by our assumption z;; € {0,y;} from Section 2.1.2.
The second equality follows because we assume that no facility is opened in B(j', T)
and since ¢;; = ¢, for all i € Uy \ B(5', T).

We finally handle the case where no facility in U, is opened and where j ad-
ditionally travels a distance of at most 5. We charge this additional cost to X;.
We bound the probability that this case occurs. We claim that vol(U;) is at least
1 —cL(j')/R. To see this, recall that 2R > cjuym > 4max(cL,(5"), cL(5")) + 4T
thus R > T. Note that the reason of adding the quantity 47" in the clustering phase
(Algorithm 2, line 8) is to have the property R > T (in the original algorithm of
Charikar-Li [48] this property is not necessarily satisfied). Using this, for all facilities
in ¥\ Uy we have that ¢}, = ¢;; because R > T'. Hence

Cgv(j,) Z Z Tijr + Cg;-/ = Z Tijr - Cijr Z Z Tijr - Cijr

i€F\B(5",T) i€F\B(5",T) €T \Uy/
> R-Y ayp = Revol(Fy \Uy) = R+ (1—vol(ly)),
iErfj/\uj/

which implies the claim. Here, note that B(j’,7) C U; because R > T. This means
that j travels the additional distance of 5R with probability at most ¢’ (j')/R and
hence the contribution to E[X;] is upper bounded by 5-¢Z (j/). Summarizing, for the
case when no facility is opened within B(j’,7") we can upper bound E[X;] by:

e a cost of serving client j through the closest cluster center j' that is 4 - ¢ (j),
plus

e a value ¢l (') for the case when a facility is opened within bundle U/, plus

e a value 5R with probability at most ¢ (j)/R when no facility is opened within
U,

Hence E[X;] < 4-cl (§)+1-cL (j)+5R-cL,(j')/R < 10-cL (j), by taking into account
that ¢ (5') < L (j ) Moreover we charged again at most 57" to D; in this case. In
the end we have the desired two upper bounds for both budgets for completing the
proof: D; < 5T, E[X;] < 10-cL (). O
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2.2.4 Oblivious Clustering

In Algorithm 1, we are working on the original metrics ¢ but still Dedicated Clustering
described in the previous section depends on our guessed parameter 7" and the reduced
metrics ¢’. In this section, we show that we can apply the original clustering of
Charikar and Li that works solely on the input metrics ¢ and that is thus oblivious
of the guessing phase. In particular, we use the Oblivious Clustering procedure as
described in Algorithm 3. The following two lemmas that are analogous to Lemmas 7
and 8 are due to Charikar and Li [48]

Lemma 9. The following two statements are true for Algorithm 1 with Oblivious
Clustering.

(i) For any j,7 € € we have that
¢ > Amax(cay(f), cav(J'))-

(i) For any j € C\ €' there is a client 7' € € with
Cav(J') < cav(f) and cjj < deay(j).

Lemma 10. The following two statements are true for Algorithm 1 with Oblivious
Clustering.

(1) vol(U;) > 0.5 for all j € €.
(it) WyNUy =0 for all j,5' € €, j# 7.

Using Oblivious Clustering, we can prove the following version of Theorem 5.
While the constants proven in the following lemma are weaker than the ones for
Dedicated Clustering, it exhibits a surprising modularity that is a key ingredient
to later handle the general case. In particular, the clustering (and thus the whole
rounding phase) are unaware (oblivious) of the cost vector ¢ with respect to which we
optimized LP(¢). Secondly, the bound proven in the lemma holds for any rectangular
objective function of ORDERED k-MEDIAN (specified by parameter ¢), threshold T’
and the corresponding average reduced cost and may be unrelated to the cost function
¢ that we optimized to obtain the fractional solution (z,y).

Lemma 11. Consider a feasible fractional solution (x,y) to LP(c) where x is distance-
optimal. Let ¢ > 1 be a positive integer, let T" > 0 be arbitrary. Then we have
Elcoste(A)] < 19T + 19 cc k. (j) where A is the (random) solution output by the
Algorithm 1 with Oblivious Clustering.

Proof. As in the proof of Theorem 5, we provide for each client an upper bound on
the distance C; (according to the original distance c) traveled by this client.

Again, the upper bound is paid for by two budgets D; and X;. The “deterministic”
budget D; is 197. The “probabilistic” budget X, is a random variable (depending
on the random choices made by the algorithm).

We will show below that (by a suitable choice of X;) the connection cost C; of j
can actually be upper bounded by D;+X; and E[X;] < 19¢Z (). If this can be shown
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then this will complete our proof of a constant-factor approximation. As before, note
that at most ¢ clients j will pay the budget D; = 197" because at most ¢ distances are
actually accounted for in the objective function. Analogously to the case of Dedicated
Clustering, we obtain:

E[ALG] < D; - £+ Y E[X;] <190-T +19- 3" &% ().

jec jec

To show the claim consider an arbitrary client j with connection cost C;. We
incrementally construct our upper bound on C; starting with 0. Each increment will
be either charged to D; or Xj.

Consider a client j and the cluster center j it is assigned to (possibly j = j'). We
have that cj; < e (j) < 4el (j) +4T by line 8 of Algorithm 3. We charge 4T to D;
and 4cZ () with probability 1 to X;.

We now describe how to pay for the transport from j' to an open facility. There
are two cases to distinguish. Either a facility within a radius of 57" is opened or not.
(Here, § > 2 is a parameter to be determined later.) If yes, then this cost can be
covered by charging an additional amount of 87" to D;. In this case the total cost is
upper bounded by D; = (8 + 4)T and E[X;] = 4c] (j).

If no facility within a radius of 8T of j' is opened then observe that for all facilities
i with ¢;;; > ST we have that cz;, = ¢;j because of 8 > 1. We now continue to bound
the connection cost for this case. Let j” be the closest client distinct from j' in €. We
consider the case where j” and j’ are not matched. (The case where they are matched
is simpler.) Let j” be the client in € to which j” is matched i.e. (5”,5”) € M. By
the dependent rounding process one facility in Uj;» U U;» will be opened. We have
that ¢;;» = 2R; = 2R and thus ¢ju;» < 2R and R;», Rjm < R (otherwise, j” and
j"” would not have been matched). This means that in case no facility is opened in
the bundle U, the client j travels an additional distance (in expectation) of at most
max(cj/ju + Rj//, Cj/j// + Cj//j/// + Rj///) S 2R + 2R =+ R S 5R

If a facility is opened in the bundle U; then we charge this additional connection
cost to X;. The contribution of the additional connection cost in this case to the
expectation of X cost is at most

Z Lijr Cijr = Z Z‘ijlcg;/ S Z xij/ciTj,. (27)

i€ \B(j,AT) i€ \B(j,BT) i€F;\B(j’,BT)

Here, equality holds because we assume that no facility is opened in B(j’, 5T") where
B > 1 and because therefore ¢;;y = ¢, for all i € Uy \ B(j', T). The right hand side
of (2.7) is denoted by cf,,(j') and is clearly upper bounded by Yicq, zijcl; = c3, (47').

We finally handle the case where no facility in U; is opened and where j addi-
tionally travels a distance of at most 5R. If R < 7', we can charge the additional
travel distance of at most 587 to D,. Hence, we focus on the difficult case where
R > BT and where the maximum distance traveled can be unbounded in terms of
T. We charge this additional cost to X;. We bound the probability that this case
occurs. We claim that vol(U;/) is at least 1 — ¢ (j')/R. To see this, note that for all
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facilities in ¥ \ U;» we have that ciTj, = ¢;; because R > BT and 8 > 1. Hence

Cg;r(j/) = Z Tijr Cg;-/ = Z Tijr - Cijr Z Z Tijr - Cijr

z‘eiTj/\B(j’,,BT) iEg:j/\B(j/,ﬁT) iE?j/\uj/
2 RZ fl:z]/ :RVOI(?]/\u]/) :R (1—V01(u]/))’
ie&"j,\uj/

which implies the claim. Here, note that B(j’,T) C U, because R > FT. This
means that j travels the additional distance of at most 5R with probability at most
ct.(5')/R and hence the increment to X in expectation is upper bounded by 5-cf, (5').

Thus, for the case where no facility is opened within a radius of ST around j’, we can
upper bound E[X;] by:

e an expected cost of serving client j through the closest cluster center j' that is
4-cL (j) (random part), plus

T

e a value ¢,

(7) (with probability at most one), plus
e a value 5 - R with probability at most cf, (j")/R.

Hence E[X,] < 4- L) - 1+ () - 145+ R+ ()R = 4¢8,(j) + 5el, (7). As
in Oblivious Clustering we sort the clients according to c,, rather than ¢I we do not
necessarily have that ¢ (j') or even ¢l (j') are upper bounded by cZ (). We still can
relate the latter two quantities in the following way.

First, assume that c¢;; > o7 where 1 < a < f—1is a parameter to be determined
later. We have that c,,(j') < cav(j) by our (oblivious) clustering. Hence cZ (5/) <
Cav(§") < cav(j) < ¢L(4) + T. On the other hand, aT < c¢jj < 4cay(j) since j was
assigned to j'. Hence T < 4/a - cu(j) and thus ¢l (5/) < (1 + 4/a)ck (j). Since
e (5") < cL(5') we can upper bound E[X;] in this case by (9 + 20/a)cl (5).

Second, assume that c;;; < oT. Recall that we assume further that no facility is
opened within B(j’, 5T). We claim that in the assignment vector z the total demand
assigned from j’ to F\ B(j', 5T) is at most the total demand assigned from j to
F\ B(y,pT). This is, because any facility within the ball B(j’, 8T is (trivially)
strictly closer than any facility not in this ball. Hence, if 7 would manage to assign
strictly more demand to facilities inside the ball than j' does, then we could construct
a new assignment for j’ that also serves strictly more demand of ;' within this ball
contradicting the optimality of . Now, we are going to construct a (potentially
suboptimal) assignment of the part of the demand of j' contributing to ¢ (j') that
can be upper bounded in terms of ¢l (j). As the optimum assignment will clearly
will have the same upper bound this will conclude our proof. To this end, we simply
assign the demand of 7’ outside of the ball B(j’, 5T in the same way as does j. Note
that by our above claim this provides enough demand as j ships at least as much
demand outside the ball as j' does. In particular let 7 be an arbitrary facility outside
the ball. We now set x; := x;; to obtain our new assignment for j* Note that by the

triangle inequality ¢;; > ¢;jv — ¢;;v > (8 — )T > T and thus ¢; = cfj (a constraint
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o < — 1 was introduced to obtain ¢;; = ¢} in this case). Therefore

T
cij’ - % < Cij ﬁT 6

< _ ,
¢ ey T cp—cy  (B-a)T  f-a

2’ can be not optimal assignement for j’, hence

che(f) < > Ticiy
1€F\B(3',6T)
5 T B T .
< LijCij < Cav(J) -
6 Z J=1g B_ ( )

@ ie\B(j',6T) @

In the end we have two upper bounds for both budgets:
D; < (44 58)T,

E[X;] < max {4 + ;_BQ,Q + i?} cl (7).

Plugging o = 2 and 8 = 3 gives the desired constants in the claim. O]

By Lemma 11 we obtain that our algorithm with Oblivious Clustering yields a
38-approximation.

2.3 Handling the General Case

Consider an arbitrary instance of ORDERED k-MEDIAN. Let w be the weight vector
and let w the sorted weight vector using the same weights as w but without repetition.
Let R be the number of distinct weight in both weight vectors. W.l.o.g. we assume
that all distances ¢;; for i € F,j € € are pairwise distinct. (This can be achieved
by slightly perturbing the input distances.) To apply our algorithmic framework,
we guess tresholds T, for r = 1,..., R such that T, is the smallest distance c;; that
is multiplied by weight of value w, in some fixed optimum solution. To guess the
thresholds T, we check (nm)® many candidates. Additionally, we define T, = co. We
have T, < T,_1 for r = 1,..., R because we assumed pairwise distinct distances. For
each i € J, j € C we assign the connection cost ¢;; to the weight w(i, j) = w,, where
T, < c¢;; < T,—;. This leads us to the following definition of our reduced cost function
cij = cij-w(i, j) for alli € F, j € €. We compute an optimal solution (x,y) to LP(c")
and apply Algorithm 1 to (z,v).

Lemma 12. The above-described randomized algorithm for ORDERED k-MEDIAN
computes expected 38-approzimate solution. The algorithm makes O((nm)f) many
calls to Algorithm 1 with Oblivious Clustering, where R is the number of distinct
weights in the weight vector w.
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Proof. Let A C F be the (random) solution output by the algorithm. Let OPT be

the cost of optimum solution. For each » = 1,..., R let £, be the largest index such
that wy, = w,. From Lemma 11 we have forallr=1,... R
Elcosty, (A)] <19 6,1, +19- 3 ¢l (4). (2.8)
jee

We decompose cost(A) into rectangular “pieces” (additionally defining wg,1 = 0)

n R ¢
E[cost(A)]=E [Z wy - ¢y’ (A)] =E |> ) (w0, — w41) - ¢, (A)
/=1 r=1s=1
R R
= [Z(wr — Wyyq) - costh(A)] => (W, — W,11) - E[cost,, (A)]
r=1 r=1
(2.8) R T
S 19 - Z( wy-+1 g T + 19 - Z Z wr+1 Ca; (]) (29)
r=1 r= 1]6@
We will bound this in terms of OPT. We know that an optimal solution pays at least
cost T, for weight in w equal to w, for r = 1,..., R. Therefore, defining ¢, = 0 we
have
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Moreover, we have

Z > (W — Wrg) - 47 ()

r= 1]6@
= Z DD (W = Wrg) - iy c?}
r=1jeCieF
R
=>_> i 3 (W — Wypa) - ¢
JECIEF r=1
R

=> D> w Y, (W= W) - cy

jeCieF r: wr<w(i,7)

:szij cw(i, J) - ¢y = ZZ:BU xer <) OPT. (2.11)

jeCiET jECET
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(2.9),(2.10),(2.11)
Thus, we finally have E[cost(A)] < 38 - OPT. O

Theorem 13. Let J be an instance of ORDERED k-MEDIAN with a constant number
of different weights in w. There exists a randomized algorithm for ORDERED k-
MEDIAN on J that computes expected 38-approximate solution in polynomial time.

Proof. We have [{w; : j € {1,2,...,n}}| = O(1). Therefore using Lemma 12 we
get a solution after (nm)°®) many calls to Algorithm 1 with Oblivious Clustering.
Hence, in total, it takes polynomial time. O

Using standard bucketing arguments and neglecting sufficiently small weights, we
can “round” an arbitrary weight vector into a weight vector with only a logarithmic
number of different weights losing a factor of 1 4 € in approximation. Plugging this
into Lemma 11, we can obtain a 38(1 + ¢)-approximation algorithm for the general
case in time (nm)®0%€1+e™) This is a standard bucketing approach but for the paper
being self-containing we provide the following formal calculations.

In Lemma 14 we show how to reduce the number of different weights to at most
O(log, . n). Main idea of such reduction is partitioning an interval [0, w,] into buckets
with geometrical step 1+¢€. Solving such instance we lose factor 1+¢ on approximation
because for a-approximation solution W for J*, optimal solution Wpy for J* and
optimal solution Wopt for J we have

costg (W) < (14 €)costy«(W2) < (1 + €)a - costy (Wipr)
< (14 €)a - costg-(Wopr) < (1 + €)a - costy(Wopr).

Lemma 14. LetJ = (F,C, ¢, k,w) be an instance of ORDERED k-MEDIAN and € > 0.
There ezists an instance I* = (F,C, ¢, k,w*) of ORDERED k-MEDIAN such that for
any solution W C F, |W| = k we have

costy« (W) < costy(W) < (1 + €) - costg« (W)
and w* has at most O(log, ;. n) different values, i.e., |[{a: 3j w; = a}| € O(log,, n).

Proof. We define w* by

wq for j=1,
w; =41+ | log14cwj | for w; > <% and j # 1, (2.12)
0 for w; < <%

First inequality follows directly from the definition of w}. For the second inequality
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we have

J=1
=w;-c; (W) + Z w;j - cj_’(W) + Z w;j - c]_’(W)
j:wj>ﬂ;il j:wjgﬂil
J#1 J#1
€w
Swi- 7 (W) + 3 (1+e) - wy - (W) + 30 =% -7 (W)
j:wj>€:1 J: w]f“;:l
J#1 J#1
<wi- (W) + D (I+e)-w) -7 (W) +e-wi- ¢ (W)
J: 'LU]>Tl
J#1
=(1+e)- Z w} = (1 + €) - costg= (W).
J: wj > T

Let us assume that there is at least 2log;, (n) + 5 different values w} and n is large
enough. We know that the highest value of w} is equal to w;. It is possible that the
lowest value of w} is equal to 0. By the induction we can show that the p-th highest

value of {w} : w; > 0} for p € {2,3,...,[2log, . n]+3} is at most iz Therefore

w1 < w1 < w1
(14 €)f2loe1en1+3=2 = (1 4 e)n2 = (14 ¢€)n

min{wj : w; >0} <

So there exists j such that 2+ > (1+ €)wj > 0 and w; > “*. From the definition we
have (1+€)w; = (1+¢) [ogicws|+1 5 (1+e)loste™s = ; > < > 2 Contradiction.

Therefore w* has at most O(log, . n) different values. " O

Theorem 15. For any € > 0, there exists a randomized algorithm for ORDERED k-
MEDIAN that computes expected 38(1 + €)-approzimate solution in quasi-polynomial
time (specifically (nm)°Uo81+e™) ),

Proof. We transform a vector of weights w into w* using Lemma 14. On that we
lose (1 +¢€) to the approximation factor but we get an instance with only O(log, . n)
different weights. Then we apply Lemma 12. O

2.4 Polynomial-Time (38 + ¢)-Approximation Algo-
rithm

To obtain a truly-polynomial time algorithm we use the clever bucketing approach
proposed by Aouad and Segev [7]. In this approach the distances are grouped into
logarithmically many distance classes thereby losing a factor 1+ ¢. For each distance
class the average weight is guessed up to a factor of 1 4+ €. The crucial point is that
this guessing can be achieved in polynomial time because the average weights are
non-decreasing with increasing distance class. This leads to a reduced cost function
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based on average weights. The resulting analysis decomposes the weight vector into
n = |C| many rectangular objectives. While the proof strategy is similar in spirit to
the one of Lemma 12 it turns out to be technically more involved. In the remainder
of this section we prove the following theorem.

Theorem 16. For any € > 0, there exists a randomized algorithm for ORDERED

k-MEDIAN that computes expected (38 + €)-approximate solution in polynomial time
(specifically (nm)O0/clos(1/e) ),

2.4.1 Distance Bucketing

Let Wopr be an optimal solution to a given ORDERED k-MEDIAN instance. Let
Cmax = ¢ (Wopr) be the maximum connection cost in this solution. We assume
that we know cp.x as it is one of O(mn) many possible distances in the input. Fix
an error parameter € > 0 and let ¢y, = €+ cmax/n. Roughly speaking, distances
smaller than c.;, can have only negligible impact on any feasible solution as they
may increase its cost by a factor of at most 1 + e.

We now partition the distances of the vector ¢ (Wopr) into S := [log,, (n/€)] =
O(% log #) many distance classes. More precisely, for all s =0, ..., 5 —1 introduce the
intervals Dy = (Cpmax(14+6) 7 e (14€)7%]. Let Dg = [0, cimax (14€)™] > . For
all s =0,...,9 let J; ={j | c;(Wopr) € D } and let Cs = { ;7 (Wopr) | j € Js }.
The classes Cy,...,Cs form a disjoint partition of ¢ (Wgopr) where some of the
classes may, however, be empty. For technical reasons, we assume that none of the
intput distances ¢;;,7 € J,j € € coincides with a boundary of one of the intervals D
for some s = 0,...,5. This can be achieved by slightly increasing all boundaries of
the intervals using the fact that the intervals are left-open. Additionally we define
J>s = UTS:S JT"

2.4.2 Guessing Average Weights

For any non-empty class C, let

s 1

= o > w; (2.13)

J€Js

w

denote the average weight applied to distances in this class. If C is empty then w;,
denotes the smallest weight w; applied to some distance ¢;”(Wopr) in a non-empty
class C; with [ < s. Such a class always exists as Cy 3 Cpax iS non-empty.

As argued by Aouad and Segev [7], it is possible to guess the values of w2, up
to a factor of 1 + € in polynomial time n°®(/¢1°61/9) " This is, because we have w?, >
wl, > -+ >w? and because it suffices to guess those values as powers of 1+ ¢. More
precisely, as a result of this we assume that we are given values wgs > wgls >0 > wgs
with wj, < wg, < (1 +e€wg, fori=0,...,S.
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2.4.3 Reduced Cost Function and LP-Solving

We are now ready to define our reduced cost function. For all values of d € [0, ¢pax]
let w(d) be the weight w;, such that d € D, for some s € {0,...,S}. For each
i € F,j € Csuch that ci; < cpax let ¢f; := w(cy;) - ¢i5. Now solve the linear program
LP(c¢") with additional constraints z;; = 0 for all i € &, j € € such that ¢;; > cmax. In
what follows let (z,y) denote an optimal solution to this LP. Now apply the rounding
algorithm of Charikar and Li with Oblivious Clustering (Algorithm 1 with clustering
as in Algorithm 3) to obtain an integral solution A C J,|A| = k.

Let OPT be the value (cost) of an optimum solution Wopr for ORDERED k-
MEDIAN and let OPT™ be the value of an optimum solution for LP(c"), let A be the
solution for ORDERED k-MEDIAN computed by our algorithm. We define distance
class (interval) in which the distance d falls by D(d) and w41 = 0.

Using Lemma 11 with 7, = max(D(c,”(Wopr))) for each £ = 1,...,n we obtain

Elcoste(A)] <19 0T, + 19 cle(4). (2.14)

j€€
We can partition the cost of our algorithm cost(A) into rectangular pieces as follows

14

Bleost(A)] =& 3= w0 7 (4)| =B [ 33— w7 (4)

(=1r=1

=E lZ(wé — wpyq) - costy(A ] Z — wyy1) - E[costy(A)]
(=1 =1
(2.14) n

< 192> (we — wegr) AT+ 19 - ZZ wy — wey1) - CE(F) (2.15)

=1 (=1 jee

We would like to upper bound this in terms of OPT. We know that the optimal
solution pays at least cost inf(Djy) for each distance in distance bucket C and thus

OPT > XS: (inf(Ds) > U)g) = zs;)inf(Ds) ~wi, - Ol (2.16)

s=0 leds

Lemma 17.

3

z_%inf(D) w

— weyr) LT (2.17)

Z 1
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Proof. The right hand side is equal to

1 —1F € fznjl(wé — we41) - £ - max (D(Cf(WOPT»)

Sezn: wy — Wey) - £ - inf (D(Cf(WOPT)))

-
=" (we — wey1) - £ - inf(Dy)
te s

s=0
S
= Z inf(Ds) | Wiin(s,) - min(Jy) + Z wy -4

i:ofl) LeJs\min(Js)

Z W41 - l— Wmax(Js)+1 * maX(Js))

LeJs\max(Js)

Il
M e

=2

inf(Dy) (wmin(Js) -min(Jy) + Y we-l

LeJs\min(Js)

S

B Z We - (ﬁ - 1) — Wmax(Js)+1 maX(Js))

e Js\min(Js)

S
= Z inf(Dy) (wmin(Js) . (mln — 1) + Z Wy — Winax(J,)+1 - Max(Js ))

Leds

S
—l—z inf(Dy) - (wmin(Js) . (min(JS) — 1) — Wnax(J,)+1 'maX(JS)).

The proof ends with showing that the second factor is non-positive. We define € as a
set of non-consecutive non-empty intervals such that all intervals between them are
empty. Formally

8:{(51,82) € {1 S}22

-----
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Then

inf(Dy) (wmm(JS) . (min(Js) — 1) — Wnax(Js)+1 ° maX(Js))

1M

P
N

inf(Dy) - Wiin(s,) - (min(Js) - 1)

I
S
N M o
SH

S—1
— Y inf(Dy) - Wmax(s,)+1 - max(Jy)

s=0
Js#0

inf(Dy) - Wiin(s,) - (min(Js) — 1)

I
w
||Mm
I}

o
IS
=

|
M e

inf(D,_1) - Wmax(Js—1)+1 ° max(J; 1)

Vo)
Il
—

o
|

=
IS
=

f(Ds) - Win(J5,) * (mm(JZS) - 1)

=3

Il
M e

1

So
I

<
@
==

inf(Dy-1) - Wninss, - (min(Js,) — 1)

|
M=

s=1
J5717£@

S
@ Z (inf(DS) — inf(DS_l)) * Wnin(Js,) * (min(JZS) — 1)
150
JoA0

+ Z (inf(DSQ) " Whnin(Js,,) * (min(JZsz) - 1)

(81,52)65

—inf(Ds,) - Wmin(ss, 1) (min(J231+1) - 1))

< (inf(DSQ) Winin(Js,,) ° (min(J252> - 1)

(s1,82)€€
—inf(Dy, ) - Wrnin(Js.,) * (min(JZSQ) — 1))
= (inf(Ds,) = inf(Dy,)) - Whnin(ssy) - (min(Jos,) = 1) < 0.
e

(81,82)6

The equality (A) is just a split of two sums into two cases: when two consecutive
class C;_1, Cs are non-empty or there is a positive number of empty classes between
two non-empty classes Cs,, Cs,. O
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For the second term from (2.15) we have

ZZW wes1) - oL (5)

(=1 jeC

- Z Z Z Wy — wf—&—l cZij e Cg;l
(=1j€CicT

n

=30 > (we — wetr) - cg;?f
JECIETF /=1

= szm . Z (w£ wé-i—l) oy
jeCieTF =1

l: cij>Ty

n

=> > wmy-cy Yy, (we—we)

s=0j€C,icF =1
cij€Cs teJ>s41

S
= Z Z Lij « Cij * Wmin{J>41}

s=0 j€CicT
Cij eCy

S S
S S
<Y D wmyeyrwn, SO D @iy ey wg
s=0jeCied s=0jeCied
ci;€Cs cij€Cs

L+e) Y > a- "(1+¢)-OPT*. (2.18)

jECIieF

This we can upper bound in terms of value of an optimal solution OPT. For that let
us define the optimal solution Wopr as a feasible solution of LP(c") and denote it as
(2OPT yOPT). It means that yPFT =1 <= i € Wopr and yPFT =0 < i ¢ Wopr.

Y
OPT* < Z Z $OPT r Z z fL'OPTCU Cz]

jeCiedF jeCiedF
S
S Y e <3 | max(D) wy X oG
5=0 jeCicF 5=0 jECiET
CijECs CijECs
S
=Y max(Dy) - wi, - |Cs| < (1+¢)? Zlnf ws, - |Cyl
s=0
s
2> we-inf(Dy) < (1+4¢€)* - OPT. (2.19)
s=0/4eJs

In the end we have

(2.15),(2.16),(2.17),(2.18),(2.19)

E [cost(A)] < (1+¢)*-38-OPT.
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Chapter 3

HARMONIC k-MEDIAN and OWA
k- MEDIAN

In the first part of this chapter we demonstrate how to use the Binary Negative
Association property (BNA) of the Dependent Rounding procedure (DR) to derive a
2.36-approximation algorithm for the HARMONIC k-MEDIAN problem (Theorem 23).
First, we provide a detailed discussion on DR and BNA (Section 3.1), and several
examples (Section 3.2). In Section 3.3 we provide a theorem and lemmas useful in
our analysis.

In the second part of the chapter (Section 3.5) we show how to extend the 93-
approximation algorithm of Hajiaghayi et al. [78] for FAULT TOLERANT k-MEDIAN
into a 93-approximation algorithm for OWA k-MEDIAN in a metric space (Theo-
rem 29).

Additional notation for this chapter.
For a natural number ¢ € N, by [t] we denote the set {1,2,...,¢}. In this chapter
we simplify notation for w* (a vector of k weights) by writing just w.

3.1 Dependent Rounding and Negative Associa-
tion

Consider a vector of m variables (y;)icim), and let y; denote the initial value of the
variable y;. For simplicity we will assume that 0 < y* < 1 for each ¢, and that
k = Yicpm ¥i is an integer. A rounding procedure takes this vector of (fractional)
variables as an input, and transforms it into a vector of 0/1 integers. We focus on a
specific rounding procedure studied by Srinivasan [139] which we refer to as dependent
rounding (DR).

DR works in steps: in each step it selects two fractional variables, say y; and
y;, and changes the values of these variables to y; and y} so that y; + v; = y; + y;,
and so that y; or ¢} is an integer. Thus, after each iteration at least one additional
variable becomes an integer. The rounding procedure stops, when all variables are
integers. In each step the randomization is involved: with some probability p variable

45
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y; is rounded to an integer value, and with probability 1 — p variable y; becomes an
integer. The value of the probability p is selected so as to preserve the expected value
of each individual entry y;. Clearly, if y; +y; > 1, then one of the variables is rounded
to 1; otherwise, one of the variables is rounded to 0. For example, if y; = 0.4 and
y; = 0.8, then with probability 0.25 the values of the variables y; and y; change to,
respectively, 1 and 0.2; and with probability 0.75 they change to, respectively, 0.2 and
1. If y; = 0.3 and y; = 0.2, then with probability 0.4 the values of the two variables
change to, respectively, 0 and 0.5; and with probability 0.6, to, respectively, 0.5 and
0.

Let Y; denote the random variable which returns one if y; is rounded to one after
the whole rounding procedure, and zero, otherwise. It was shown [139] that the DR
generates distributions of Y; which satisfy the following three properties:

Marginals. Pr[Y; = 1] = ¢/,
Sum Preservation. Pr[>, Y, = k| =1,

Negative Correlation. For each S C [m] it holds that
Pr{Aies(Yi = 1)] < [lies Pr[Y; = 1], and Pr[Aies(Y; = 0)] < [lies Pr[Y; = 0].

These three properties are often used in the analysis of approximation algorithms
based on dependent rounding for various optimization problems—see, e.g., [75]. In
fact, DR satisfies an even stronger property than NC, called conditional negative
association (CNA) [99], yet, to the best of our knowledge, this property has never
been used before for analyzing algorithms based on the DR procedure.

For two random variables, X and Y, by cov[X, Y] we denote the covariance be-
tween X and Y. Recall that cov[X,Y] = E[XY] — E[X] - E[Y].

Negative Association [87]. For each S,Q C [m] with SNQ =0, s =|S], and ¢ =
|Q|, and each two nondecreasing functions, f: [0,1]° — R and g: [0,1]? — R, it
holds that:

cov[f(Yi: i€S),g(Yi:ie Q)} <0.

Conditional Negative Association. We say that the sequence of random vari-
ables (Y;)icpm) satisfies the CNA property if the conditional variables (Y,\s|Ys =
a) satisfy NA for any S C [m] and any a = (a;);cs. For S = (), CNA is equiva-
lent to NA. It was shown by Dubhashi et al. [63] that if one rounds the variables
according to a predefined linear order over the variables > (i.e., if one always
chooses for rounding the two fractional variables which are earliest in >), then
the resulting distribution satisfies CNA. Yet, the requirement of following a pre-
defined linear order of variables is too restrictive for our needs. Then, Kramer
et al. [99] showed that DR following a predefined order on pairs of variables
that implements a tournament tree returns a distribution satisfying CNA.

In our analysis we will use a simpler version of the NA property, which nevertheless
is expressive enough for our needs. We introduce the following property.
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Binary Negative Association (BNA). For each S,Q C [m] with SN Q = 0,
s =|S|, and ¢ = |Q|, and each two nondecreasing functions, f: {0,1}* — {0,1}
and g: {0,1}7 — {0, 1}, we have:

cov[f(Yii € S),g(Yiri € Q) <.

From the definitions it is easy to see that CNA — NA =— BNA.

3.2 Binary Negative Association is
Strictly Stronger than Negative Correlation

We now argue that BNA is a strictly stronger property than NC. First we show
a straightforward inductive argument that BNA implies NC. Next we provide an
example of a distribution that satisfies NC but not BNA. In fact, this distribution is
generated by a not-careful-enough implementation of DR.

Lemma 18. For two binary random variables X, and Y, X,Y € {0, 1}, the condition
cov[X,Y] <0 is equivalent to Pr[X =1AY =1] <Pr[X =1]-Pr[Y =1].

Proof. Observe that for binary variables, X and Y, it holds that E[X] = Pr[X = 1],
E[Y] = Pr[Y = 1], and E[XY] = Pr[X = 1 AY = 1]. O

Lemma 19. Binary Negative Association of (Y;)icim) implies their Negative Correla-
tion.

Proof. We will prove the NC property by induction on |S|. Clearly, the property
holds for |S| = 1. For an inductive step, we define two non-decreasing functions

fYiri € S/H{j}) = Niesyin(Yi = 1) and g(Yj) = (Y; = 1) for any j € S.

Pr[/\(Yizl)] = Pr| A\ Yi=1) AY;=
1€S LieS/{s}
BNA, Lemma 18 [
< Pr| A (Y;i=1)| -PrlY;=1]
Lies/{7}
inductive assum.
< H PrlY; =1].
€S

In order to bound the probability of A,cq(Y; = 0) we define two other non-
decreasing functions f(Y;: i € S/{j}) = Vieg/g;3(Ys > 0) and g(Y;) = (Y; > 0)
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for any j € S.

Pr{Aves(¥i=0)] = 1-Pr| V(>0

i€S

+Pr[Y; >0 -Pr| \/ Y;i>0) AY;>0

= 1—<Pr[ \/ (¥i>0)

|

i€S/{j} i€S/{j}
= Pr| A (Vi=0)| —Pr[Y;>0/+Pr| \/ (¥;>0)AY;>0
ieS/{j} i€S/{j}
BNA, Lemma 18
< Pr| A (Y;=0)| -Pr[Y;>0+Pr| \/ (¥V;>0)| -Pr[Y;>0]
i€S/{j} ieS/{j}
= Pr| A (Y;=0)|—-Pr[Y;>0-Pr| A\ (V;=0)
Lies/{7} i i€S/{j}
inductive assum.
= Pr| A\ (Y;=0)| Pr[Y; =0 < [[P:lY; =0].
Li€S/{5} i icS
]

Note that the general formulation of DR does not specify how the pairs of frac-
tional variables are selected. The proof in [139] that DR satisfies NC is independent
of the method in which these pairs of fractional variables are selected. We will now
show that, if these pairs are selected by an adaptive adversary who may take into
account the way in which the previous pairs were rounded, then the BNA property
may not hold (so, also neither NA nor CNA). Consider the following example.

Example 3. Consider m = 8,k = 4, and the vector of variables (y;)cjs), all with the
same initial value /2. Let S = {2,3,4}, Q = {5}, and:

L if Ya+Ys+Y,2>2

Y:) =Y.
0 otherwise 9(¥s) >

f(Yz,Kz,iﬁ)Z{

Let o and B denote the events that Yo+Y3+Yy > 2 and that Ys = 1, respectively. BNA
would require that PrlaA B] < Pr[a]-Pr[p]. Consider DR procedure as depicted in the
following diagram (the paired variables are enclosed in rounded rectangles). First, we
pair variables y, with ys and ys with ys. The way in which the remaining variables
are paired depends on the result of rounding within pairs (yi,ys) and (Y2, ys). If 11
and yy are both rounded to the same integer, then we pair ys with y; and yq with ys.
Otherwise, we pair ys with y, and y; with ys.

Note that according to DR each rounding decision is taken with the same probability
(e.g., when we pair variables y, with ys, then the probabilities of vy and ys rounded
to one is the same). Thus, we observe that Prla] = /2, Pr[f] = /2, but Prla A 5] =
14+ 1/16.
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Yil (Y2 ] Ys  Ya
1/2 1/2 1/2 1/2
Ys Ye Yt Ys
Yo J (Y2 ) Y2 Y2
3 Y Y2 [ Y3) [ Y4 Y1 Y2 Ys Y4 3 3 Y1 Y2 Ys Y4 Y1 Y2 [(Y3) [ Y4 3
| 11 |Y2 Y2 10 (Y2 Yefro 01 (Y2 Yo 0 0 |Y2f|Y)2 |
' Y5 Y6 Y7 || Ys Ys Ye (Y7 Ys )., Y Ye (Y7 Ys Ys Yo Y7 || Y8 !
00 Y2 ) Y2 0 1 (Y2 1) 3 3 10 (Y2 12 L1 {2 /2) o
1 Prla] =3/a Pria] =0 3 3 Pria] =1 Prla] =1/4 :

Figure 3.1: An illustration of Example 3.

Example 3 is simpler than the one given by Kramer et al. [99]. Both examples
show that NA is a strictly stronger property than NC. Kramer et al. use the set of
7 variables with initial values equal to 3/7, k = 4, and a predefined order on pairs

of variables.

Our example uses an adaptive adversary who decides which pair of

variables should be rounded in each step of the rounding procedure. Our example
cannot be implemented by fixing an order on pairs of variables (hence it also cannot be
implemented by fixing a tournament tree). Our 8 variables have marginal probabilities
equal to 1/2, thus the example can be easily understood, and one does not need to

calculate probabilities of choosing all (Z) 4-element sets.

3.3 Useful Lemmas

To make this thesis more self-contained we cite or prove a few useful inequalities.

Theorem 20 (Theorem 1.16 from [10]). Let X;, X, ..

., X, be negatively correlated

binary random variables. Let X =371 | X;. Then X satisfies the Chernoff-Hoeffding

bounds for ¢ € [0,1]:

Pr[X < (1 - §)E[X]] < <

e

-5 p
(15)> '

(1-

)

Lemma 21. For any sequence (a;)icin) and (b;)icm), bi > 0, it holds:

n
i=1 A < a;

Simibi T Ilré%%)}( b
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Proof.

Z?:lai B n a; B n & b]’ - bj —
"b =2 ’gbi_z::b Z?lbigjzjlln]b b

i=1Y j=1 Z«i=1 j=1"1
_ <m> I BN
1€[n] bl = Zznzl bz i€[n] bl

O
Lemma 22. For any non-decreasing sequence (ci)ie[n], c; > 0 and any non-increasing
sequence (a;)icp) it holds:

2zt WiCi 72%
Zz 1CZ

Proof. We prove that by induction. Clearly, we have equality for n = 1. We assume
that

It is equivalent to

We would like to show that
n- Zaici < <Zai> . (ZQ) .
i=1 i=1 i=1
We have the following equivalent inequalities:
n—1 n—1 n—1 n—1 n—1
0< (Z‘“) : <Zcz> +an-Zci+cn-Zai+an-cn—n- Y aic;—n-an -,
i=1 i ' i= i=1
n—1 n—1 _
<Z@i> (Zcz> (n—1) Zaicl] Zan-ci+cn-ai—an-cn—ai-ci),
i=1 =1 i=1

n—1

(;ﬁ) <ch> (n=1) ;1‘”@1 ; ai — a,) (en — ;).

Using the inductive assumption (3.1) and monotonicity of sequences, i.e., 0 < a; — ay,
0 < ¢, — ¢; we finish the proof. O
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3.4 2.36-Approximation for HARMONIC k-MEDIAN

In this section we construct and analyze a constant-factor approximation algorithm
for HARMONIC k-MEDIAN hence also for PROPORTIONAL APPROVAL VOTING.

Theorem 23. There exists a randomized algorithm for HARMONIC k-MEDIAN that
computes expected 2.36-approximate solution in polynomial time.

Corollary 24. There exists a randomized algorithm for the minimization PROPOR-
TIONAL APPROVAL VOTING that computes expected 2.36-approximate solution in
polynomial time.

In the remainder of this section we will prove the statement of Theorem 23. Con-
sider the following linear program (2.1-2.5) that is a relaxation of a natural ILP for
HARMONIC k-MEDIAN.

k k
min = > > > w- xfj cij (3.2) mej <y, YVieF jeC (34)
jeCe=14icF (=1
Syi=k (3.3) Ya;>1 Vje€ ek (35)
ieF ieF

yi,oy; €[0,1]  Vied, je€ Le[k]  (3.6)

The intuitive meaning of the variables and constraints of the above LP is as
follows. Variable y; denotes how much facility ¢ is opened. Integral values 1 and 0
correspond to, respectively, opening and not opening the facility. Constraint (3.3)
encodes opening exactly k facilities. Each client j € € has to be assigned to each
among k opened facilities with different weights. For that we copy each client k times:
the /-th copy of a client j is assigned to the ¢-th closest to 7 open facility. Variable xfj
denotes how much the ¢-th copy of j is assigned to facility 7. In an integral solution we
have :cfj € {0,1}, which means that the ¢-th copy of a client can be either assigned
or not to the respective facility. The objective function (3.2) encodes the cost of
assigning all copies of all clients to the opened facilities, applying proper weights.
Constraint (3.4) prevents an assignment of a copy of a client to a not-opened part
of a facility. In an integer solution it also forces assigning different copies of a client
to different facilities. Observe that, due to non-increasing weights wy, the objective
(3.2) is smaller if an ¢'-th copy of a client is assigned to a closer facility than an ¢”’-th
copy, whenever ¢/ < ¢”. Constraint (3.5) ensures that each copy of a client is served
by some facility.

Just like in most facility location settings it is crucial to select the facilities to
open, and the later assignment of clients to facilities can be done optimally by a
simple greedy procedure. We propose to select the set of facilities in a randomized
way by applying the DR procedure to the y vector from an optimal fractional solution
to linear program (2.1-2.5). This turns out to be a surprisingly effective methodology
for HARMONIC k-MEDIAN.
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sub(2) = {7,8,9}  submax(3) =13

0 ¢ \ ! Vs Lk

(Zr)req1,2,...k/c) DDBDEEDODDA T A e s OO0

(Y)icq1.2,...m)

ordered facilities

non-decreasing
distances

client D; &

Figure 3.2: Ordering of the facilities by ¢; ; for the chosen client j. Pictorial
definitions of the variables Y;, Z, and examples of the indices sub(¢) and submax (7).

Analysis of the Algorithm

Let OPT™ be the value of an optimal solution (z*, y*) to the linear program (2.1-2.5).
Let OPT be the value of an optimal solution (z°FT, yOFT) for HARMONIC k-MEDIAN.
Easily we can see that (z°FT yOPT) is a feasible solution to the linear program (2.1-
2.5), so OPT* < OPT. Let Y = (Y1,...,Y,,) be the random solution obtained by
applying the DR procedure described in Section 3.1 to the vector y*. Recall that
DR preserves the sum of entries (see Section 3.1), hence we have exactly k facilities
opened. It is straightforward to assign clients to the open facilities, so the variables
X = (ij)jee,ie?,ée[k] are easily determined.

We will show that the expected cost of solution Y denoted by E[cost(Y)] is smaller
than 2.36 - OPT". In fact, we will show that E[cost;(Y)] < 2.36 - OPT}, where the
subindex j extracts the cost of assigning client j to the facilities in the solution
returned by the algorithm. In our analysis we focus on a single client 7 € €. Next, we
reorder the facilities in the non-decreasing order of their connection costs to j (i.e.,
in the non-decreasing order of ¢;;). Thus, from now on, facility F; is the i-th closest
facility to client j; ties are resolved in an arbitrary but fixed way.

The ordering of the facilities is depicted in Figure 3.2, which also includes infor-
mation about the fractional opening of facilities in y*, i.e., facility F; is represented by
an interval of length y?. The total length of all intervals equals k. Next, we subdivide
each interval into a set of (small) e-size pieces (called e-subintervals); € is selected so
that 1/e, and ¥/ for each ¢, are integers. Note that the values y;, which originate
from the solution returned by an LP solver, are rational numbers. The subdivision
of [0, k] into e-subintervals is shown in Figure 3.2 on the "(Z,),eq12,.. 1/ " level.

The idea behind introducing the e-subintervals is the following. Although compu-
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tationally the algorithm applies DR to the y* variables, for the sake of the analysis
we may think that the DR process is actually rounding z variables corresponding to
e-subinterval under the additional assumption that rounding within individual facili-
ties is done before rounding between facilities. Formally, we replace the vector Y =
(Y1,Y2,...,Y,) by an equivalent vector of random variables Z = (71, Zs, ..., Zy.).
Random variable Z, represents the r-th e-subinterval. We will use the following nota-
tion to describe the bundles of e-subintervals that correspond to particular facilities:

submax(0) =0 and submax(i) = submax(i — 1) + y—i, (3.7)
€

sub(i) = {submax(i — 1) + 1,...,submax(i)}. (3.8)

Intuitively, sub(7) is the set of indexes r such that Z, represents an interval belonging
to the i-th facility. Examples for both definitions are shown in Figure 3.2 in the upper
level. Formally, the random variables Z, are defined so that:

Yi= > Z and Y;=1 = 3lresub(i) Z =1. (3.9)

resub(i)

For each r € {1,2,... ¥/} we can write that:

€ *
szubfl(r) = 1] ' Pr[szubfl(T) = 1] = ) ysub_l(r‘) =€

Pr|Z, =1]=Pr[Z, =1
ysubfl(r)
(3.10)

and Pr[Z, = 0] =1 — ¢, hence E[Z,] = e. Also we have:

= Pr

\ 7, =1

resub(i)

= Y Pr[Z,=1]. (3.11)

resub(i)

Pr[Y}zl]:Pr[ Y Z. =1

resub(i)

When Y; = 1 its representative is chosen randomly among (Z,),csub(;) independently
of the choices of representatives of other facilities. Therefore

for any function f on vector Y = (Y1,Y5,...,¥,,).

Now we are ready to analyze the expected cost for any client 5 € C.
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Elcost;(Y)] < g:l E [1—{—;;113/;/ Y, = 1] Pr[y; = 1])
(3.11) g ¢ -E L " 22/_11 v Y, =1 reg(ﬂPr 1Z, = 1])
_ é s rg@z@, L TR el 1])
.12 il cij - TE%@@ HZ?;%YZ Y, =1AZ, =1|-Pr[Z, = 1])
(39),(3.10) é e ¢y 'regu)E I fofliax(i_l) 7 Z, =1 )
= i e 2 B 1+ 2;;11 Zo| " 1]) o

W.lo.g., assume that OPT} > 0. Hence the approximation ratio for any client j is
Ic/E 1

E . C _ .. ]E e —

Efcost; (V)] (9319 ; sub™ ! (r).J [1 + 302 2y

OPT; - be
1
Zle “Csub™1(r),j " Tre]

z-1]

note that sub™'(r) is an index of a facility that contains Z,. Now we convert the sum
over facilities into a sum over unit intervals. A unit interval is represented as a sum
of /e many e-subintervals:
k 2/6 1
Z Z bel 7E|\_1Z’,‘:1‘|
1=1 r=(—)fet1 b 1+ 3205 Zy

= <
k e -

Z Z csubfl(r),j ’ %

=1 r=(-1)/e+1

W.lo.g., we can assume that first interval has non-zero costs: 271/:61 Coub—1(r),; > 0,
otherwise the LP pays 0 and our algorithm pays 0 in expectation on intervals from

non-empty prefix of (1,2,...,k). With this assumption we can take maximum over
intervals:
EX/E ¢ E [ ! Z 1]
b= 1(r),j ° P —— =
Lemma 21 r=0—1)/e+1 o (r).d 1 + Zz:/zll Zr’ "
< max <
Lc[k] £

1
Z Csub=1(r),j " 7

T':(Z_l)/e—l-l
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Costs cgyp-1(),; can be general and they could be hard to analyze. Therefore we would
like to remove costs from the analysis. We will use Lemma 22 for which the technique
of splitting variables Y; into Z, was needed. We are using the fact that the variables
Z, have the same expected values; otherwise the coefficient in front of the expected
value would be ¢;; - y7, i.e., not monotonic. Thus

Lemga 22 , Zz/e: [ 1 11 (3 14)
< max [e- (- . .
telk] ey L1 A 0 /—1 Z'r’
Consider the expected value in the above expression for a fixed r € {(¢-1D/e41, ..., ¢/c}:
1 k r—1
= l ] Z* > Zu=t—1Z. =1
1 + Z Z :lt r'=1
¢ 1 r—1 k r—1
=>"Pr|> Zu=t—1Z,=1| + > Pr > Zp=t—-1Z,=1|. (3.15)
=t | S P
For t € {1,2,...,¢} we consider the conditional probability in the above expression,

denote it by p,.(t—1), and analyze the corresponding cumulative distribution function

H,.(t—1):

r—1 1

pt—1) = Pr|> Zu=t—-1Z, =1], (3.16)
r'=1
r—1 i t—1

H.(t-1) = Pr|> Z.<t—-1Z =1| =3 p(t), (3.17)
r'=1 t'=0

for which we have the following recursive relation

p-(0) = H,(0),
prlt=1) = Hilt—1)— H(t—2) Yiepa.oy
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We continue the analysis of F.:

(3.15),(3.16) ‘1 ko1
E, TR X op(t=1)+ 3 op(t—1)
t=1 t=0+1
(3.17) ‘1 ko1
= H(0)+ > = (Ho(t—1) = H(t—=2))+ > ~p(t—1)
t:2t t:£+1t
‘1 ‘1 ko1
- H(0)+ > “H(t—1) =Y “H(t—2)+ > —p(t—1)
t=2 t t=2 t t=0+1 t
il "i 1 z’“: 1
- SH(t—1)=Y ——H, (t—1)+ “pe(t—1)
t:lt t:lt + 1 tzé-i—lt
Z—ll /—1 1 k 1
= CH(t—1) =Y ——H (t—1)+-H,({—1)+ > ~p(t—1)
g ;t +1 i t:%t
=l 1 1 2’“:
< <—>Hr(t—1 o)+ X pt-1)
AN A ) ¢ ( t=0+1
- H.(t—1)+>|H.(—-1)+ (t—1
Y ( ) / ( ) t%;lp( )
/-1 1 1
< H.(t—1)+ . 3.18
S Zgaplt-UEg (3.18)

We will use the following two lemmas to remove the conditioning and bound
H.(t—1).

Lemma 25. Distribution of {Z1,Zs, ..., Zy.} satisfies Binary Negative Association.

Proof. Note that DR procedure on (Y;);cm) and then independent choice of (Z;),esub(s)
for each 7 € [m] is equivalent to the following implementation of DR on (Z,),cq1,2,... /-
First, for each i € [m] (Z,),esun(s) are processed until obtaining a single non-zero
variable that is equivalent to y;. Then, in the second phase the rounding proceeds as if
it had started from the y; variables. Since this process altogether is an implementation
of a single DR procedure with fixed tournament tree starting from (Z,)ref1.2,...5/c}
variables, we can simply apply the result of Kramer et al. [99] and get the statement
of the lemma.

At this point we note that the result of Dubhashi et al. [63] is not sufficient
for proving our lemma. They have proved that DR following a predefined order of
variables (which can be viewed as a linear tournament tree) returns distributions
satisfying the CNA property. Here, however, we need to have at least a "two-stage"
linear tournament: the first linear tournament on variables (Z,),csub(;) and the second
tournament on winning variables from the first tournament. n

In the following lemma we combine the BNA property of variables {Z1, Z5, ..., Zy.}
with applications of Chernoff-Hoeffding bounds



3.4. 2.36-APPROXIMATION FOR HARMONIC K-MEDIAN 57

Lemma 26. For any ¢ € [k], t € [{ — 1] and r € {ED/fe + 1, D/ 42,0 Y} we

have .
Hr(t_1>§€r€'<6:€) .

Proof. Let us fix ¢ € [k], t € [ — 1] and r € {(=V/e + 1, (¢=D/e + 2, ... ¢/c}. We have

. r—1
Ht—1) " py ZZr,gt—1|ZT:1

r'=1
Zk/6

= Pr erlzk—(t—1)|zrz1
- _k/é

= Pr ZZT/Zk—t‘Zrzl (3.19)
|r'=r+1

We now exploit Binary Negative Association of variables Z; (Lemma 25). By setting

S = {T+17T+27 T 7k/6}7Q = {T},f(al,ag, e .CLS> = :H-{ Zlill a; > k_t} and g(a) =a

we obtain:

ke
OZCOV[f(ZT/:7“’65),9(27,/:7“/6@)} = cov []L{ > Z,,/Zk—t},ZT

r’'=r+1

Since f, g are binary and non-decreasing we can use Lemma 18 to obtain an equivalent
inequality:

k/e Ic/6
Pr| > Z.>k—t AN Z,=1|<Pr| > Zs>k—t|-Pr[Z =1]. (3.20)
r’'=r+1 r’'=r+1
Therefore,

_ =r+1
Pr[Z, =1]
(3.20) s r
< Pr| Y Zu>k—t|=Pr [ZZT/ <t|. (3.21)
r'=r+1 r'=1

Using Lemma 25 and Lemma 19 we know that (ZT),,E{LQ _____ r/e} are negatively corre-
lated. What is more, ¢ is smaller than the expected value of the sum

t§€—1:(6—1—1-6)—e§r~6—e<7’-e(3é0)E[ZZW],

r'=1
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Therefore, we can use Chernoff-Hoeffding bounds as follows

(3.21) r
H,(t—1) < Pr[ZZr/ <t

r'=1
: t
= Pr ZZT/<7"-6-<1—<1—>)
r'=1 r-e€
. T€
Theorem 20 e;fl et—T'e . (T 3 E)t
< S S

()" '
T-€

We are ready to show an approximation ration for any client j € C.

E (V)] (3.14),(3.15),(3.18) Y —1 1 1
M < maXe.g.Z (Z('H'r(t_l)>+£

OPT; - ekl (e \i=1 \E(E+1)

Y -1
= 14+ max e-£- ) ( 1)-Hr(t—1))

e[kl r=(t=1)/e+1 it +
. ¢/e -1
Lemma 26 1 - t
e Sa 1+maX E.g. Z .677’-6. (6 T 6)
telk] r=(—D)/et 1 imt(t+1) t
— 1 + max ¢ - it et (ree
ekl S+ 1)\ LS o

/-1 1 et fe—1 e
= l4+max £-> - — - > / e (r-e) d

Lelk] et t(t + 1) tt r=(-1)/et1

we now use an upper bound on the most interior sum by an integral of the function
fi(r) = e - 2. Note that f/(z) =e -2 (t—2)<0for 1 <t <(—-1<z, s0
the function f is non-increasing. Therefore

/—1 t
1 e ¢
<1 0. 2. / . gtdz ) . 3.22
R ;t(t+1) f (Z—le v x) (3.22)
To bound the above expression we first numerically evaluate it for ¢ € {1,2,...,88}

and obtain

14

1 ¢
]_ l

1+ max (- 2 / e aldr | < 2.3580 < 2.36.
tef12,..88y  t(t+1) t -1

It remains to bound the expression for ¢ € {89,90,...,k}, which we do by the fol-
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lowing estimation:

t

¢
-%~ (/ ex-a;tdx>
—1

/-1 1
1403 ———
2T

/-1 1 et (1) .
< 144 el
- ;t(t—i—l) tt
- -1 /o1 . e
St1r§hng1+€.z 1 ‘ 21t - etz ) 7(671)_61‘/
Sitry 4
1StV
< 1+ o -et e L . - —
V Vi S v
1 -1 t+1 V4
< 14V2meem.et. — "
= ¢ t;(tJrl)' t
1 /-1 gt-&-l 1
< 14+3V2r-e-et. —
= ¢ ;(t+1)' t+2
Taylor series for e’ 13 1
< 14+3V2m- ez et — . ¢
Vi

s 1
— 14321 e . — < 23551 < 2.36.
Vi

The maximum is obtained for ¢ = 4 (see Figure 3.3).

o ¢ | ratio
N 1 |1
g 2 [1.90
i} 3 [2.32
e 4 |2.36
v 5 |2.26
s 6 | 2.11
I 7 11.98
. 8 |1.86
~ 9 [1.78
o 10 | 1.70
1‘ 4 1‘0 2‘0 3‘0 4‘0 5‘0 6‘0 7‘0 6;0 9‘0 1(;0 11 165
12 | 1.60

Figure 3.3: The numerical and the analytical upper bound on the approximation

ratio on intervals (¢ — 1, /), for each ¢ € [k].

29
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3.5 OWA k-MEDIAN with the Triangle Inequality

In this section we construct an algorithm for OWA k-MEDIAN with costs satisfying
the triangle inequality. Thus, the problem we address in this section is more general
than HARMONIC k-MEDIAN (i.e., the problem we have considered in the previous
section) in a sense that we allow for arbitrary non-increasing sequences of weights.
On the other hand, it is less general in a sense that we require the costs to form a
specific structure (a metric).

In our approach we first adapt the algorithm of Hajiaghayi et al. [78] for FAULT
TOLERANT k-MEDIAN so that it applies to the following, slightly more general set-
ting: for each client j we introduce its multiplicity m; € N—intuitively, this corre-
sponds to cloning j and co-locating all such clones in the same location as j. However,
this will require a modification of the original algorithm for FAULT TOLERANT k-
MEDIAN, since we want to allow the multiplicities {m;};ce to be exponential with
respect to the size of the instance (otherwise, we could simply copy each client a
sufficient number of times, and use the original algorithm of Hajiaghayi et al.).

Next, we provide a reduction from OWA k-MEDIAN to such a generalization of
FAULT TOLERANT k-MEDIAN. The resulting FAULT TOLERANT k-MEDIAN WITH
CLIENTS MULTIPLICITIES problem can be cast as the following integer program:

inj:'rj VJGG

min ZZ mj - ;- Cij i€F
JECETF xwgyz VZE?, jGC’
Zyl:k yz,l'”E{O,l} Vied
« m; € N vy el

In the subsequent theorem we show that the 93-approximation algorithm of Ha-
jiaghayi et al. can be generalized so that it applies to FAULT TOLERANT k-MEDIAN
WITH CLIENTS MULTIPLICITIES with costs forming a metric.

Theorem 27. There exists a randomized algorithm for METRIC FAULT TOLERANT
k-MEDIAN WITH CLIENTS MULTIPLICITIES that computes expected 93-approzimate
solution in polynomial time.

Proof. We reduce an instance of FAULT TOLERANT k-MEDIAN WITH CLIENTS MUL-
TIPLICITIES to an instance of FAULT TOLERANT k-MEDIAN by replacing the multiple
m; of a client j with m; clients in the same location and with the same connectivity
requirement (we will call such clients clones of 7). Observe that there exists an op-
timal solution in which each clone of the same client is connected to the same set of
open facilities. Next, we run the 93-approximation algorithm of Hajiaghayi et al. [78]
on such a constructed instance with clones. It is apparent that the solution that we
obtain by following this procedure approximates the original instance with the ratio
of 93. However, the issue is that m; can be exponential in the number of clients in the
original instance, and so the most straightforward implementation of our reduction
does not run in polynomial-time. To deal with that we will efficiently encode the
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reduced instance, and we will show that the algorithm of Hajiaghayi et al. can be
adapted to run on such encoded instances. We proceed as follows.

First, we solve the LP part of the original algorithm [78] with the additional
multiplicative factors {m,},;ce added to the objective function. From the solution to
the LP, (y;)ies with > ;c5y; = k, we construct an optimal assignment of the clients to
the facilities. We encode such an assignment efficiently by grouping all clones of the
same client into a single cluster and storing an assignment for a single client for each
cluster only (we call such a client the representative of the cluster). In particular, note
that all clones in the same cluster have the same assignments and so, they all have
the same average and maximal assignment costs. We use this property in the next
step of the original algorithm: creating bundles of volume 1 [78, Algorithm 1]. By a
careful analysis of this algorithm we can observe that no new bundles are created for
a cloned client (lines 5 and 6 of Algorithm 1 in [78]) and so that the cloned clients
can be considered in bunches.

Next, as in the original algorithm, we divide the clients into safe and dangerous
by the criterion on the ratio of the maximal and the average cost in the assignment
vector. Intuitively, if the maximum is much higher than the average then the client
is marked as dangerous (for a formal definition see Section 2.2 in [78]), otherwise
it is considered safe. Hence, the clones of the same client are either all safe or all
dangerous. In the latter case they are also in conflict: they are close and they have the
same connectivity requirements (for a definition also see Section 2.2 in [78]). Thus, in
the filtering phase [78, Algorithm 2] either all the dangerous clones of the same client
are filtered out or exactly one of them survives; without loss of generality we can
assume that the representative of the cluster survives. In fact, this is the main reason
why we can quite easy adapt the algorithm. The next step, that is building a laminar
family [78, Algorithm 3], is independent on clients that were filtered out, and so it
can be performed on our efficiently encoded instance. The safe clients are not used
later on by the algorithm (they are only the side effect of creating bundles and later
on they only appear in the algorithm’s analysis). Finally, the rounding process of the
algorithm [78, Section 2.3 depends on the set of constructed bundles and on the set of
filtered dangerous clients (and the induced laminar family), and as we discussed it is
possible to construct each of the two families with efficient encoding. This completes
the proof. n

Consider reduction from OWA k-MEDIAN to FAULT TOLERANT k-MEDIAN
WITH CLIENTS MULTIPLICITIES depicted on Figure 3.4.

Lemma 28. Let I be an instance of OWA k-MEDIAN, and let I' be an instance
of FAULT TOLERANT k-MEDIAN WITH CLIENTS MULTIPLICITIES constructed from
I through reduction from Figure 3.4. An a-approzimate solution to I' is also an
a-approximate solution to 1.

Proof. Let W be an a-approximate solution to I’. By FT-k-med-multi(W, j) we
denote be the total cost of the clients ji,J2,...,Ji constructed through reduction
from Figure 3.4. Similarly, let OWA-k-med(W, j) be the cost of the client j for a
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Reduction. Let wus take an instance [ of OWA  k-MEDIAN
(C,F, k,w,{cij }ieF jec) where w; = %,i € [k] are rational numbers in the
canonical form. We construct an instance I' of FAULT TOLERANT k-MEDIAN
WITH CLIENTS MULTIPLICITIES with the same set of facilities and the same
number of facilities to open, k. Fach client 57 € C is replaced with clients
1,02y - 5 Jk with requirements 1,2,...,k, respectively. For ) = Hle q-, the
multiples of the clients are defined as follows:

o my, = (wp — wey1) - Q, for each L € [k — 1], and

Figure 3.4: Reduction from OWA k-MEDIAN to FAULT TOLERANT k-MEDIAN
WITH CLIENTS MULTIPLICITIES.

solution W in I. For each client j we have:

k r kE r
FT-k-med-multi(W, j) = > m, - <Z cf(W,j)) =3 my -7 (W, )
r=1 =1 r=11i=1
ko7 ko k
=22 my o (W) =33 my, " (W, )
r=11i=1 i=1r=i
k k
=> (CT(W,J’) : ijr>
i=1 r=i

k
=367 (W, ) - wi - Q = Q - OWA-k-med(W, 7).

Let W3 and W3, be optimal solutions for I and I’, respectively. By the same reasoning,
we have that:

FT-k-med-multi(W73, j) = Q - OWA-k-med(W7, 7).
And, thus, that:

> OWA-k-med(W,j) => lFT—k—med—multi(\/\7,j)

jee jee @
1 1
< a—=Y FT-k-medmultiW;,j) < a—= > FT-k-med-multi(Wj, j)
jee jee
= a ) _ OWA-k-med(Wj, j).
jee
This completes the proof. n

Since our reduction preserves the structure of the costs, we immediately obtain
an approximation algorithm for the metric variant of our problem.
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Theorem 29. There exists a randomized algorithm for METRIC OWA k-MEDIAN
that computes expected 93-approximate solution in polynomial time.

Proof. We use the reduction from Figure 3.4 and Theorem 27. The approximation
ratio follows from Lemma 28. m
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Chapter 4

MINIMAX APPROVAL VOTING

In this chapter we provide three algorithms for the MINIMAX APPROVAL VOTING
problem. In Section 4.1 we show the first polynomial time approximation scheme
(PTAS) for MINIMAX APPROVAL VOTING (Theorem 39) which improves the previous
best 2-approximation due to Caragiannis et al. [39]. Next, in Section 4.2 we construct
a parameterized approximation scheme (Theorem 40) which we use in Section 4.3 to
show a faster PTAS (Theorem 46).

Additional notation for this chapter.

For a natural number ¢ € N, by [¢t] we denote the set {1,2,...,t}. For a string
s € {0,1}™, the number of 1’s in s is denoted as ni(s) and it is also called the
Hamming weight of s; similarly ng(s) = m — ny(s) denotes the number of zeroes.
Moreover, the set of all strings of length m with £ ones is denoted by Si.., ie.,
Skm = {s € {0,1}™ : ny(s) = k}. s[j] for j € [m] means the j-th letter of a string s.
si[7] = 1 if voter i approves candidate j-th and s;[j] = 0 if voter i does not approve
candidate j-th. For a subset of positions P C [m] we define a subsequence s|p by
removing the letters at positions [m] \ P from s.

We generalize the Hamming distance for real-valued strings z,y € [0,1]™ by
H(z,y) = X4, ‘x[j} - y[j]‘ For a set of words S C {0,1}" and a word = € {0, 1}™
we denote H(z, S) = maxses H(z, s).

For a string s € {0,1}™, any string s’ € Sk, at distance |ni(s) — k| from s is
called a k-completion of s. Note that it is easy to find such a k-completion s’: when
ni1(s) > k we obtain s’ by replacing arbitrary n;(s) — k ones in s by zeroes; similarly
when n;(s) < k we obtain s’ by replacing arbitrary k — ny(s) zeroes in s by ones. In
this chapter we assume k-completion is made by a deterministic rule.

Throughout this chapter OPT denotes the value of an optimal solution sopr
for the given instance ({s;}icn), k) of MINIMAX APPROVAL VOTING, i.e., OPT =
maxie[n} g‘C(SOPT, Si).

65
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We will use the following Chernoff-Hoeffding bounds.

Theorem 30. [118, chapter 4.1] Let X1, Xs, ..., X, ben independent binary random
variables such that for every i € [n] we have Pr[X; = 1] = p;, for p; € [0,1]. Let
X =>",X,. Then,

o for any 0 < e <1 we have:

PrX > (1+¢)-E[X]] < exp (-3 E[X]) (4.1)

Pr(X < (1-e€)-E[X]] <exp (-3 E[X]) (4.2)
e for any 1 < € we have:

Pr(X > (1+¢)-E[X]] < exp(—ie-E[X]) (4.3)
PriX <(l—¢ -E[X]]=0 (4.4)

4.1 The First Polynomial Time Approximation
Scheme

In this section we will show the first polynomial time approximation scheme for MIN-
IMAX APPROVAL VOTING. First, in Subsection 4.1.1 we formalize the information
we may extract from subset of votes, and introduce a measure of inaccuracy of such
a subset. Next, in Subsection 4.1.2 we prove the existence of a small subset of votes
with stable inaccuracy. In Subsection 4.1.3 we show that the optimization problem
of deciding the part of the committee not induced by the subset of votes can be ap-
proximated with only a small additional loss in the objective function. Finally, in
Subsection 4.1.4 we give an algorithm considering all subsets of a fixed size and show
that, in the iteration when the algorithm happens to consider a subset with stable
inaccuracy, it will produce a (1 + €)-approximate solution to MINIMAX APPROVAL
VOTING.

4.1.1 Extracting Information from Subsets

We consider subsets of votes and analyze the information they carry. We measure
the inaccuracy of this information with respect to the set of all votes. We show that
there exists a small subset with stable inaccuracy, i.e., the drop of inaccuracy after
including one more vote is small.

Let us define an inaccuracy function ina : 2% + N5 that measures the inaccuracy
if we will consider subset Y C S instead of S. The smaller the ina(Y’) is the better
the common parts of strings in Y represent sopr.
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Definition 31. For all Y C S,Y # 0 we define ty € {0,1}™ and ina(Y) as:

0 ifver ?J[J] =0,
tY[j] =11 ifver y[]] =1,
sopr|j] otherwise.

ina(Y) = j‘f(ty, SOPT)-

Intuitively ¢y is the optimal solution sopt changed at positions where all strings
from Y agree. Also we define the pattern of a subset of votes.

Definition 32. For all Y C S, Y # () we define pattern py € {0,1,*}™ as:

0 if Yyey il =0,
pylUl =91 ifYyey ylj] =1,
*  otherwise.

It represents positions that all strings in Y agree. “x” encodes a mismatch. Note
that (from Definitions 31 and 32) ¢y is an optimal solution sopr overwritten by a
pattern py on no-star positions:

2 ) soper[s] i pylj] ==
trlil = {py [7] otherwise.

The inaccuracy function has the following property:
Lemma 33. VY, ¢s, for all sequences {si}=Y1CY,C---CY, =S5 we have
OPT > ina(Y;) > ina(Y2) > --- > ina(Y,,) = 0.
Proof. 1t is easy to see that
ina(Y:) € H(ty,, sopr) = H(tgs, 1, sopr) = H(si, sopr) < OPT),

ina(Yn) = lIl&(S) = U'C(SOPT, SOPT) = 0.

Still we need to prove ina(Y;) > ina(Y;41). Pattern py,,, is built on strings from
Y; C Vi1 and strings from Y4 \ Y;. So Dy;,, has at least as many *’s as py, has.
Therefore ty,,, has at least as many positions as ty, has that agree with optimal
solution sppr, so H (tyi, sopT) > J’f(tyi o sopT>. Using definition of the inaccuracy
function (Definition 31) we prove the lemma. O

Intuitively ina(Y) — ina(Y U {y}) is the decrease of the inaccuracy from adding
element y to set Y. We will show that, when adding one more element y to sets Y, Z
such that Y C Z, the inaccuracy decrease more in a case of adding y to the smaller
set Y than adding y to the bigger set Z.
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Lemma 34. If we artificially extend the ina(-) function for the empty set as ina(()) =
2 - OPT, then the ina(-) function is supermodular, i.e.,

Vyczcs Vses ina(Z) —ina(ZU{s}) <ina(Y)—ina(Y U{s}) (4.5)
Proof. Let fix Y, Z and s such that Y C Z C S and s € S.

Case 1: Z =0:
Then also Y = (), and inequality (4.5) holds obviously.

Case 2: Z #),Y =0:
We have:

ina(Z) —ina(Z U {s}) < OPT =2-OPT — OPT < ina(0)) — ina({s})
= ina(Y) —ina(Y U {s}),

because we use respectively: Lemma 33 and the fact that Z has at least one element;

definition of ina(-) for empty set and an upper bound for ina(-) function; assumption
that Y = 0.

Case 3: Z #0,Y # 0

From definition of ina(-) we have:

ina(Z) —ina(Z U {s}) = U-C(tz, sopT) - U'C<tzu{s}, SOPT)

counting a difference by considering two cases for value of sopr we obtain
= {5 soprlil = 1 A tzuglil = 1 Atzlj] = 0}
+1{5 : soprli] = 0 Atzulil = 0 Atzlj] =1}
using definition of ¢y we get
= {7 soprli] = 1 As[j] = 1A Veez 2[j] = 0}
+[{4: soprli] = 0 A s[j] = OA Vaez 2[j] = 1}
taking an universal quantifier over a smaller subset we obtain

< |{d+ soprlil = 1As[j] = 1A Yyey ylj) = 0

+{7 + soprli] = 0 A s[j] = 0N Vyey yli] = 1}
reversing all previous transformations finally we obtain
= ina(Y) —ina(Y U {s}).

O

laccording to [134, page 766], f : 2° +— R is supermodular iff Vyzcs fY)+ f(Z) < f(YU
Z) + f(Y N Z) which is equivalent with Vyczcs Vses f(Z2)— f(ZU{s}) < f(Y)— fF(Y U{s}).
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ina(S,)
OPT-bennnmnno RN T
1 : : :
. : : :
I
I_l
|
I
I_l
|
I
0 m r
Figure 4.1: The inaccuracy function ina(-) for the sequence of subsets S; C Sy C
e C S, =65,

4.1.2 Existence of a Stable Subset

In this section we will show there exists R-size subset of votes X that when adding
one more vote into X the inaccuracy decreases by at most O—ET.

Lemma 35. For any fized R € Nx; there exists a subset X C S,|X| = R such that

Vees\x ina(X) —ina(X U {s}) < OZT (4.6)

We say such X s O—?—stable.

Proof. First, we construct S, satisfying (4.6) with at most R elements.

Let us construct a sequence of subsets S; C Sy C --- C S, = S,[S;| =1i. We
take S1 = {s;, }, where s;, is any element of S and for r € {2,3,...,n} we take
S, = Sr_1U{s;.} where s;, is such a vote that after adding it the inaccuracy function
decreases the most, i.e.,

S;, = arg max (ina(ST_l) —ina(S,_1 U {s})) (4.7)
s€S\Sr—1
We have
1 R
L . <1 : . _
o min ina(S,) — ina(S,4+1) < I (Z:l ina(S,) ma(STH))

= Jl%(ina(Sl) - ina(SR+1)) < O}P;LT, (4.8)
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because (from Lemma 33) we know that ina(S;) < OPT and ina(Sgy1) > 0. Let r
be a minimizer for the left-hand side of (4.8), then (by the choice of s;, in (4.7)) we
have:

OPT
_R Y
thus S, satisfies (4.6), see Figure 1. If S, has less elements than R we can extend

S, to an R-elements subset X by adding any elements of S\ S,. It follows from the
supermodularity of ina(-). From Lemma 34 we have:

max (ina(Sﬁ) — ina(S, U {s})) <

s€ES\S, (4.9)

Vies\s, ina(X) —ina(X U {s}) <ina(S,) —ina(S, U {s}),
and hence also:

. (ina(X) — ina(X U {s})) < max (ina(S,) — ina(S, U {s})). (4.10)

Finally, taking (4.9) and (4.10) we obtain:

OPT

max (ina(X) —ina(X U {S})) < 7

seS\X
0

Of course we cannot construct such a subset efficiently if we do not know sgpr.
How to find a proper subset X7 For constructing our PTAS we will fix R € N>; and
consider all subsets Y C S with cardinality R. There is less than n® € poly(n) such
subsets. For clarity, we will use Y C S in arguments valid for all subsets considered
by the algorithm, and X C S for a OET—stable subset of votes.

For a fixed Y C S,Y # (), w.l.o.g. we reorder candidates in such a way that py is
a lexicographically smallest permutation:

py =x*x%...x00...011...1.

The first part (from the left) is called “star positions” or “star part”. The remaining
part is called “no-star part”. We define p®*)(Y) as the number of * in py and we
denote it f3:

B=py =4 pylil =}

In our PTAS we essentially fix the “no-star part” of the answer to the pattern py
and optimize over the choices for the “star part” of the outcome. If the number of
stars or number of 1’s on star positions of sgpr is small enough, then there is only
poly(n, m) possible solutions and we can consider all of them. Let us analyze the size
of the “star part”.

Lemma 36. For allY C S we have
B =p(¥) < [¥]-OPT

Proof. Consider an arbitrary Y = {y1,%2,...,yy|}. We can construct Y in the fol-
lowing 3 phases:
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1. Y = {SOPT}

2. forie{1,2,...,]Y]} do
Y =YU {yz}

3.Y =Y \ {SOPT}

After that we obtain set Y. Let us calculate how many stars py has. In Phase 1
there are no stars. In each step in Phase 2 we add at most OPT stars, because

Vietrz,.lvly  H(yi, sopr) < OPT. In Phase 3 we can at most decrease the number
of stars. So 5 < |Y]-OPT. O

Note that for X from Lemma 35 we have
p"(X) < |X|-OPT = R- OPT.

Let us now introduce some more notation. Assuming Y C S and hence also
B = p® (Y) are fixed, we will use the following notation to denote the “star part”
and the “no-star part” of a string x € {0, 1}™:

*=z[1]-z[2]-...-z[f],

' =z[f+1]-x[f+2]-... x[m],

where“-” is a concatenation of strings (letters). So we divide x into two parts: = =
-2

In the following lemma we will show that for the pattern from a stable subset X
we can change the number of 1’s in the “no-star part” to the properly guessed number
of 1’s loosing only twice the stability constant.

Lemma 37. If X C S is (e - OPT)-stable, 2" is a k"-completion of p/, where
k" =ni(shpr), then

Vie{m ..... n} iH:(S/OPT . Z//, Si) S (1 + 261) . OPT (411)

Proof. W.l.o.g. there is insufficient number of 1’s in no-star part of pattern px, i.e.,
k" > nq(p’%). The other case is symmetric.
Let us fix s; € S and consider all combinations of values in strings p’%, 2", s

) [

sbpr at the same position j. «a, € N, for a € {1,2,...,12}, counts the number of
positions 7 with combination a, see Table 4.1.
We have

H(",s}) = {5+ 2"1j) # s/}
and we consider two cases for value of sgpr at position j:
= {5+ 2] # s3] A (2"[5) = sopr V 2"[j] # sopr)}|
next, we divide it into two components:
= |{j: sopr = 2"[J]

- 2]
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combinations
index 1121134 |56 |7[8]9 1011 | 12
of a combination
% 4] 0Ol0]0]O0O]O0O]0]O0]O0]1 1 1 1
2"[7] O] 0|0]O0]|1 1 1 1 1 1 1 1
s?[7] o101 0]1L0]1]O0 1 0 1
sbprldl 0|01 110101 110 0 1 1
number aq Qg | g | Oy | Q5 | Og | 7 | Qg | Cig | (X1 | (Y11 | (12
of occurrences
H(="[4], s714]) O] 11011 170111011 0 1 0
H(sdprlgl, s¥l7]) | 0 | 1 110101 110 1]0 1 1 0

Table 4.1: Combinations of values in strings p’, 2", s/, s§pp. There is only 12
combinations (no 2* = 16), because by the assumption k” > nj(p%) we never
change from 1 in p’; to 0 in 2”.

we use case counts from Table 4.1 to count positions in both components:

=(ag+ar+oa+as+ag+ o0 —ag—ag —aig) + (g + a5 +ay) =

first component =0 second component

and we use the definition of the Hamming distance:
= (H(sbpr, 87) — a3 — ag — a10) + (e + a5 + ag). (4.12)

Since ny(2") = k" =m (s’(’)PT), we get
12
Zak:a3+a4+a7+a8+a11—l—alg
k=5
a5 = (g + Qg — Qg — Qig — (1. (413)

Also we have
oy + ag + Qg § €1 OPT, (414)

because X is €; - OPT-stable. Now we are ready to prove equation (4.11).

H(stopr - 2", 85) = H(soprs ) + H(2", s

(4.12) / / " "
=" H(sopr; 8;) + H(sopr: i) — a3 — ag — o + a4 + a5 + g

(4.13) (4.14)
= J'C(SOPT, Si) +2( ay —Og — Oéw) S (1 + 261) . OPT
<OPT (424) OPT
S €1
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4.1.3 An Auxiliary Optimization Problem

In this section we will consider the optimization problem obtained after guessing the
number of 1’s in the two parts and fixing the “no-star part” of the outcome. It has
variables for all the positions of the “star part” and constraints for all the original
votes s; € S.

Let us define the optimization problem IP(Y, %) in terms of the integer program
(4.15)-(4.19):

minimize ¢ (4.15)
ni(s) =k (4.16)
H(s',s7) < q—H(shpa 87)  Vieqr2,..n) (4.17)
q>0 (4.18)

s'l7] € {0, 1} Vie(1,2,...6) (4.19)

where Y C S,k =K' + k", and s/, is the k”-completion of p§.. Recall that 5 = p%lk)
and pf. is the “no-star part” of the pattern py.
In the LP relaxation LP(Y, k") the constraint (4.19) is replaced with:
s'[j] € [0, 1] Vie{1,2,....8} (4.20)

Constraints (4.15)-(4.18),(4.20) are linear because

B
m(s) =35

j=1
and
B
(') = 3 ((sili) = 0) - o]+ x(sili) = 1) - (1 = $T4)))
j=1
are linear functions of s'[j], where j € {1,2,...,5}.

Lemma 38. For each R € N>1,Y C S,|Y| < R,k € N,es € (0,3) we can find an
(1 + 2¢eq)-approxzimation solution of IP(Y, k') by solving LP(Y, k") and considering at

most
3RIn(2) 3R2 1n(6)

(3n) 2 4+m ?  cases.

Proof. Let us fix constant €3 € (0, %) We consider three cases:

Case 1: ng

(€2)?

There is 27 possibilities for s'. We can bound it as follows.

3RIn(3n) 111(3 )3Rln(2) 3RIn(2)

2'6 <2 (e2)2 M2 — (3n) (2?2 ¢ po]y(n)7

because €, and R are fixed constants. So we will check (in polynomial time) all
possibilities for s’ and we will find optimal solution of the integer program.
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Case 2: kK < %

We can upper bound the number of possibilities for s’ by the number of setting 1’s
into 3 positions:

B 3R2 ln(G) 3R2 In(6)
% < Bk <p (2?2 <m (@2 ¢ poly(m%

because €3 and R are fixed constants.

Case 3: (3> SR(lnggn) N K > 3R(2 1;12(6)

We denote an optimal solution of the IP(Y, k") by ((s")'¥, ¢'¥) and an optimal solution
of the LP(Y, k') by ((s")'F, ¢""). Obviously we have ¢"' < ¢'. We can solve the LP in
polynomial time but we may obtain a fractional solution. We will round the variables
independently. We will use a randomized rounding defined by distributions on each

position j € {1,2,...,8}:

Pr(s'[j] =1] = (s)"[5], Pr[s'[j]=0]=1-()""[j]. (4.21)

We can estimate the expected value of a distance to such a random solution s’:

8
2|8

Vief1,2,..n} ]E[J'C(S/, 1)} )

17 - s;m]]

B

=E X_:l( x(silj] = 0) - s'[] + x(slil =1)- (1 =5[] )]
B

. °“E2< X(silil =0)-E[s[5]]  + x(sili) =1)-E[1-5[j]] )

<.
Il
_

~
I to
=
]
7 N\
>
—~
»
[SEN
>,
]
S~—
—
V)
N
=
]
<.
=
/'\
&
—_
SN—
/
—
—~
CIJ\
S~—
-
]
<
N——
~~

.
Il
MR

(4.17)
S H(() ) < g = Hsha 5. (4.22)

)’ < (2

H(s', s;) is a sum of § independent binary random variables. For ¢ € (0,1) using
Chernoff-Hoeffding bounds we have:

Pr[H(s, ) = (1+€) -E[H(s,5)]] < exp (_(g)2.E[z}c<s',s;)D.

If we take € = WII/)] then we obtain:

?

1 (e2)?-(¢")? 'y ' P
(‘3 | Emn) > Pr [(s5)) 2 E[3(s,5)] +e2 "]
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(4.22)
> Pr[H(s,5) > ¢F = H(shisf) + 2 0] (4.23)

We want to know an upper bound for the probability that we make an error greater
than €, - ¢'¥ for at least one vote:

Pr {316{1,2 ..... n} * H(s',57) > qLP — H(shra: 57) + €2 q }

(4.23) 1 (e2)?(¢'F) L o
< n-exp ( 3 I[M) <mn-exp (—3(52) -q ), (4.24)

where the last inequality is because of:

o (4.22) " IP
]E[f}f(s,si)} < ¢ - H (K e s < ¢

7

We want to further upper bound the probability in (4.24). From the assumption
about  and from Lemma 36 we have:

1 Lemma 36
?’R(ngg’")<5 <"V |Y]-OPT < R-OPT < R-¢"
€2

equivalently
1
= >n-exp (—(62)2 : qIP> . (4.25)
3 3

Finally we have

P] (4.24),(4.25)

< (4.26)

1
Pr {316{1,2 ..... ny s H(s', s)) > ¢ — H(Kpq, s)) +e2-q 3

Hence, with probability at least % we obtain:

vie{LQ ,,,,, n} :H:<SI ’ SXLGM Si) = :H:( ) + }C(SALGv ;/)
(4.26)
< = H(shpqs ) T ea g+ H(Sha s7) < (L+e) gL (4.27)

We can also obtain a wrong number o 1’s in s'. We define s/;  as the k’-completion of
s’. We will show that the additional error for such operation is not so big. Expected
number of 1’s in s’ is equal &’

E[ni(s)] = E

A ;1| lin. of B B ANLPr - def. NLP\ (4.16) .,
SO )] a (()) T K

j=1 j=1

We want to know how much we lose taking the k’-completion. Similar as before,
ni(s') = Z §'[j] is a sum of /3 independent binary random variables. For ¢ € (0, 1)
using Chernoff Hoeffding bounds we have:

/ " /(4']) 1 "2 /
Prlnn(s) = (14+¢) -] < exp (—5()F).,



76 CHAPTER 4. MINIMAX APPROVAL VOTING

Prfm(s) < (1) K]S exp (~ () K).

Taking both inequalities together, ¢’ = < and using assumption &’ > %1?2(6) we get:

Pr{jni(s") — K| >€ K] <2 exp <—1(e”)2 : k') <2-exp e k) < 1
- - 3 - 3 R? 3

So with probability at least % the error from taking the k’-completion is not greater

Lemma 36
thane’ - k' =2 .- K <2.8 < 2.]Y]-OPT <& -OPT <e-q¢".
Combining the above with (4.27) we obtain an (14 2¢s)-approximate solution with
probability at least % O]

4.1.4 Algorithm and Its Complexity Analysis

Now we are ready to combine the ideas into a single algorithm (see Algorithm 4).

Algorithm 4: Polynomial time approximation scheme for MINIMAX APPROVAL
VOTING.

1 for each R-element subset Y = {s;,, Siy,-.-,8ip} C S do

2 for each division k into two parts k = k' + k" do

3 s\ < k"-completion of py (if not possible, then skip this inner iteration);
4 s\, < an approximation solution of IP(Y, k') from Lemma 38

(if LP(Y, k') infeasible, then skip this inner iteration);

5 evaluate s1q - Sapg by computing max;c (1o, ny H(si, Sarq  SALg);

=]

SALG ¢ the best solution s/ - $A1,¢ from a loop in lines 1-5;
7 return sapc;

It remains to argue that for a large enough parameter R the above algorithm will
at some point consider a stable subset of votes X that leads to an accurate enough
approximation of the objective function of MINIMAX APPROVAL VOTING.

Theorem 39. For any ¢ > 0 we can find (14 €)-approximation solution for MINIMAX
APPROVAL VOTING in polynomial time n®®/<").m®®) 4-n00/).yy 00/ wyith probability
at least 1 — p, for any fized p > 0.

Proof. Let ¢g = 5§ < %

By Lemma 35, there exists an 60'O%—stable set of votes X C S of cardinality
(X|=R=[Z2].

Consider algorithm Algorithm 4. In one iteration it will consider X and k', k"
such that n;(sopr) = k. Recall that sy, is the specific k”-completion of p%. By
Lemma 37 we have:

H(sopr - SaLg: 5i) < (1+¢€) - OPT,
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hence (s’ = Sopry ¢ = (1 + €) - OPT) is a feasible solution to IP(X, k") and the
optimal value of IP(X, k") is at most (1 + ¢y) - OPT.
By Lemma 38 with eo = 2 we find a (1 + €¢)-approximate solution (syq, arc)

2
to IP(X, k') with probability at least . So we have:

eo<1
gane < (1+c)-(1+¢)-OPT S (1+3¢) - OPT = (1 + ¢) - OPT.

It remains to observe, that sarg = S\ SaLq is @ solution to MINIMAX APPROVAL
VOTING of cost gare < (1+¢€)- OPT with probability at least 3. In order to increase
the success probablility to 1 —p we repeat the algorithm log,,(p) = O(1) times. Then

indeed, probability of incorrect answer is at most (%)logg/3(p ) =p.
The algorithm examined O(nft) C O(n@) C poly(n) subsets Y, O(m) choices of
k' and each time considered at most O ((371)108'[6/ 1n(2)/e g 108-16/e]* In(6)/ 62) cases.

So the total running time is upper bounded by n®(/€") . 01 4 00/ . 00/ 7

4.2 Parameterized Approximation Scheme

In this section we will show a parameterized time approximation scheme for MINIMAX
APPROVAL VOTING proving the following theorem.

Theorem 40. There exists a randomized algorithm which, given an instance (S =
{si}ticm), k. d) of the decision version of MINIMAX APPROVAL VOTING (d is the re-

2d
quired mazimal distance) and any € € (0,3), runs in time O ((z) -(m+n)+ mn)

and either
(1) reports a solution at a distance at most (1 + €)d from S, or
(ii) reports that there is no solution at a distance at most d from S.

In the latter case, the answer is correct with probability at least 1 — p, for arbitrarily
small fixed p > 0.

Let us proceed with the proof. In what follows we assume p = 1/2, since then
we can get the claim even if p < 1/2 by repeating the whole algorithm [log,(1/p)]
times. Indeed, then the algorithm returns an incorrect answer only if each of the
[log,(1/p)] repetitions returned an incorrect answer, which happens with probability
at most (1/2)1082(1/P) = p,

Assume we are given a yes-instance and let us fix a solution s* € Si,,, ie., a
string at distance at most d from all the input strings. Our approach is to begin with
a string x¢ € Sk, not very far from s*, and next perform a number of steps. In the
Jj-th step we either conclude that x;_; is already a (1 + €)-approximate solution, or
with some probability we find another string x; which is closer to s*.

First observe that if |n(s1) — k| > d, then clearly there is no solution and our
algorithm reports NO. Hence in what follows we assume |ny(s;) — k| < d. We set x
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to be any k-completion of s, therefore we get H(xg, s1) < d. Since H(sy,s*) < d, by
the triangle inequality we get the following bound

H(zo, s™) < H(wo, s1) + H(s1,s™) < 2d. (4.28)

Now we are ready to describe our algorithm precisely (see also Algorithm 5).
We begin with zy defined as above. We are going to create a sequence of strings
To, L1, . .., xq satisfying nq(x;) = k for every j. For j € [d] we do the following. If
for every i € [n| we have H(x;_1,s;) < (14 €)d the algorithm terminates and returns
xj_1. Otherwise, fix any i € [n] such that H(z;_1,s;) > (1 +€)d. Let Py = {a €
m] : 0 = xj_1]a] # s;la] =1} and Pj; = {a € [m] : 1 = x;_1[a] # s;[a] = 0}. The
algorithm samples a position ag € P;o and a position a; € Pj;. In case Pjg = ) or
P;1 = 0 we return NO because it means that H(s;, Sgm) = H(s;, xj-1) > d. Then,
x; is obtained from x;_; by swapping the 0 at position ay with the 1 at position a;.
If the algorithm finishes without finding a solution, it reports NO.

Algorithm 5: Parameterized approximation scheme for MINIMAX APPROVAL
VOTING.

if |n1(s1) — k| > d then return NO;

xg < any k-completion of sq;

for j € {1,2,...,d} do

if H(xj—1,5) < (1+¢€)d then return z;_i;

otherwise there exists s; s.t. H(zj_1,s;) > (1 + €)d;

Pjo <+ {a€m]:0=ux;_1]a] # sia] = 1};

Pj1+{aecm]:1=ux;_1[a] # sila] =0}

if min(|Pjpl,|Pj1]|) = 0 then return NO;

x; < swap 0 and 1 in z;_1 on a pair of random positions from P;o and P; ;

10 if H(zg,S) < (1 + €)d then return z4;
11 else return NO;

© W N O oA W N

o

The following lemma is the key to get a lower bound on the probability that the
x;’s get close to s*.

Lemma 41. Let x be a string in Sk, such that H(x,s;) > (1+ €)d for some i € [n].
Let s* € Sk be any solution, i.e., a string at distance at most d from all the strings
s;j, j € [n]. Denote

Py ={a € [m]:0=xz[a] # s;[a] = s"[a] =1},
P ={a€|m]:1=xzla] # si[a] = s"[a] =0}.
Then, it holds that min (|Fy|, |P|) > <.
Proof. Let P be the set of positions on which z and s; differ, i.e., P = {a € [m] :
x[a] # s;[a]} (see Figure 4.2). Note that Py U P} C P. Let Q = [m] \ P.
The intuition behind the proof is that if min(|Fg|,|P;|) is small, then s* differs

too much from s;, either because s*|p is similar to z|p (when |PJ| ~ | Pf|) or because
s*|o has much more 1’s than s;|¢ (when |Fj| differs much from |Fy]).
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P Q
N I 0 BT
i 1 0 | 0 | 1 |
s 0 Jifo] 1| |

Fy Pr
Figure 4.2: Strings x, s; and s* after permuting the positions.

We begin with a couple of useful observations on the number of 1’s in different
parts of x, s; and s*. Since x and s; are the same on @), we get

ni(zlg) = m(sil)- (4.29)

Since ny(z) = ni(s*), we get nq(x|p) + n1(z|g) = n1(s*|p) + n1(s*|g), and further

m(s'lo) = m(zl) = m(zlp) —mi(s™|p). (4.30)
Finally note that
ni(s*p) = B | +m(zlp) = [P (4.31)
We are going to derive a lower bound on H(s;, s*). First, we have

H(silp, s*[p) = |P| = ([F5] + | Pr]) = H(z, s0) — (G| + [P
> (1+e€)d— (|F5| + |Pr]). (4.32)

On the other hand, it holds that

* * (4.29) "
Hsilg, s"|q) = Ini1(s™]q) — ni(silo)l =" [ni(s"|q) — ni(zq)|

4.30 * 4.31 * %
"2 (alp) — ma(s7le)l 2 P - 1B (4.33)

It follows that

d > Hsi,s") =Hsilp,s™|p) + H(silq, s"[)
(4.32),(4.33) . . . . ' . .
= (+ed— (155 +|P)) +|[P7| = [F5ll = (1 + €)d — 2min(|F5], [PY]).

Hence, min(|P;|, |Pf]) > < as required. O

Corollary 42. Assume that there is a solution s* € Sg., and that the algorithm
created a string xj, for some j € {0,...,d}. Then, it holds that Pr[H(z;,s*) <

2d —2j] > (£)”
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Proof. We use induction on j. For j = 0 the claim follows from (4.28). Consider
j > 0. By the induction hypothesis, we get

2j—2
Pr[H(z;_1,5%) < 2d — 2j + 2] > <§> . (4.34)

Assume that H(z;_1,s*) < 2d — 2j + 2. Since z; was created, H(z;_1,s;) > (1 +€)d
for some i € [n]. Since H(s*,s;) < d, by the triangle inequality we get the following

|F)j,(]| + |Pj’1| - H(Ij_1,5i> S J{(xj_l,s*) + U'C(S*,SZ'> S 3d — 2] + 2 S 3d. (435)

Then, we have

2

* . * . Bl 1P (5) ey

Py, ) < 24 = 2] | Moy, ) S24 =242 2 [ LEE > Ol (5) -
2

(4.36)

The first inequality holds through counting proper swaps among all possible swaps.

The second inequality follows from Lemma 41 and (4.35). The claim follows by

combining (4.34) and (4.36). O

In order to increase the success probability, we repeat the algorithm until a so-
lution is found or the number of repetitions is at least (3/¢)*. By Corollary 42 the
probability that there is a solution but it was not found is bounded by

e\ 2d (3/)* 1 (3/€)* 1
1 (< —(1- <<=
< <3> ) ( (3/6)2d> Te 2

This finishes the proof of Theorem 40.

—_

; d 10 15 20 25

0.5 0.3 0.2 0.15 | 0.12
10719 1 0.357 | 0.225 | 0.164 | 0.129
10720 [ 0.370 | 0.230 | 0.167 | 0.131

a1
Table 4.2: Rounded values of € = % . (log %) e

Table 4.2 presents (rounded) values of e for which the worst case bounds (with
constants omitted) for the running times of algorithm from Theorem 40 and the
algorithm of [116] are equal, i.e., when (3/€)* - log,(1/p) = d?* which gives ¢ =
(3/d) - (log,(1/p))2a. For e greater than the values in Table 4.2 our algorithm can be
faster than the previous one for instances with no solution at distance at most d from
S. Note that the effect of p on the border value of € is not very significant. How-
ever, a meaningful comparison of practical aspects of these two algorithms requires
performing a series of experiments with actual implementations.
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4.3 A Faster Polynomial Time Approximation
Scheme

The goal of this section is to present a PTAS for the optimization version of MIN-
IMAX APPROVAL VOTING running in time n®(/€18(/9) . poly(m). It is achieved
by combining the parameterized approximation scheme from Theorem 40 with the
following result, which might be of independent interest.

Theorem 43. There exists a randomized polynomial time algorithm which, for ar-
bitrarily small fived p > 0, given an instance ({S;}icp), k) of MINIMAX APPROVAL
VOTING and any € > 0 such that OPT > 122€1n", reports a solution, which with
probability at least 1 — p is at distance at most (1 + €) - OPT from S.

In what follows, we prove Theorem 43. As in the proof of Theorem 40 we assume
w.lo.g. p = 1/2. Note that we can assume e < 1, for otherwise it suffices to use
the 2-approximation of [39]. We also assume n > 3, for otherwise it is a straight-
forward exercise to find an optimal solution in linear time. Let us define a linear
program (4.37-4.40):

minimize d (4.37)

Z x; =k (4.38)
j€lm]

Z (I—z)+Y, z;<d Vi€ [n] (4.39)
Jj€[m] Jj€[m]
Szm si[5]1=0

€0,1] Vj € [m)] (4.40)

The linear program (4.37-4.40) is a relaxation of the natural integer program for
MINIMAX APPROVAL VOTING, obtained by replacing (4.40) by the discrete constraint
z; € {0,1}. Indeed, observe that z; corresponds to the j-th letter of the solution
T =1 Ty, (4.38) states that ny(z) = k, and (4.39) states that H(z,S) < d.

Algorithm 6: The algorithm from Theorem 43
Solve the LP (4.37-4.40) obtaining an optimal solution (z7, ...
for j {1 2 .,m} do

L Set z[j] + 1 with probability =7 and z[j] <= 0 with probability 1 — a7

[uny

d);

7m7

W N

4 y <+ any k-completion of x;
5 return y;

Our algorithm is defined as follows (see Algorithm 6). First we solve the linear
program in time poly(n,m) using the interior point method [92]. Let (x7,...,x},, d")
be the obtained optimal solution. Clearly, d* < OPT. We randomly construct a string
x € {0,1}™, guided by the values z. More precisely, for every j € [m] independently,
we set z[j] = 1 with probability x}. Note that z does not need to contain k ones. Let
y be any k-completion of x. The algorithm returns y.
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Clearly, the above algorithm runs in polynomial time. In what follows we bound
the probability of error. To this end we prove upper bounds on the probability that
x is far from S and the probability that the number of 1’s in z is far from k. This is
done in Lemmas 44 and 45, which can be shown using standard Chernoff-Hoeffding
bounds.

Lemma 44. It holds that Pr[H(z,S) > (1+§)-OPT| < 1.

Proof. For every i € [n] we define a random variable D; that measures the distance
between x* and s; by

D; = § (1 —a[j]) + E: z[j].
JE[mM] JE€[m]
si[j]=1 si[j]1=0

Note that z[i] are independent binary random variables. Using linearity of the ex-
pectation we obtain

EDi]= E| Y (-z[j) + Y [

jelm],sifjl=1 j€lm],si[j]=0

= > A=ER[) + > Elzj]
jelm]sifjl=1 Jj€lm],si[j]1=0

= > (- + > 1 <d"<OPT. (4.41)
j€[ml,sifj]=1 j€[m],s:[5]1=0

Note that D; is a sum of m independent binary random variables X; = 1 — z[j] when
si[7] = 1 and X; = z[j] otherwise. Denote § = ¢- QEFDTA. We apply Chernoff-Hoeffding
bounds. For 6 < 1 we have

(4.41)

Pr(D; > (1+§)-OPT] < Pr[D;>E[D;]+ 5 OPT| = Pr[D; > (1+4)-E[D,]
(4.1) 1 OPT \? (4.41) 2. OPT
< — . . < - .
< exp( 3 (e QE[Di]> E[DZ]) < exp( D )

In case § > 1 we proceed analogously, using Chernoff-Hoeffding bounds (4.3) we get

(4.3) -OPT\ 1>e 2, PT
Pr[D; > (1 + %) -OPT] < exp (—6 0 ) % exp <—€O> )

6 12
Next, we use the union bound to get the claim
Pr[H(z,S) > (1+5) - OPT| = Pr [3ipy  Di > (1+5) - OPT]

2.OPT 22 . QpPT n>3 1
<mn-exp (—612> <mn-exp <—0PT12> <n? < 7
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Lemma 45. [t holds that Pr [|n1(x) — k>3- OPT} <1

Proof. First we note that
Blni (@) =E| 3 ofj)] = 3 Blli) = X o5 =k,
j€lm] j€m] j€[m]

Pick an i € [n]. Define the random variables

Bi= Y (—ali), F= > al]

j€lm],silj]=1 j€[m],silj]=0
Let D; = E; + F;, as in the proof of Lemma 44. By (4.41) we have
E[E] <E[E] + E[F] = E[D;] < OPT

E[F)] <E[E] +E[F] = E[D;] < OPT
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(4.42)

(4.43)

(4.44)

Both E; and F; are sums of independent binary random variables and we apply
Chernoff-Hoeffding bounds as follows. When fe - 225 <1 then using (4.1) and (4.2)

E[E;]
we obtain

Pr [ E; —E[E)]| > ie : OPT}

(11),(4.2) 1 1, (OPT)? 1 1, (OPT)?
< . -E[E; B
= o ( 3716 B2E] ]> e ( 2 16  E2[E)

(4§3)2 ( L2 OPT)
< exp 486 s

otherwise (ie : % > 1), using (4.3) and (4.4), we have

Pr [ Ei — E[E)]

1 (43),(4.4 1 1 OPT
> - -OPT] < e :
4 = eXp( 3 4% E[E]

< ( 1 OPT) B ( 1o OPT)
< exp 13 < 2-exp 486 .
To sum up, in both cases we have shown that

€ 1
p —-.0OPT|<2- ——é. PT).
r{ >4 O }_ exp( 486 O

E; — E[E]

Similarly we show

F; —E[F}]

(4.1),(4.2),(4.3),(4.4),(4.44)
Pr { ] <

1
2 - exp (—4862 -OPT

€
> —.-0OPT
4

We see that

: E[Ei]>

(4.45)

) . (4.46)

n(z) = >zl =nls)— Y, A—z[i)+ Y x[j] =ni(s;) — Ei+F (4.47)

J€[m] J€[m],s;[5]=1 J€m],s;[5]=0
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and hence it holds
E[ni(z)] = ni(s;) — E[E;] + E[F}]. (4.48)
Additionally we will use
Ve,ye R |z —y|>a = |z|>a/2 V |y| > a/2. (4.49)
Now we can write
1 (4.42)
Pr {nl(ac) — k| > ze- OPT} ='Pr {nl(x) — E[ny(z)]

(4.47),(4.48)

I pr[

(4.49)
< Pr {

> %e . OPT]

>l OPT}

ni(s;) — E; + F; — ny(s;) + E[E] — E[F}]

E; — E[E;]

>ie~OPT V

F, —E[F}]

> ie . OPT}

< Pr[

E; — E[E]| > Le- OPT} + Pr [ F, — E[F]| > Le- OPT]

(4.45),(4.46) ssum. n>3
< 4 - exp (—4—1862-OPT) s 4 - exp (—%hln) <

1
1
[

We can finish the proof of Theorem 43. By Lemmas 44 and 45 with probability
at least 1/2 both H(x,S) < (1+ 3¢) - OPT and H(y,z) = |ni(z) — k| < 3¢ - OPT.
By the triangle inequality this implies that H(y, S) < (1 +¢) - OPT, with probability
at least 1/2 as required.

We conclude the section by combining Theorems 40 and 43 to get a faster PTAS.

Theorem 46. For any € > 0 we can find (1+€)-approximation solution for MINIMAX
APPROVAL VOTING in polynomial time nO/* dog(1/€)) L 0() yyith, probability at least
1 —r, for any fixed r > 0.

Proof. First we run the algorithm from Theorem 40 for d = [222]2%] and p = r /2.

If it reports a solution, for every d' < d we apply Theorem 40 with p = r/2 and
we return the best solution. If OPT > d, even the initial solution is at distance at
most (14 €)d < (1 +¢€) - OPT from S. Otherwise, at some point d = OPT and we
get a (1 + €)-approximation with probability at least 1 —r/2 > 1 —r.

In the case when the initial run of the algorithm from Theorem 40 reports NO, we
just apply the algorithm from Theorem 43, again with p = /2. With probability at
least 1—7/2 the answer NO of the algorithm from Theorem 40 is correct. Conditioned
on that, we know that OPT > d > 1226# and then the algorithm from Theorem 43
returns a (1 + €)-approximation with probability at least 1 — r/2. Thus, the answer
is correct with probability at least (1 —7r/2)%> > 1 —r.

The total running time can be bounded as follows

2441nn
O* ((3> < ) C O* <no<1n:2/é)> - nO(*%2%) - poly(m).

€




Chapter 5

Concluding Remarks and
Open Questions

In this thesis we have shown new polynomial-time constant-factor approximation
algorithms for a few NP-hard optimization problems that model real-world issues
such as clustering and multiwinner elections.

In Chapter 2 we have shown the first constant-factor approximation algorithm for
the ORDERED k-MEDIAN problem. This was achieved by adopting the less detailed
version of the analysis of the algorithm by Charikar and Li for k-MEDIAN [48] | and
hence our constants can probably be improved.

Soon after the submission of our paper [35, 36], Chakrabarty and Swamy [41, 43]
announced 18+ € and 8.5+ ¢ approximation algorithms for ORDERED k-MEDIAN and
RECTANGULAR ORDERED k-MEDIAN respectively. A few months later Chakrabarty
and Swamy [42, 44] improved an approximation constant for ORDERED k-MEDIAN
to 5 4+ €. This is quite low constant but still there is a gap to known hardness of
approximation constant. Indeed, (2 — €)-approximation algorithm for ORDERED k-
MEDIAN would imply P = NP due to hardness of k-CENTER [82].

It is a challenging open problem to close approximability gaps either for k.-MEDIAN
or for ORDERED k-MEDIAN. Especially, it would be interesting to show hardness of
approximation for ORDERED k-MEDIAN with a constant above currently best known
approximation factor for k-MEDIAN, i.e., 2.675 + ¢ [31].

It might be interesting to see if our methods can be used for other problems
with ordered objectives. In particular, relaxing the assumption on weights being
non-increasing appears to be a natural direction for future work. Indeed, to see the
expressive power of the ordered objective function observe that the k-MEDIAN WITH
OUTLIERS problem [47], which is a version of k~-MEDIAN where the objective function
does not pay for the p most expensive connection costs for some fixed p, can naturally
be encoded as a version of ORDERED k-MEDIAN with increasing weights. Specifically,
k-MEDIAN WITH OUTLIERS is equivalent to ORDERED k-MEDIAN with a sequence
of weights equal to p zeros on the lowest indices and n — p of ones on the highest
indices. For k-MEDIAN WITH OUTLIERS a constant factor approximation using local
search and Lagrangian preserving multiplier property is known [49].

In Chapter 3 we have introduced a new family of clustering problems, called OWA
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k-MEDIAN, and we have shown that our problem with the harmonic sequence of
weights allows for a constant factor approximation even for general (non-metric) costs.
Hence this algorithm applies to PROPORTIONAL APPROVAL VOTING as well. In the
analysis of our approximation algorithm for the HARMONIC k-MEDIAN problem, we
used the fact that the dependent rounding procedure satisfies the Binary Negative
Association. Also we showed that METRIC OWA k-MEDIAN can be approximated
within a factor of 93 via a reduction to FAULT TOLERANT k-MEDIAN WITH CLIENTS
MULTIPLICITIES.

It has been shown that OWA k-MEDIAN with p-geometric weights with p < 1/e
cannot be approximated without the assumption of the costs being metric [32]. The
status of the non-metric problem with p-geometric weights with p > 1/e remains an
intriguing open problem. Another interesting direction is to study the computational
complexity of the problem with p-geometric weights in a metric space.

Finally, we believe that it is an important future direction to establish some lower
bounds for the approximability of the studied problems, in particular for the problem
of finding winners under PROPORTIONAL APPROVAL VOTING.

In Chapter 4 we have shown two PTASes for the MINIMAX APPROVAL VOTING
problem improving the previous best 2-approximation [39] and we have constructed a
parameterized approximation scheme for MINIMAX APPROVAL VOTING that can be
of independent interest. Although the asymptotic worst-case complexity of a PTAS
from Theorem 43 is better than in the case of a PTAS from Theorem 39, the large
constants hidden in the exponents of the function describing the running time still
make it far from being practical. A further algorithm engineering research effort can
help to turn our ideas into a useful implementation.

There are some unanswered questions related to MINIMAX APPROVAL VOTING.
Our PTASes are randomized, and it seems there is no direct way of derandomizing
them. It might be interesting to find an equally fast deterministic PTAS. The second
question is whether there are even faster PTASes for CLOSEST STRING or MINIMAX
APPROVAL VOTING. Recently, Cygan et al. [57] showed that under ETH, there is no
PTAS in time f(e)-n°/ for CLOSEST STRING. This extends to the same lower bound
for MINIMAX APPROVAL VOTING, since we can try all values k € {0,1,...,m}.
It would be interesting to close the gap in the running time of a PTAS either for
CLOSEST STRING or for MINIMAX APPROVAL VOTING.

Concluding, we believe that the ideas and algorithm analysis techniques developed
in this thesis will be useful in further work on approximation algorithms. Also we
hope our results will stimulate more interdisciplinary research on relations between
clustering problems and multiwinner elections.

The last comment is on the practicality of the presented results. There are ex-
amples of theoretical work which was next turned into practical software by means
of a non-trivial algorithm engineering effort. See, e.g., the algorithm of Tamaki [144]
based on the work of Bouchitte and Todinca [23], which solved all 100 instances of
exact treewidth challenge at the PACE 2017 competition [58]. Similarly, we believe
that our techniques, possibly augmented with additional ideas, may be used in an
efficient implementation. However, known hardness and lower bounds show obstacles
which any such implementation has to face.
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