
Kilka dokładnych rozwiązań zadania egzaminacyjnego

Antoni Kościelski

12 lutego 2018

1 Sformułowanie zadania

Rangą elementu x[i] w ciągu x[0], x[1], . . . , x[n−1] (liczb całkowitych) nazywamy liczbę elementów
tego ciągu mniejszych od x[i].

Napisz funkcję lub algorytm realizujący następującą specyfikację:

Wejście:

parzysta liczba naturalna n > 0 i tablica liczb całkowitych x taka, że

x[0] ¬ x[1] ¬ . . . ¬ x[n/2− 1] oraz x[n/2] ¬ x[n/2 + 1] ¬ . . . ¬ x[n− 1].

Wyjście:

ciąg liczb r[0], r[1], . . . , r[n−1], w którym r[i] jest rangą x[i] w ciągu x[0], x[1], x[2], . . . , x[n−1].

Opisz ideę swojego rozwiązania, uzasadnij poprawność i oszacuj złożoność obliczeniową.

2 Rozwiązania o złożoności O(n2)

2.1 Algorytm naturalny

Zadania (lub problemy) można zwykle rozwiązać używając algorytmów, które określam jako natu-
ralne, czyli wynikające bezpośrednio ze sformułowania lub definicji. W naszym przypadku mamy
policzyć rangi dla wszystkich elementów danego ciągu, a więc robimy to, a więc realizujemy nastę-
pujący algorytm

for (i=0, i<n, i++) {r[i] = ranga(i, x, n);}

gdzie ranga jest funkcją1, która dla danego ciągu x długości n (tablicy indeksowanej liczbami od
0 do n− 1) wylicza rangę liczby x[i] w ciągu x.

W dalszym ciągu litera n będzie oznaczać liczbę lub zmienną w programie, o której jest mowa
w specyfikacji zadania, podobnie x, które oznacza ciąg, ewentualnie tablicę o n elementach, a r to
ciąg wyliczonych rang lub tablicę służąca do gromadzenia tych liczb.

Musimy jeszcze jakoś zdefiniować funkcję ranga. Zgodnie z naturalnym algorytmem funkcja ta
powinna porównywać daną liczbę z każdym wyrazem danego ciągu i zliczać te wyrazy, które są
mniejsze od danej liczby. Taki algorytm nie jest godny przedstawienia w tym tekście, ale podała
go niemała liczba osób rozwiązujących zadanie. Jest poprawny dla wszystkich możliwych danych i
nie wykorzystuje szczególnych własności danych, opisanych w specyfikacji.
1Będzie wiele funkcji o nazwie ranga i będą mogły się różnić postacią parametrów.

1

2.2 Ranga elementu ciągu niemalejącego w tym ciągu

Łatwo znajduje się rangę i-tego wyrazu niemalejącego ciągu x. Można to zrobić zgodnie z następu-
jącym algorytmem (ten algorytm może stać się treścią funkcji ranga):

if (x[i] ¬ x[0]) return 0;
while (x[i-1] = x[i]) i– –; return i;

Może warto zatrzymać się chwilę na poprawnością tego algorytmu. Algorytm ten może być
wykonywany na dwa sposoby, zależnie od danych. Jeżeli x[i] ¬ x[0], to w danym ciągu nie ma ele-
mentów mniejszych od x[i] i na mocy definicji ranga x[i] jest równa 0. Stąd zwrócona przez algorytm
wartość jest w tym przypadku rangą x[i]. W drugim przypadku poprawność algorytmu wynika z
faktu, że każde dwa równe wyrazy danego ciągu mają w tym ciągu tę samą rangę (ranga zależy
tylko od wartości wyrazu, a nie od jego położenia). Poprawność daje się dowieść formalnie metodą
niezmienników sprawdzając, że stwierdzenie ranga x[i] jest równa randze x[i0] jest niezmiennikiem
pętli while w rozważanym algorytmie (i0 to początkowa wartość zmiennej i).

Kontrowersje zwykle budzi pytanie, czy tak proste fakty trzeba dowodzić. Moim zdaniem jest
to oczywiste. Każdy programista musi jakoś ustalać (choćby dla własnej potrzeby), czy pisze po-
prawne programy. Jedną metod badania poprawności jest jej uzasadnianie. Testowanie programów
jest pomocne, ale niewystarczające. Dlatego student czasem musi przekonać osoby oceniające jego
umiejętności, że potrafi badać (dowodzić) poprawność programów. Umiejętności studenta mogą
być badane metodą testową („napisz program, który uważasz za poprawny, a my ocenimy jego
poprawność”), ale nie jest to ani jedyna, ani najlepsza metoda. Dlatego również sprawdza się, czy i
jak studenci uzasadniają poprawność programów, bo jest to bardzo ważna i niezbędna umiejętność.

Chwilę uwagi warto też poświęcić złożoności podanego algorytmu. Łatwo przekonać się, że war-
tości zmiennej i przyjmowane podczas działania algorytmu tworzą ciąg malejący o wartościach od 0
do n (dlaczego?), gdzie n to wielkość danej tablicy. Kolejne zmiany wartości tej zmiennej następują
po wykonaniu określonej liczby czynności. Stąd złożoność czasowa tej procedury jest rzędu O(n).
Co więcej, tego oszacowania nie daje poprawić, o czym świadczy ciąg 0, 1, 1, 1, . . . , 1. Licząc rangę
ostatniego elementu tego ciągu zgodnie z podanym przepisem trzeba wykonać przynajmniej n− 1
czynności (na przykład n − 1 razy nadajemy wartość zmiennej i). Jak widać można jakoś argu-
mentować, że rozważana procedura ma złożoność rzędu O(n). Czasem warto to zrobić z różnych
względów, na przykład z wyżej podanych powodów lub dla sprawdzenia własnych umiejętności.

2.3 Ranga liczby w ciągu niemalejącym

Czasem może być potrzebne ogólniejsze pojęcie rangi i bardziej ogólna procedura, która dla danego
ciągu podaje rangę dowolnej liczby, niekoniecznie występującej w danym ciągu. Taką procedura,
działającą dla ciągów monotonicznych, może być wzorowana na poprzedniej i może mieć następu-
jącą postać:

if (x[n-1] < a) return n;

i = 0; while (x[i] < a) i++; return i;

Analizę poprawności i złożoności tej procedury pozostawiam Czytelnikowi.

2.4 Przykład rozwiązania o złożoności O(n2)

Przypuśćmy, że mamy następującą procedurę ranga. Proste rozwiązanie naszego zadania możemy
otrzymać dopisując do niej jedną instrukcję:

int ranga(int a, p, k)

/*Zakładamy, mamy daną tablicę x, ciąg x[p], x[p+ 1], . . . , x[k − 1] jest dobrze
określonym, niemalejącym podciągiem x i chcemy wyliczyć rangę liczby a
we wskazanym podciągu x.*/

{ if (x[k-1] < a) return k - p;
i = p; while (x[i] < a) i++; return i; }

for (i=0, i<n, i++) r[i] = ranga(x[i],0,n/2) + ranga(x[i],n/2,n);

3 Rozwiązania o złożoności O(n log n)

3.1 Ranga w ciągu niemalejącym rekurencyjnie

Rangę można też obliczać za pomocą następującej funkcji rekurencyjnej.

int ranga(int a, p, k)

/*Zakładamy, mamy daną tablicę x, ciąg x[p], x[p+ 1], . . . , x[k − 1] jest dobrze
określonym, niemalejącym podciągiem x i chcemy wyliczyć rangę liczby a
we wskazanym podciągu x.*/

s = p + (k – p)/2;

if (x[s] < a)

{ if (p == s) return 1;
else return s – p + ranga(a, s, k); }

else { if (p == s) return 0;
else return ranga(a, p, s); }

Poprawność tej procedury dowodzimy indukcyjnie. Dokładniej, pokazujemy, że działa poprawnie
dla wszystkich danych i robimy to przez indukcję ze względu na różnicę k−p (powinna to być liczba
naturalna).

Natomiast złożoność tej procedury potrafimy ocenić pisząc i rozwiązując rekurencyjną definicję
funkcji, która danym liczbom p i k przyporządkowuje liczbę wywołań procedury ranga podczas
realizacji obliczeń dla tych danych.

3.2 Ranga za pomocą wyszukiwania binarnego

Rangę możemy obliczać też za pomocą algorytmów wzorowanych na wyszukiwaniu binarnym. Po-
niżej znajdują się dwa takie algorytmy. Pierwszy znajduje rangę dowolnej liczby w ciągu niemale-
jącym, drugi wylicza rangę wyrazu takiego, danego ciągu.

int ranga(int a, k)

/*Zakładamy, mamy daną tablicę x, ciąg x[0], x[1], . . . , x[k − 1] jest dobrze
określonym, niemalejącym podciągiem x i chcemy wyliczyć rangę liczby a
we wskazanym podciągu x.*/

p = 0; s = k;

while (p < s) {
s = p + (k – p)/2;

if (x[s] < a) p = s;

else k = s; };
return k;

Nierówności p ¬ s ¬ k są niezmiennikami pętli
Jeżeli x[k − 1] < a, to wartość zmiennej k nie ulega zmianie.
Jeżeli a ¬ x[0], to wartość p jest stale równa 0, a równość s = k jest niezmiennikiem pętli.
Nierówność x[p] < a ¬ x[k − 1] są niezmiennikami pętli W przeciwnym wypadku, nieróność

x[p] < a ¬ x[k]

int ranga(int x[], int a, p, k)

/*Zakładamy, mamy daną tablicę x, ciąg x[0], x[1], . . . , x[k] jest dobrze
określonym, niemalejącym podciągiem x i chcemy wyliczyć rangę liczby a
we wskazanym podciągu x.*/

while (p < k) {
s = p + (k – p)/2;

if (x[s] < a) p = s;

else k = s; };
return k;

3.3 Przykład rozwiązania o złożoności O(n log n)

y = scal(x, 0, n/2, n);

for (i = 0, i < n, i++) r[i] = ranga (y, x[i], 0, n-1);

4 Najefektywniejsze rozwiązania

Główna idea prowadząca do bardziej efektywnych rozwiązań polega na tym, aby w obliczeniach
rangi elementu x[i+1] wykorzystać informacje zgromadzone podczas obliczania rangi x[i]. Możemy
to zrobić przeglądając dane ciągi i zliczając te wyrazy, które są mniejsze od x[i], a następnie
uzupełniamy obliczenia zliczając wyrazy przynajmniej równe x[i] i mniejsze od x[i+ 1].

4.1 Pierwszy pomysł

Może najpierw spróbujmy rozwiązać nieco prostsze zadanie. Zakładamy więc, że mamy dane dwie
tablice x i y, obie są indeksowane od 0 dom−1 i zawierają niemalejące ciągi liczb. Chcemy wyliczyć
rangi elementów tablicy x w połączonych ciągach z tablic x i y.

W tym celu stworzymy odpowiednią strukturę danych złożoną z danych tablic oraz

1) zmiennej i, która będzie przechowywać indeks elementu tablicy x, tego elementu, którego
ranga jest aktualnie obliczana,

2) zmiennej j, która będzie przechowywać indeks do tablicy y to miejsce w tablicy y, do którego
jej zawartość została przeanalizowana,

3) zmiennej s, której wartość będzie określona przez przeliczone fragmenty obu danych tablicy
i będzie zawierać zgromadzoną informację o rangach x[i] oraz dalszych elementów, w szcze-
gólności będzie szacować od dołu rangi x[k] dla k > i.

int i, j, s = 0;

while (i < m) {
if (i > 0 && x[i-1] = x[i]) { r[i] = r[i-1]; i++; s++; }
else {
while (j < m && x[j] < x[i]) { j++; s++; }
r[i] = s; i++; s++; }

}

Głównym niezmiennikiem tego programu jest stwierdzenie, że

s = | {k < i|x[k] ¬ x[i]} |+ | {k < j|y[k] < x[i]} |.

Co więcej jest niezmiennik obu pętli występujących w programie i gwarantuje on, poprawność
dokonywanych obliczeń rang. Formalny dowód poprawności wymaga wykazania, że niezmiennikiem
głównej pętli while jest także stwierdzenie, że

∀k < i r[k] jest rangą x[k] w połączonych ciągach x i y.

Złożoność programu
Przedstawiony program można nieco uprościć i przyśpieszyć usuwając z niego zmienną s i za-

stępując podstawienie r[i] = s przez r[i] = i+ j.

4.2 Ostatni program

int i = 0, j = n/2; p; e = 0;

if (x[i] < x[j]) { p = i; r[i] = 0; i++};
else { p = j; r[j] = 0, j++; };
/*Zdefiniowaliśmy pewną strukturę danych i określiliśmy jej stan początkowy. Zmienne i
i j to indeksy odpowiednio do pierwszej i drugiej części tablicy x, początkowo wskazują
ich pierwsze elementy. Z tablicy x będziemy wybierać elementy w pewnym porządku tak,
jak podczas scalania. Pierwszy element został już wybrany. Dodatkowo, zmienna p będzie
przechowywać indeks ostatniego, wcześniej wybranego elementu tablicy x (lub innego o tej
samej wartości), a zmienna e będzie przechowywać liczbę wystąpień elementu x[p], poza
samym x[p], w przeanalizowanym fragmencie ciągu.*/

while (i < n/2 && j < n) {
w = i + j - n/2;

if (x[i] < x[j]) { k = i; i++; } else { k = j; j++; }
if (x[k] = x[p]) e++; else { e = 0; p := k }

r[k] = w - e; }
while (i < n/2) {
if (x[i] = x[p]) e++ ; else { e = 0; p := i }
r[i] = i + n/2 - e; i++; }

while (j < n) {
if (x[j] = x[p]) e++ ; else { e = 0; p := j }
r[k] = j - e; j++; }

