Kilka doktadnych rozwiazan zadania egzaminacyjnego

Antoni Koscielski

12 lutego 2018

1 Sformulowanie zadania

Ranga elementu x[i] w ciagu z[0], z[1], ..., z[n — 1] (liczb catkowitych) nazywamy liczbe elementéw
tego ciagu mniejszych od x[i].
Napisz funkcje lub algorytm realizujacy nastepujaca specyfikacje:

Wejscie:
parzysta liczba naturalna n > 0 i tablica liczb catkowitych z taka, ze

z[0] < z[l] <...<z[n/2—1] oraz z[n/2] <z[n/2+1]<...<z[n-—1].

Wyjscie:
ciag liczb r[0], r[1], ..., r[n—1], w ktérym r[i] jest ranga x[i] w ciagu z[0], z[1], z[2],. .., x[n—1].

Opisz ide¢ swojego rozwiazania, uzasadnij poprawnos¢ i oszacuj ztozonos¢ obliczeniows.

2 Rozwigzania o ztozonosci O(n?)

2.1 Algorytm naturalny

Zadania (lub problemy) mozna zwykle rozwiazaé¢ uzywajac algorytméw, ktére okreslam jako natu-
ralne, czyli wynikajace bezposrednio ze sformutowania lub definicji. W naszym przypadku mamy
policzy¢ rangi dla wszystkich elementow danego ciagu, a wiec robimy to, a wiec realizujemy naste-

pujacy algorytm
for (i=0, i<n, i++) {r[i] = ranga(i, x, n);}

gdzie ranga jest funkcja!, ktéra dla danego ciagu x dlugoéci n (tablicy indeksowanej liczbami od
0 do n — 1) wylicza range liczby z[i] w ciagu x.

W dalszym ciggu litera n bedzie oznaczaé liczbe lub zmienng w programie, o ktérej jest mowa
w specyfikacji zadania, podobnie z, ktére oznacza cigg, ewentualnie tablice o n elementach, a r to
cigg wyliczonych rang lub tablice stuzgca do gromadzenia tych liczb.

Musimy jeszcze jako$ zdefiniowaé funkcje ranga. Zgodnie z naturalnym algorytmem funkcja ta
powinna poréwnywacé¢ dana liczbe z kazdym wyrazem danego ciggu i zlicza¢ te wyrazy, ktore sa
mniejsze od danej liczby. Taki algorytm nie jest godny przedstawienia w tym tekscie, ale podata
go niemata liczba oséb rozwiazujacych zadanie. Jest poprawny dla wszystkich mozliwych danych i
nie wykorzystuje szczegdlnych wtasnosci danych, opisanych w specyfikacji.

!Bedzie wiele funkcji o nazwie ranga i beda mogly sie réznié postacia parametréw.

1

2.2 Ranga elementu ciggu niemalejgcego w tym ciggu

Latwo znajduje sie range i-tego wyrazu niemalejacego ciggu x. Mozna to zrobi¢ zgodnie z nastepu-
jacym algorytmem (ten algorytm moze staé sie trescia funkcji ranga):

if (x[i] < x[0]) return O;

while (x[i-1] = x[i]) i——; return i;

Moze warto zatrzymaé sie chwile na poprawnoscig tego algorytmu. Algorytm ten moze by¢
wykonywany na dwa sposoby, zaleznie od danych. Jezeli z[i] < z[0], to w danym ciagu nie ma ele-
mentéw mniejszych od z[i] i na mocy definicji ranga x[i] jest réwna 0. Stad zwr6cona przez algorytm
wartosé¢ jest w tym przypadku ranga x[i]. W drugim przypadku poprawnosé algorytmu wynika z
faktu, ze kazde dwa réwne wyrazy danego ciagu maja w tym ciagu te sama range (ranga zalezy
tylko od wartosci wyrazu, a nie od jego polozenia). Poprawnosé daje sie dowiesé formalnie metoda
niezmiennikéw sprawdzajac, ze stwierdzenie ranga x[i| jest rowna randze x[ig] jest niezmiennikiem
petli while w rozwazanym algorytmie (ig to poczatkowa wartosé zmiennej 7).

Kontrowersje zwykle budzi pytanie, czy tak proste fakty trzeba dowodzi¢. Moim zdaniem jest
to oczywiste. Kazdy programista musi jako$ ustala¢ (cho¢by dla wtasnej potrzeby), czy pisze po-
prawne programy. Jedng metod badania poprawno$ci jest jej uzasadnianie. Testowanie programéow
jest pomocne, ale niewystarczajace. Dlatego student czasem musi przekona¢ osoby oceniajace jego
umiejetnosci, ze potrafi badaé¢ (dowodzi¢) poprawnosé programéw. Umiejetnosei studenta moga
by¢ badane metoda testowa (,napisz program, ktéry uwazasz za poprawny, a my ocenimy jego
poprawnos¢”), ale nie jest to ani jedyna, ani najlepsza metoda. Dlatego réwniez sprawdza sie, czy i
jak studenci uzasadniaja poprawnos¢ programow, bo jest to bardzo wazna i niezbedna umiejetnosc.

Chwile uwagi warto tez poswieci¢ ztozonosci podanego algorytmu. Latwo przekonac sie, ze war-
tosci zmiennej ¢ przyjmowane podczas dziatania algorytmu tworza ciag malejacy o wartosciach od 0
do n (dlaczego?), gdzie n to wielkosé danej tablicy. Kolejne zmiany wartosci tej zmiennej nastepuja
po wykonaniu okreslonej liczby czynnosci. Stad zlozonosé czasowa tej procedury jest rzedu O(n).
Co wiecej, tego oszacowania nie daje poprawi¢, o czym $wiadcezy ciag 0,1,1,1,..., 1. Liczac range
ostatniego elementu tego ciggu zgodnie z podanym przepisem trzeba wykonaé¢ przynajmniej n — 1
czynnosci (na przyktad n — 1 razy nadajemy warto$¢ zmiennej 7). Jak wida¢ mozna jako$ argu-
mentowaé, ze rozwazana procedura ma ztozonosé rzedu O(n). Czasem warto to zrobi¢ z réznych
wzgledéw, na przyktad z wyzej podanych powodéw lub dla sprawdzenia wtasnych umiejetnosci.

2.3 Ranga liczby w ciggu niemalejgcym

Czasem moze by¢ potrzebne ogdlniejsze pojecie rangi i bardziej ogdlna procedura, ktéra dla danego
ciggu podaje range dowolnej liczby, niekoniecznie wystepujacej w danym ciggu. Taka procedura,
dzialajacg dla ciggdw monotonicznych, moze by¢ wzorowana na poprzedniej i moze mie¢ nastepu-
jaca postac:

if (x[n-1] < a) return n;

i = 0; while (x[i] < a) i++; return i;

Analize poprawno$ci i ztozonoéci tej procedury pozostawiam Czytelnikowi.

2.4 Przyklad rozwigzania o ztozonosci O(n?)

Przypusémy, ze mamy nastepujaca procedure ranga. Proste rozwigzanie naszego zadania mozemy
otrzymac¢ dopisujac do niej jedng instrukcje:

int ranga(int a, p, k)

/*Zaktadamy, mamy dang tablice z, ciag z[p|, z[p + 1], ..., z[k — 1] jest dobrze
okreslonym, niemalejacym podciggiem x i chcemy wyliczy¢ range liczby a
we wskazanym podciagu x.*/

{ if (x[k-1] < a) return k - p;
i = p; while (x[i] < a) i++; return i; }
for (i=0, i<n, i++) r[i] = ranga(x[i],0,n/2) + ranga(x[i],n/2,n);

3 Rozwigzania o zlozonosci O(nlogn)

3.1 Ranga w ciggu niemalejgcym rekurencyjnie

Range mozna tez oblicza¢ za pomocg nastepujacej funkcji rekurencyjne;j.

int ranga(int a, p, k)

/*Zaktadamy, mamy dang tablice z, ciag z[p|,z[p+ 1], ..., z[k — 1] jest dobrze
okreslonym, niemalejacym podciggiem x i chcemy wyliczy¢ range liczby a
we wskazanym podciagu x.*/

s=p+ (k- p)/2;
if (x[s] < a)

{ if (p == s) return 1;

else return s — p + ranga(a, s, k); }
else { if (p == s) return 0;

else return ranga(a, p, s); }

Poprawnosc¢ tej procedury dowodzimy indukcyjnie. Doktadniej, pokazujemy, ze dziata poprawnie
dla wszystkich danych i robimy to przez indukcje ze wzgledu na réznice k—p (powinna to by¢ liczba
naturalna).

Natomiast zlozonosé tej procedury potrafimy ocenié piszac i rozwiazujac rekurencyjna definicje
funkcji, ktora danym liczbom p i k przyporzadkowuje liczbe wywotan procedury ranga podczas
realizacji obliczen dla tych danych.

3.2 Ranga za pomoca wyszukiwania binarnego

Range mozemy oblicza¢ tez za pomoca algorytméw wzorowanych na wyszukiwaniu binarnym. Po-
nizej znajduja si¢ dwa takie algorytmy. Pierwszy znajduje range dowolnej liczby w ciggu niemale-
jacym, drugi wylicza range wyrazu takiego, danego ciggu.

int ranga(int a, k)

/*Zaktadamy, mamy dang tablice z, ciag x[0], z[1],..., [k — 1] jest dobrze
okreslonym, niemalejacym podciagiem x i chcemy wyliczy¢ range liczby a
we wskazanym podciagu x.*/

p=0;s =kj

while (p < s) {
s=p+ (k—p)/2;
if (x[s] < a) p =-s;
else k = s; };
return k;
Nieréwnosci p < s < k s3 niezmiennikami petli
Jezeli z[k — 1] < a, to warto$¢ zmiennej k nie ulega zmianie.
Jezeli a < z[0], to wartosé p jest stale rowna 0, a réwnosé s = k jest niezmiennikiem petli.
Nieréwnosé x[p] < a < z[k — 1] sa niezmiennikami petli W przeciwnym wypadku, nierénosé
z[p] < a < x[k]
int ranga(int x[|, int a, p, k)

/*Zakladamy, mamy dang tablice x, ciag z[0], z[1], ..., z[k] jest dobrze
okreslonym, niemalejacym podciggiem x i chcemy wyliczy¢ range liczby a
we wskazanym podciagu x.*/

while (p < k) {
s=p+ (k-p)/2
if (x[s] < a) p=s;
else k = s; };

return k;

3.3 Przyklad rozwigzania o zlozonosci O(nlogn)

y = scal(x, 0, n/2, n);

for (i = 0,1 < n, i++) r[i] = ranga (y, x[i], 0, n-1);

4 Najefektywniejsze rozwigzania

Gléwna idea prowadzaca do bardziej efektywnych rozwigzan polega na tym, aby w obliczeniach
rangi elementu z[i + 1] wykorzysta¢ informacje zgromadzone podczas obliczania rangi z[i]. Mozemy
to zrobi¢ przegladajac dane ciagi i zliczajac te wyrazy, ktére sa mniejsze od z[i], a nastepnie
uzupetniamy obliczenia zliczajac wyrazy przynajmniej rowne x[i] i mniejsze od z[i + 1].

4.1 Pierwszy pomyst

Moze najpierw sprobujmy rozwiazaé¢ nieco prostsze zadanie. Zakladamy wiec, ze mamy dane dwie
tablice x iy, obie sg indeksowane od 0 do m —1 i zawierajg niemalejace ciagi liczb. Chcemy wyliczy¢
rangi elementéw tablicy & w potaczonych ciggach z tablic z i y.

W tym celu stworzymy odpowiednig strukture danych ztozona z danych tablic oraz

1) zmiennej i, ktéra bedzie przechowywaé indeks elementu tablicy x, tego elementu, ktérego
ranga jest aktualnie obliczana,

2) zmiennej j, ktora bedzie przechowywaé indeks do tablicy y to miejsce w tablicy y, do ktérego
jej zawarto$¢ zostata przeanalizowana,

3) zmiennej s, ktérej wartosé bedzie okreslona przez przeliczone fragmenty obu danych tablicy
i bedzie zawiera¢ zgromadzong informacje o rangach x[i] oraz dalszych elementéw, w szcze-
gélnosci bedzie szacowaé od dotu rangi x[k| dla k > 1.

int i, j, s = 0;
while (i <m) {
if (i > 0 && x[i-1] = x[i]) { r[i] = r[i-1]; i++; s++; }
else {
while (j < m && x[j] < x[i]) { j++; s++; }
r[i] = s; it++; s++; }
}

Gléwnym niezmiennikiem tego programu jest stwierdzenie, ze
s = | {k <ilo[k] <ald} [+ [{k < jlyk] < li]} .

Co wiecej jest niezmiennik obu petli wystepujacych w programie i gwarantuje on, poprawnosé
dokonywanych obliczen rang. Formalny dow6d poprawnosci wymaga wykazania, ze niezmiennikiem
gtownej petli while jest takze stwierdzenie, ze

VEk <i r[k] jest ranga z[k] w potaczonych ciagach z i y.

Ztozonos¢ programu
Przedstawiony program mozna nieco uprosci¢ i przyspieszy¢ usuwajac z niego zmienng s i za-
stepujac podstawienie r[i] = s przez r[i] =i+ j.

4.2 QOstatni program
inti=0,j=n/2; p;e=0;
if (x[i] <x[j]) {p =1 rli] =0;i++};
else { p = j; r[j] =0, j++; };
/*Zdefiniowalidémy pewna strukture danych i okresliliSmy jej stan poczatkowy. Zmienne ¢
i j to indeksy odpowiednio do pierwszej i drugiej cze$ci tablicy x, poczatkowo wskazuja
ich pierwsze elementy. Z tablicy x bedziemy wybiera¢ elementy w pewnym porzadku tak,
jak podczas scalania. Pierwszy element zostatl juz wybrany. Dodatkowo, zmienna p bedzie
przechowywaé indeks ostatniego, wczesniej wybranego elementu tablicy = (lub innego o tej

samej wartosci), a zmienna e bedzie przechowywaé liczbe wystapien elementu z[p], poza
samym x[p|, w przeanalizowanym fragmencie ciagu.*/

while (i < n/2 && j < n) {
w=1i+4]j-n/2;
if (x[i] <x[j]) { k=1i;i++; } else { k =j; j++; }
if (x[k] = x[p]) e++;else { e =0;p:=k }

rlk] = w-e; }

while (i < n/2) {
if (x[i] = x[p]) e++ ;else {e=0;p:=1i}
rli] =i+ n/2- e it+;}

while (j < n) {
if (x[j] = x[p]) e++ ;else {e=0;p:=j}
rik] =j- e j++; }

