
1 Wskaźniki i listy jednokierunkowe

1.1 Model pamięci komputera

Pamięć komputera możemy wyobrażać sobie tak, jak na rysunku:

Zawartość: . . . 01001011 01101010 11100101 00111001 00100010 01110011 . . .

adresy: 1753 1754 1755 1756 1757 1758

Składa się ona z dużej liczby elementów, z których każdy jest w jednym z dwóch stanów,
oznaczanych 0 i 1. Stan całej pamięci (jej zawartość) możemy więc wyobrażać sobie jako ciąg 0 i 1.
Po włączeniu zasilania zawartość pamięci jest przypadkowa, później zależy od tego, jakie programy
działały i działają na komputerze.

Elementy pamięci są grupowane po 8, każda taka grupa tworzy komórkę pamięci. Każdą komórkę
można zidentyfikować za pomocą ciągu zer i jedynek ustalonej długości (a raczej za pomocą sygnału
elektronicznego opisanego przez taki ciąg). O takim ciągu wolimy myśleć, jak o liczbie naturalnej
przedstawionej przez ten ciąg. Tę liczbę nazywamy numerem komórki pamięci lub – częściej –
adresem komórki.

1.2 Zmienne (w języku programowania)

Dość trudno zdefiniować pojęcie zmiennej, ale w językach programowania takich, jak Pascal lub C,
można podać kilka elementów składających się na to pojęcie. Są to między innymi:

1) nazwa zmiennej (na przykład x lub costam, mogą być też nienazwane zmienne, nazwę zmien-
nej można uogólnić do syntaktycznego pojęcia zmiennej (znanego np. z Pascala), obejmujące-
go odniesienia do elementów tablic, pól struktur (rekordów), zmiennych wskazywanych itp.,
czyli wszelkich napisów oznaczających w języku coś w rodzaju zmiennej),

2) typ zmiennej,

3) rozmiar zmiennej,

4) adres zmiennej,

5) wartość zmiennej

6) i inne.

Zwykle programista wymyśla zmiennej nazwę (może istnieć wiele zmiennych o tej samej nazwie,
bywają też zmienne bez nazwy). Zmienna – mówiąc intuicyjnie – przechowuje (lub pamięta) pewną

informację zwaną wartością zmiennej. Jeszcze inaczej: ze zmienną jest związana informacja zwa-
na wartością zmiennej. Programista jest zobowiązany zadeklarować zmienną i wtedy określa jej
typ. Typ zmiennej wyznacza sposób reprezentowania jej wartości w pamięci komputera. Zwykle
również wyznacza jej rozmiar. Rozmiar zmiennej to liczba komórek pamici potrzebna do zapisania
jej wartości. W pascalowym programie możemy posłużyć się rozmiarem zmiennej x typu t pisząc
SizeOf(x) lub SizeOf(t). Podobnie jest w C. Ze zmienną jest związany fragment pamięci kompute-
ra, w którym jest zapisana (zakodowana) wartość zmiennej Składa się z tylu kolejnych komórek, ile
wynosi rozmiar zmiennej. Adresem zmiennej jest adres pierwszej komórki tego fragmentu. Jest on
określany przez kompilator i jest ostatecznie ustalany podczas wykonania programu. W programie
pascalowym możemy użyć adresu zmiennej x pisząc @x. Analogiczna konstrukcja w języku C ma
postać &x.

Na przykład zmienna x typu Char, o rozmiarze 1, umieszczona w pamięci pod adresem 1756
ma wartość opisaną przez ciąg 00111001. Wartość takiej zmiennej jest zapisywana przy użyciu kodu
ASCII Zawartość wspomnianej komórki jest przedstawieniem dwójkowym liczby 57. Z kolei liczba
57 jest kodem ASCII cyfry (znaku) 9. W tym przypadku wartością zmiennej x jest znak 9. Gdyby
zmienna x miała pascalowy typ Word, to jej wartością byłaby liczba 57.

Niżej mamy schematyczny rysunek przedstawiający zmienną o nazwie x. Pozioma linia to wy-
obrażenie pamięci komputera (lub jej zawartości). Kółko może przedstawiać pojedyńczą komórkę
pamięci, pod nim mamy zapisany adres komórki.

-s[
&x

komórka o adresie &x

s)
&x+ sizeof(x)

komórka o adresie &x plus rozmiar x

︷ ︸︸ ︷ciąg kodujący wartość x

Pojęcie zmiennej najczęściej obejmuje też m. in. elementy tablic i pola struktur, czyli rekordów.
Jeżeli na przykład a jest nazwą tablicy, to w językach C i Pascal, w każdym miejscu, w którym może
wystąpić zmienna nazwana, może też wystąpić (pod warunkiem zgodności typów i sensowności)
napis a[3], oznaczający element tablicy a o indeksie 3. Taki napis zwykle pełni też funkcję nazwy
(określenia, odwołania do) zmiennej i, podobnie jak zwykła nazwa, zależnie od kontekstu, oznacza
albo pewien obszar pamięci, pod który np. coś podstawiamy, albo zapisanę tam informację, którą
np. gdzieś podstawiamy.

1.3 typy wskaźnikowe i zmienne tych typów

Wśród typów są też typy wskaźnikowe. Wartości zmiennych tych typów są adresami komórek
pamięci komputera. Właściwie są to liczby, ale nie ma sensu wykonywać na nich operacji mnożenia,
ani dodawania. Ewentualnie można dodać do adresu liczbę naturalną, i to się czasem robi. Dzięki
typom wskaźnikowym możemy w Pascalu i w C stosować adresowanie pośrednie znane z definicji
maszyny RAM.

Programując wyjątkowo posługujemy się pojedyńczymi komórkami pamięci. Zwykle posługuje-
my się zmiennymi, które zajmują fragment pamięci złożony z wielu komórek. Wobec tego, określając
typ wskaźnikowy podaje się dodatkowo, iż oczekujemy, że pod wskazanym adresem znajduje się
informacja określonego typu. Mając typ T możemy zdefiniować typ wskaźnikowy, wskazujący war-
tości typu T . Intuicyjnie, wartościami takiego typu są adresy, pod którymi znajdują się informacje
typu T .

Jeżeli mamy typy wskaźnikowe, to możemy posługiwać się też zmiennymi tych typów. Posługuje-
my się nimi, jak każdymi innymi, w szczególności mogą one występować w instrukcji podstawiania
po obu stronach operatora podstawiania. Dodatkowo, z takimi zmiennymi jest związane pojęcie
zmiennej wskazywanej. Jeżeli x jest zmienną typu wskaźnikowego, wskazującą wartości typu T, to
napis *x bywa nazywany zmienną wskazywaną przez x, pełni rolę nazwy zmiennej, jest używany
jako odwołanie do zmiennej i może występować po obu stronach operatora podstawiania. Napis *x
jest typu T, jest rozmiaru takiego, jak każda inna zmienna typu T, oznacza wartość zapisywaną
tak, jak inne wartości typu T. W końcu, adresem zmiennej *x jest wartość zmiennej x.

Zauważmy, że po wykonaniu (zapisanego w C) podstawienia y = &x wartości wyrażeń *y oraz
x powinny być równe.

Związek między zmienną x (typu wskazującego wartości typu T) i zmienną wskazywaną *x
(typu T) został przedstawiony na poniższym rysunku:

-s[
zmienna x

(typu wskaźnikowego)

s)
︷ ︸︸ ︷przedstawienie adresu a s[

zmienna ∗x
s)

a a+ sizeof(T)*

Kolejna tabelka pozwala na porównanie tych elementów składni języków C i Pascal, które
dotyczą zmiennych wskaźnikowych.

C Pascal

typ wskaźnikowy wskazujący typ T T* ˆT

deklaracja zmiennej x typu wskaźnikowego T *x var x:ˆT

zmienna lub wartość wskazywana przez x *x xˆ

wskaźnik „pusty” null nil

1.4 Stała null (ewentualnie nil)

W C i w Pascalu mamy stałą, której wartość można przypisać dowolnej zmiennej typu wskaź-
nikowego. W C stała ta nazywa się null, a w Pascalu – nil. Jej wartością jest „wskaźnik, który
niczego nie wskazuje”, albo myśląc o adresach – jest to adres poprawny składniowo, ale oznaczający
lokalizację, w której nic nie ma.

Z punktu widzenia programisty istotne jest to, że jeżeli podczas wykonania programu zdarzy
się, że zmienna wskaźnikowa x ma wartość taką, jak null (a więc jeżeli warunek x == null
jest prawdziwy), to próba posłużenia się w tym momencie zmienną wskazywaną *x jest błędem i
powoduje przerwanie działania programu.

1.5 Nadawanie wartości zmiennym typów wskaźnikowych

Jeżeli mamy zmienne, to powinniśmy przypisywać im jakieś wartości, chociażby wartości począt-
kowe. Oczywiście, jeżeli pewna zmienna coś pamięta, to możemy jej wartość przypisać każdej innej
zmiennej tego samego typu i typy wskaźnikowe nie są tu wyjątkiem. W ten sposób jednak ko-
piujemy tylko wcześniej istniejące wartości. Niewiele też daje posługiwanie się jedyną stałą typu
wskaźnikowego. Istotnie nowe wartości typów wskaźnikowych uzyskuje się w specjalny sposób.

Jeżeli korzystamy ze zmiennej, to musi zostać ustalony fragment pamięci, w którym będzie
zapisywana jej wartość. Sposób wykorzystania pamięci komputera zależy od kompilatora. W przy-
padku zmiennych nazwanych, kompilator po zapoznaniu się z deklaracją zmiennej jakoś decyduje
o umiejscowieniu jej w pamięci komputera.

Podobnie jest w przypadku zmiennych wskazywanych. O umiejscowieniu zmiennej wskazywanej
w pamięci komputera decyduje kompilator, ale tym razem robi to życzenie programisty wyrażo-
ne w programie, a przy okazji przypisuje wskaźnik do tego miejsca odpowiedniej zmiennej typu
wskaźnikowego. Aby wyrazić to życzenie, trzeba w programie umieścić wywołanie odpowiedniej
funkcji, którą w dalszej części tego tekstu będziemy nazywać nowy wskanik (wywołanie będzie
miało uproszczoną postać x = nowy wskaźnik).

W języku C w takim przypadku używa się funkcji o nazwie malloc wymagającej parametru
będącego rozmiarem tworzonej zmiennej (patrz definicja funkcji utwórz wykorzystywanej na wyka-
dzie, x = malloc(sizeof(...))). W Pascalu do przypisania zmiennej wskaźnikowej x jest używana
procedura New z parametrem x wywoływanym przez nazwę (wywołanie ma postać New(x)).

1.6 Struktury

Deklaracja

1) struct elem {

2) int klucz;

3) elem *nast;

4) }

wprowadza nowy typ strukturowy (?, dawniej: rekordowy) o nazwie elem. Zmienne tego typu
pamiętają dwie informacje: liczbę całkowitą w polu o nazwie klucz i wskaźnik do zmiennej typu
elem w polu nast. Są reprezentowane w pamięci komputera w sposób przedstawiony na rysunku:

-s[
zmienna x typu elem

s)
︷ ︸︸ ︷pole klucz

|)
︷ ︸︸ ︷pole nast

zmienna x.klucz zmienna x.nast

1.7 Listy jednokierunkowe

Listy można przedstawiać jak niżej

-s[s) s[| s) s[| s) s[| s)
zm. l ︷ ︸︸ ︷zmienna *l ︷ ︸︸ ︷zmienna *(*l).nast

(*l).klucz
lub l –> klucz l –> nast –> klucz

︸ ︷︷ ︸ null� � �

Typ odpowiadający pojęciu listy można definiować na dwa sposoby. Standardowo przyjmuje się
definicję typedef elem *lista. Wtedy listę utożsamia się ze wskaźnikiem do pierwszego elementu
listy. Przy takim rozumieniu pojęcia listy istnieje też lista pusta, która odpowiada wskaźnikowi
null.

Można też niestandardowo przyjąć, że lista jest synonimem pojęcia elementu listy. Wtedy de-
klarujemy typedef elem lista. Tak rozumiane listy utożsamiamy z pierwszym elementem listy,
który w tym przypadku musi istnieć. W ten sposób możemy mówić wyłącznie o listach niepustych.

1.8 Rozwiązanie zadania 2 z listy 11 przy niestandardowej definicji

1) Dane: zmienna l typu elem, czyli pierwszy element pewnej listy, i liczba całkowita k.

2) elem *x; x = &l;

3) while (x –> nast !== null) {x = x –> nast; }

4) Komentarz: Zauważmy, że stwierdzenie ”x wskazuje element listy l” jest niezmiennikiem po-
wyższej instrukcji. Podobnie, niezmiennikiem jest stwierdzenie ”x jest różne od null”. Po
wykonaniu pętli while prawdziwe są następujące stwierdzenia: ”x wskazuje niepusty element
listy l, którego pole nast jest puste (ma wartość null)”.

5) przydziel(x –> nast);

6) x –> nast –> nast = null;

7) x –> nast –> klucz = k;

1.9 Rozwiązanie zadania 2 z listy 11 przy standardowej definicji

1) Dane: zmienna l typu lista, czyli wskaźnik do pierwszego elementu pewnej listy, i liczba
całkowita k.

2) elem *p;

3) przydziel(p);

4) p –> nast = null;

5) p –> klucz = k;

6) if (l == null) { l = p; }

7) else {

8) elem *x = l;

9) while (x –> nast !== null) {x = x –> nast; };

10) x = p;

11) }

1.10 Odwracanie listy jednokierunkowej (zadania 7 lub 12 z listy 11)

Odwracanie listy jest zadaniem, które wymaga doprecyzowania. Będziemy zakładać, że dana lista
jest nam niepotrzebna, a z jakichś powodów interesuje nas lista, która ma elementy takie jak
dana, ale wymienione w odwrotnej kolejności, i w związku z tym elementy dana lista może zostać
zniszczona, a jej elementy – wykorzystane w konstrucji listy odwróconej.

Idea jest prosta: zapoznajemy się z kolejnymi elementami danej listy i z obejrzanych budujemy
stopniowo listę odwróconą. Będziemy starać się, aby podczas działania programu był zachowywany
następujący niezmiennik:

dana lista L jest konkatenacją dwóch list L1 i L2 takich, że lista wskazywana przez odwr jest
odwróceniem L1, a lista wskazywana przez dana jest równa L2.

1) Dane: zmienna dana typu lista, czyli wskaźnik do pierwszego elementu pewnej listy.

2) lista odwr, pom;

3) odwr = null;

4) while (dana ! == null) { (teraz lista dana jest niepusta)

5) pom = dana –> nast; (w pom zapamiętujemy wskaźnik do tzw. ogona listy, czyli reszta
listy po pominięciu pierwszego jej elementu)

6) dana –> nast = odwr; (odcinamy pierwszy element listy od jej ogona, i dołączamy do
niego całą listę wskazywaną przez odwr)

7) odwr = dana; (wyżej utworzona lista jest kolejnym przybliżeniem listy odwróconej i
wskaźnik do niej jest zapamiętywany jako wartość odwr)

8) dana = pom; (zapamiętany ogon staje się nową daną listą)

9) }

10) return odwr; (Teraz cała odwrócona lista jest wskazywana przez zmienną odwr. Trzeba
coś zrobić z wynikiem obliczeń, np. zwrócić).

1.11 Czy drzewo jest drzewem BST? (zadanie 5 z listy 12)

Uznałem, że do rozwiązania tego zadania jest potrzebna pomocnicza funkcja z dodatkowymi para-
metrami. Główna funkcja ma następującą postać:

1) int min, max;

2) if (d = null) return(true);

3) else return(bst(d, &min, &max));

Przyjmujemy, że drzewa składają się z elementów typu

1) struct elem {

2) int k;

3) elem *l, *p;

4) }

a same drzewa są typu tree definiowanego poprzez typedef elem *tree. Tak więc zmienna d
powinna zostać zadeklarowana jako elem *d lub tree d. Poniżej została zdefiniowana pomoc-
nicza funkcja bst. Napisy true i false mogą być rozumiane jako całkowitoliczbowe stałe równe
odpowiednio 1 i 0.

Funkcja bst jest pisana tak, aby miała następujące własności

1) Funkcja bst przyjmuje jako wartości true i false, czyli 1 i 0.

2) Jeżeli bst(d, min, max) = true, to d wskazuje drzewo BST, a min i max wskazują zmienne,
których wartości są równe najmniejszemu i największemu elementowi drzewa wskazywanego
przez d.

3) Jeżeli bst(d, min, max) = false, to d wskazuje drzewo, które nie jest drzewem BST.

Własności te powinno dać się łatwo dowieść przez indukcję ze względu na budowę danego drzewa.
Definicja funkcji bst:

1) int bst(d, min, max)

2) tree d; int *min, *max;

3) {

4) int mn, mx;

5) if (d –> l = null)

6) {

7) if (d –> p = null)

8) { *min = d –> k; *max = d –> k; return (true); }

9) else

10) {

11) if (bst(d –> p, &mn, max) && d –> k <= mn)

12) { *min = d –> k; return(true); }

13) else return(false);

14) }

15) }

16) else

17) {

18) if (d –> p = null)

19) {

20) if (bst(d –> l, min, &mx) && d –> k >= mx)

21) { *max = d –> k; return(true); }

22) else return(false);

23) }

24) else

25) {

26) if (bst(d –> l, min, &mx) && bst(d –> p, &mn, max)

27) && mx <= d –> k && d –> k <= mn)

28) return(true);

29) else return(false);

30) }

31) }

32) }

