1 Wskazniki i listy jednokierunkowe

1.1 Model pamieci komputera

Pamie¢ komputera mozemy wyobraza¢ sobie tak, jak na rysunku:

Zawartosé: ... | 01001011 | 01101010 | 11100101 | 00111001 | 00100010 | 01110011 | ...
adresy: a3 | a4 | oamss | w6 | 15t | oamss |

Sktada sie ona z duzej liczby elementow, z ktérych kazdy jest w jednym z dwoch stanéw,
oznaczanych 0 i 1. Stan calej pamieci (jej zawartosé) mozemy wiec wyobrazaé sobie jako ciag 01 1.
Po wtaczeniu zasilania zawarto$¢ pamieci jest przypadkowa, pézniej zalezy od tego, jakie programy
dziataty i dziataja na komputerze.

Elementy pamieci sg grupowane po 8, kazda taka grupa tworzy komoérke pamieci. Kazda komorke
mozna zidentyfikowaé¢ za pomoca ciagu zer i jedynek ustalonej dtugosci (a raczej za pomoca sygnatu
elektronicznego opisanego przez taki ciag). O takim ciagu wolimy mysleé, jak o liczbie naturalne;
przedstawionej przez ten ciag. Te liczbe nazywamy numerem komoérki pamigci lub — czesciej —
adresem komorki.

1.2 Zmienne (w jezyku programowania)

Dos¢ trudno zdefiniowaé pojecie zmiennej, ale w jezykach programowania takich, jak Pascal lub C,
mozna poda¢ kilka elementow sktadajacych sie na to pojecie. Sa to miedzy innymi:

1) nazwa zmiennej (na przyktad x lub costam, moga by¢ tez nienazwane zmienne, nazwe zmien-
nej mozna uogdlni¢ do syntaktycznego pojecia zmiennej (znanego np. z Pascala), obejmujace-
go odniesienia do elementéw tablic, pdl struktur (rekordéw), zmiennych wskazywanych itp.,
czyli wszelkich napiséw oznaczajacych w jezyku co$§ w rodzaju zmiennej),

2) typ zmiennej,

w

rozmiar zmiennej,

(O N

)

)

) adres zmiennej,
) warto$¢ zmiennej
)

6) 1inne.

Zwykle programista wymysla zmiennej nazwe (moze istnie¢ wiele zmiennych o tej samej nazwie,
bywaja tez zmienne bez nazwy). Zmienna — méwiac intuicyjnie — przechowuje (lub pamieta) pewna

informacje zwang wartoscia zmiennej. Jeszcze inaczej: ze zmienna jest zwiazana informacja zwa-
na wartoscia zmiennej. Programista jest zobowiagzany zadeklarowaé¢ zmienng i wtedy okresla jej
typ. Typ zmiennej wyznacza sposob reprezentowania jej wartosci w pamieci komputera. Zwykle
rowniez wyznacza jej rozmiar. Rozmiar zmiennej to liczba komoérek pamici potrzebna do zapisania
jej wartosci. W pascalowym programie mozemy postuzy¢ sie rozmiarem zmiennej x typu ¢ piszac
SizeOf (x) lub SizeOf (t). Podobnie jest w C. Ze zmienna jest zwiazany fragment pamieci kompute-
ra, w ktérym jest zapisana (zakodowana) wartos¢ zmiennej Sktada sie z tylu kolejnych komérek, ile
wynosi rozmiar zmiennej. Adresem zmiennej jest adres pierwszej komorki tego fragmentu. Jest on
okreslany przez kompilator i jest ostatecznie ustalany podczas wykonania programu. W programie
pascalowym mozemy uzy¢ adresu zmiennej x piszac @Qx. Analogiczna konstrukcja w jezyku C' ma
postaé &x.

Na przyktad zmienna z typu Char, o rozmiarze 1, umieszczona w pamieci pod adresem 1756
ma wartos¢ opisang przez cigg 00111001. Wartos$é takiej zmiennej jest zapisywana przy uzyciu kodu
ASCII Zawartos¢ wspomnianej komorki jest przedstawieniem dwojkowym liczby 57. Z kolei liczba
57 jest kodem ASCII cyfry (znaku) 9. W tym przypadku wartoscia zmiennej x jest znak 9. Gdyby
zmienna x miata pascalowy typ Word, to jej wartoscia bytaby liczba 57.

Nizej mamy schematyczny rysunek przedstawiajacy zmienng o nazwie x. Pozioma linia to wy-
obrazenie pamieci komputera (lub jej zawartosci). Kotko moze przedstawiaé¢ pojedyncza komorke
pamieci, pod nim mamy zapisany adres komorki.

ciag kodujacy wartos¢ x

b Yo
g 7
&ax &z + sizeof (x)
komoérka o adresie &x komorka o adresie &z plus rozmiar x

Pojecie zmiennej najczesciej obejmuje tez m. in. elementy tablic i pola struktur, czyli rekordow.
Jezeli na przyklad a jest nazwa tablicy, to w jezykach C i Pascal, w kazdym miejscu, w ktérym moze
wystapié¢ zmienna nazwana, moze tez wystapi¢ (pod warunkiem zgodnosci typéw i sensownosci)
napis a[3], oznaczajacy element tablicy a o indeksie 3. Taki napis zwykle pelni tez funkcje nazwy
(okreslenia, odwotania do) zmiennej i, podobnie jak zwykla nazwa, zaleznie od kontekstu, oznacza
albo pewien obszar pamieci, pod ktory np. co$ podstawiamy, albo zapisane tam informacje, ktora
np. gdzies podstawiamy.

1.3 typy wskaznikowe i zmienne tych typow

Wérod typéw sa tez typy wskaznikowe. Wartosci zmiennych tych typéw sa adresami komoérek
pamigci komputera. Wtasciwie sa to liczby, ale nie ma sensu wykonywac¢ na nich operacji mnozenia,
ani dodawania. Ewentualnie mozna doda¢ do adresu liczbe naturalng, i to sie czasem robi. Dzigki
typom wskaznikowym mozemy w Pascalu i w C stosowa¢ adresowanie posrednie znane z definicji
maszyny RAM.

Programujac wyjatkowo postugujemy sie pojedynczymi komérkami pamieci. Zwykle postuguje-
my si¢ zmiennymi, ktore zajmuja fragment pamieci ztozony z wielu komoérek. Wobec tego, okreslajac
typ wskaznikowy podaje sie dodatkowo, iz oczekujemy, ze pod wskazanym adresem znajduje sie
informacja okre$lonego typu. Majac typ 1" mozemy zdefiniowa¢ typ wskaznikowy, wskazujacy war-
tosci typu T'. Intuicyjnie, warto$ciami takiego typu sg adresy, pod ktorymi znajduja sie informacje
typu 7.

Jezeli mamy typy wskaznikowe, to mozemy postugiwaé sie tez zmiennymi tych typéw. Postuguje-
my sie nimi, jak kazdymi innymi, w szczegdlnosci moga one wystepowaé w instrukeji podstawiania
po obu stronach operatora podstawiania. Dodatkowo, z takimi zmiennymi jest zwiazane pojecie
zmiennej wskazywanej. Jezeli x jest zmienng typu wskaznikowego, wskazujaca wartosci typu T, to
napis *x bywa nazywany zmienng wskazywang przez x, pelni role nazwy zmiennej, jest uzywany
jako odwolanie do zmiennej i moze wystepowaé po obu stronach operatora podstawiania. Napis *x
jest typu T, jest rozmiaru takiego, jak kazda inna zmienna typu T, oznacza wartos¢ zapisywang
tak, jak inne wartosci typu T. W koncu, adresem zmiennej *x jest warto$¢ zmiennej x.

Zauwazmy, ze po wykonaniu (zapisanego w C) podstawienia y = &x wartosci wyrazen *y oraz
X powinny by¢ rowne.

Zwiazek miedzy zmienng x (typu wskazujacego wartosci typu T) i zmienng wskazywang *x
(typu T) zostal przedstawiony na ponizszym rysunku:

przedstawienie adresu a

b Yo b \
* g 7e —]

~ ——"a a+ sizeof (T)

e,

zmienna R zmienna *x
(typu wskaznikowego)

Kolejna tabelka pozwala na poréwnanie tych elementow sktadni jezykéw C i Pascal, ktére
dotycza zmiennych wskaznikowych.

C Pascal

typ wskaznikowy wskazujacy typ T T* T

deklaracja zmiennej x typu wskaznikowego | T *x | var x:"T

zmienna lub wartos¢ wskazywana przez x

wskaznik ,pusty” null nil

1.4 Stala null (ewentualnie nil)

W C i w Pascalu mamy stala, ktorej wartos¢ mozna przypisa¢ dowolnej zmiennej typu wskaz-
nikowego. W C stala ta nazywa sie null, a w Pascalu — nil. Jej wartoscig jest ,wskaznik, ktory
niczego nie wskazuje”, albo myslac o adresach — jest to adres poprawny sktadniowo, ale oznaczajacy
lokalizacje, w ktorej nic nie ma.

Z punktu widzenia programisty istotne jest to, ze jezeli podczas wykonania programu zdarzy
sie, ze zmienna wskaznikowa x ma warto$¢ taka, jak null (a wiec jezeli warunek x == null
jest prawdziwy), to préba postuzenia sie w tym momencie zmienng wskazywang *x jest btedem i
powoduje przerwanie dziatania programu.

1.5 Nadawanie wartosci zmiennym typéw wskaznikowych

Jezeli mamy zmienne, to powinnidmy przypisywaé¢ im jakie§ wartosci, chociazby wartosci poczat-
kowe. Oczywiscie, jezeli pewna zmienna co$ pamieta, to mozemy jej warto$¢ przypisa¢ kazdej innej
zmiennej tego samego typu i typy wskaznikowe nie sa tu wyjatkiem. W ten sposéb jednak ko-
piujemy tylko wczesniej istniejace wartosci. Niewiele tez daje postugiwanie si¢ jedyna stata typu
wskaznikowego. Istotnie nowe wartosci typow wskaznikowych uzyskuje sie w specjalny sposob.

Jezeli korzystamy ze zmiennej, to musi zostaé ustalony fragment pamieci, w ktéorym bedzie
zapisywana jej wartos¢. Sposoéb wykorzystania pamieci komputera zalezy od kompilatora. W przy-
padku zmiennych nazwanych, kompilator po zapoznaniu si¢ z deklaracja zmiennej jakos decyduje
0 umiejscowieniu jej w pamieci komputera.

Podobnie jest w przypadku zmiennych wskazywanych. O umiejscowieniu zmiennej wskazywanej
w pamieci komputera decyduje kompilator, ale tym razem robi to zyczenie programisty wyrazo-
ne w programie, a przy okazji przypisuje wskaznik do tego miejsca odpowiedniej zmiennej typu
wskaznikowego. Aby wyrazi¢ to zyczenie, trzeba w programie umiesci¢ wywotanie odpowiedniej
funkcji, ktora w dalszej czesci tego tekstu bedziemy nazywaé nowy_wskanik (wywolanie bedzie
miato uproszczong posta¢ x = nowy_wskaznik).

W jezyku C w takim przypadku uzywa si¢ funkcji o nazwie malloc wymagajacej parametru
bedacego rozmiarem tworzonej zmiennej (patrz definicja funkcji utwoérz wykorzystywanej na wyka-
dzie, x = malloc(sizeof(...))). W Pascalu do przypisania zmiennej wskaznikowej x jest uzywana
procedura New z parametrem x wywolywanym przez nazwe (wywolanie ma postaé New(x)).

1.6 Struktury
Deklaracja
1) struct elem {
2) int klucz;
3) elem *nast;
)

}

wprowadza nowy typ strukturowy (?, dawniej: rekordowy) o nazwie elem. Zmienne tego typu
pamietaja dwie informacje: liczbe catkowita w polu o nazwie klucz i wskaznik do zmiennej typu
elem w polu nast. Sy reprezentowane w pamieci komputera w sposdb przedstawiony na rysunku:

4

pole klucz pole nast

o | \e
r hd

. I .
zmienna x typu elem zmienna x.klucz zmienna x.nast

1.7 Listy jednokierunkowe

Listy mozna przedstawia¢ jak nizej

zmienna *1 zmienna *(*1).nast
zm. 1
L \ N
(*1).klucz —_—— null
lub 1 —> klucz 1 —> nast —> klucz

Typ odpowiadajacy pojeciu listy mozna definiowa¢ na dwa sposoby. Standardowo przyjmuje sie
definicje typedef elem *lista. Wtedy liste utozsamia sie ze wskaznikiem do pierwszego elementu
listy. Przy takim rozumieniu pojecia listy istnieje tez lista pusta, ktora odpowiada wskaznikowi
null.

Mozna tez niestandardowo przyjac, ze lista jest synonimem pojecia elementu listy. Wtedy de-
klarujemy typedef elem lista. Tak rozumiane listy utozsamiamy z pierwszym elementem listy,
ktory w tym przypadku musi istnie¢. W ten sposéb mozemy mowi¢ wytacznie o listach niepustych.

1.8 Rozwigzanie zadania 2 z listy 11 przy niestandardowej definicji

1) Dane: zmienna 1 typu elem, czyli pierwszy element pewnej listy, i liczba catkowita k.

2) elem *x; x = &l

3) while (x —> nast !== null) {x = x —> nast; }

4) Komentarz: Zauwazmy, ze stwierdzenie ”"x wskazuje element listy 17 jest niezmiennikiem po-

2

wyzszej instrukcji. Podobnie, niezmiennikiem jest stwierdzenie ”x jest rézne od null”. Po
wykonaniu petli while prawdziwe sg nastepujace stwierdzenia: ”x wskazuje niepusty element
listy 1, ktérego pole nast jest puste (ma wartosé null)”.

5) przydziel(x —> nast);
6) x —> nast —> nast = null;

7) x —> nast —> klucz = k;

1.9 Rozwigzanie zadania 2 z listy 11 przy standardowej definicji

1) Dane: zmienna 1 typu lista, czyli wskaznik do pierwszego elementu pewnej listy, i liczba
catkowita k.

elem *p;

przydziel(p);

p —> nast = null;

p —> klucz = k;
ifl==mnull) {1=p;}

elem *x = 1;
while (x —> nast !== null) {x = x —> nast; };

X =D

)
)
)
)
)
7) else {
)
)
)
)

}

1.10 Odwracanie listy jednokierunkowej (zadania 7 lub 12 z listy 11)

Odwracanie listy jest zadaniem, ktére wymaga doprecyzowania. Bedziemy zaktadaé, ze dana lista
jest nam niepotrzebna, a z jakichs powodéw interesuje nas lista, ktora ma elementy takie jak
dana, ale wymienione w odwrotnej kolejnosci, i w zwiazku z tym elementy dana lista moze zostac
zniszczona, a jej elementy — wykorzystane w konstrucji listy odwrocone;j.

Idea jest prosta: zapoznajemy sie z kolejnymi elementami danej listy i z obejrzanych budujemy
stopniowo liste odwrocong. Bedziemy starac sie, aby podczas dziatania programu byt zachowywany
nastepujacy niezmiennik:

dana lista L jest konkatenacja dwoch list Ly i Lo takich, ze lista wskazywana przez odwr jest
odwréceniem Ly, a lista wskazywana przez dana jest rowna Ls.

1) Dane: zmienna dana typu lista, czyli wskaznik do pierwszego elementu pewnej listy.

)

2) lista odwr, pom;

3) odwr = null;
)

4) while (dana ! == null) { (teraz lista dana jest niepusta)

5) pom = dana —> nast; (w pom zapamietujemy wskaznik do tzw. ogona listy, czyli reszta
listy po pominieciu pierwszego jej elementu)

6) dana —> nast = odwr; (odcinamy pierwszy element listy od jej ogona, i dotaczamy do
niego caly liste wskazywang przez odwr)

7) odwr = dana; (wyzej utworzona lista jest kolejnym przyblizeniem listy odwr6conej i
wskaznik do niej jest zapamietywany jako warto$¢ odwr)

8) dana = pom; (zapamietany ogon staje sie nowa dana lista)

9 1}

10) return odwr; (Teraz cata odwrécona lista jest wskazywana przez zmienna odwr. Trzeba
co$ zrobi¢ z wynikiem obliczen, np. zwrdcic).

1.11 Czy drzewo jest drzewem BST? (zadanie 5 z listy 12)

Uznalem, ze do rozwigzania tego zadania jest potrzebna pomocnicza funkcja z dodatkowymi para-
metrami. Gtowna funkcja ma nastepujaca postac:

1) int min, max;
2) if (d = null) return(true);
3) else return(bst(d, &min, &max));

Przyjmujemy, ze drzewa sktadajg sie z elementow typu

1) struct elem {
2) int k;

3) elem *1, *p;
4}

a same drzewa sg typu tree definiowanego poprzez typedef elem *tree. Tak wigc zmienna d
powinna zosta¢ zadeklarowana jako elem *d lub tree d. Ponizej zostala zdefiniowana pomoc-
nicza funkcja bst. Napisy true i false moga by¢ rozumiane jako catkowitoliczbowe state réwne
odpowiednio 1 i 0.

Funkcja bst jest pisana tak, aby miata nastepujace wtasnosci

1) Funkcja bst przyjmuje jako wartosci true i false, czyli 11 0.

2) Jezeli bst(d, min, max) = true, to d wskazuje drzewo BST, a min i max wskazuja zmienne,
ktorych wartosci sa réwne najmniejszemu i najwigkszemu elementowi drzewa wskazywanego
przez d.

3) Jezeli bst(d, min, max) = false, to d wskazuje drzewo, ktére nie jest drzewem BST.

Wtasnosci te powinno dac sie tatwo dowies¢ przez indukcje ze wzgledu na budowe danego drzewa.
Definicja funkcji bst:

—_
D

else

1) int bst(d, min, max)
2) tree d; int *min, *max;
3) {
4) int mn, mx;
5) if (d —>1 = null)
6) {
7) if (d —>p = null)
8) { *min = d —> k; *max = d —> k; return (true); }
9) else
1) {
11) if (bst(d —> p, &mn, max) && d —> k <= mn)
12) { *min = d —> k; return(true); }
13) else return(false);
)}
15) }
)

if (d—>p = null)

{
if (bst(d —> 1, min, &mx) && d —> k >= mx)
{ *max = d —> k; return(true); }
else return(false);

}

else

{

if (bst(d —> 1, min, &mx) && bst(d —> p, &mn, max)
&& mx <=d —> k && d —> k <= mn)
return(true);

else return(false);

