Sprawdzian z WDI, rozwiazanie zadania 1

Antoni Koscielski

15 grudnia 2015

1 Sformulowanie zadania

Dany jest nastepujacy program w kodzie RAM:

READ 1
LOAD 1
STORE 3
READ 2
petla: LOAD 1
SUB 2
JZERO wynikO
JGTZ wynikl

LOAD 1

ADD 3

STORE 1

JUMP petla
wynikl: WRITE =

HALT

wynikO: WRITE =0

1) Podaj warto$¢ wypisywana na tasmie wyjsciowej dla podanych zawartosci tasmy wejsciowej
(konkretne zawartosci, a takze inne — zbedne teraz — szczegdly, zostana podane pézniej).

2) Uzupeij specyfikacje powyzszego programu. OdpowiedZ uzasadnij — najlepiej poprzez
podanie schematu blokowego, uzasadnienie, w tym schemat blokowy, mozesz zamiesci¢ na
odwrocie kartki.

3) Rozwazmy modyfikacje powyzszego programu polegajaca na zamianie instrukcji "write =0"
na "write "0". Uzupelnij specyfikacje tak uzyskanego programu. OdpowiedZ uzasadnij.

2 Co$ w rodzaju schematu blokowego

Rozwiazujac takie zadanie, najpierw trzeba zrozumie¢ dany program. Moze w tym pomodc nary-
sowanie schematu blokowego. Tutaj dany program bedzie stopniowo przeksztalcany do prostszej,
bardziej zrozumiatej postaci. Najpierw zapiszemy ten program uzywajac instrukcji przypisania i
zmiennych zamiast polecen dla maszyny RAM. Uzyjemy czterech zmiennych Acc, X, A i B, ktore
beda odpowiadaé kolejno komérkom maszyny RAM o numerach od 0 do 3. W pierwszym rzedzie

polecenia dla maszyny RAM wyrazimy za pomoca instrukcji przypisania, nastepnie usuniemy z pro-
gramu instrukcje przypisania z udziatem zmiennej Acc, odpowiednika akumulatora. Przeksztatcajac
tak dany otrzymamy nastepujace programy:

READ 1 Czytaj (X) Czytaj(X)
LOAD 1 Acc «— X
STORE 3 A « Acc A — X
READ 2 Czytaj(B) Czytaj(B)
petla: LOAD 1 pp: Acc «— X PP:
SUB 2 Acc < Acc - B
JZERO wynikO Jesli Acc = 0, Jesli X - B =0,
to Idz do wO to Idz do wO
JGTZ wynikl Jesli Acc > O, Jesli X - B > 0,
to IdZz do wl to IdZz do wl
LOAD 1 Acc «— X
ADD 3 Acc < Acc + A
STORE 1 X «— Acc X — X+ A
JUMP petla Idz do pp Idz do pp
wynikl: WRITE = wl: Pisz(1) wl: Pisz(1)
HALT Stop Stop
wynikO: WRITE =0 w0: Pisz(0) w0: Pisz(0)

Ostatni z powyzszych programéw ma juz postac, ktora bez trudu moze zostaé przeksztatcona
w schemat blokowy. Nie zostanie to zrobione, ale zainteresowane osoby moga zrobi¢ to same. Ten
program mozna juz wykorzysta¢ w dalszych rozwazaniach. Mozna go tez jeszcze bardziej uproscic.
Mozemy na przyktad wyjs¢ z petli tylko w jeden sposéb, troche wezesniej niz w podanym programie,
przed ustaleniem wyniku, a wynik obliczen okresli¢ poza petla. W koncu mozemy do programu
wprowadzi¢ instrukcje dopéki. W ten sposéb otrzymamy dwie kolejne wersje naszego programu:

Czytaj(X) Czytaj(X) Czytaj(X)
A — X A — X A — X
Czytaj(B) Czytaj(B) Czytaj(B)
pp: Jesli X - B =0 pp: Jesli X > B, dopdéki X < B wykonuj
to IdZz do w0 to Idz do wO

Jesli X - B > 0,
to Idz do wl

X — X+ A X — X+ A X — X+ A
IdZz do pp IdZz do pp
wl: Pisz(1) w0: Jesli X > B, Jesli X > B,
Stop to Pisz(1) to Pisz(1)
w0: Pisz(0) wpp Pisz(0) wpp Pisz(0)

Szczegollnie prosta jest ostatnia wersja. Mozna ja tatwo zapisa¢ w jezyku C lub w Pascalu.
Podczas sprawdzianu kilka oséb zauwazyto, ze to samo, co dany, robi takze inny, nieco prostszy
program:

READ 1
READ 2
LOAD 1
SUB 2
petla: JZERO wynikO

JGTZ wynikl

ADD 1
JUMP petla

wynikl: WRITE =
HALT

wynikO: WRITE =0

Prosze sprawdzi¢, ze tak jest w rzeczywistosci.

3 Specyfikacja

Wiedzac juz, co robi nasz program, mozemy pokusi¢ sie o odtworzenie jego specyfikacji. Wsrod
pozytywnie ocenianych rozwigzan najczesciej pojawiata si¢ taka oto:

Specyfikacja:

Wejscie: liczby naturalne a i b wezytane odpowiednio do 1 i 2 komorki,

Wryjscie: 0, jezeli liczba a dzieli liczbe b, oraz 1 w przeciwnym przypadku.

Niektore osoby zamiast a dzieli liczbe b pisaty réwnowazny zwrot b jest wielokrotnoscia a. Po
podaniu specyfikacji nalezato ja uzasadnic.

3.1 Krétkie uzasadnienie przytoczonej specyfikacji

Po poczatkowych przypisaniach warto$ci zmiennych A oraz B nie ulegaja zmianie i sg stale row-
ne odpowiednio pierwszej wczytanej liczbie a oraz drugiej — b. Stad w szczegdlnosci wynika, ze
warto$ciami zmiennej X sg kolejne wielokrotnosci liczby a i sa one poréwnywane z liczba b.

Przed zakonczeniem dziatania programu warto$¢ zmiennej X jest wieksza lub rowna b. Wobec
tego, jezeli liczba b jest wielokrotno$cig a, to w pewnym momencie warto$¢ zmiennej X stanie sie
rowna b, nastapi skok do etykiety wynik0, na tasmie wyjsciowej pojawi sie 0 i program zatrzyma
sie. W przeciwnym razie, wartos¢ zmiennej X nigdy nie bedzie rowna b, a gdy przekroczy b nastapi
skok do etykiety wynik1, na tasmie wyjsciowe] zostanie zapisana liczba 1 i program zakonczy prace.

Tak wigc rozwazany program dziata zgodnie z powyzsza specyfikacja.

3.2 Jeszcze krotsze uzasadnienie

Oczywiscie na sprawdzianie takie uzasadnienia mozna pisa¢ krotszymi zdaniami, na przyktad taki-
mi:

Wartosci A oraz B nie ulegajg zmianie i sg stale rowne odpowiednio a oraz b. Stad wartosciami
X sa kolejne wielokrotnosci a. Kazda obliczona wielokrotnos¢ jest poréwnywana z b.

Przed zakonczeniem programu mamy X > b. Jezeli b jest wielokrotnoscia a, to w pewnym
momencie X = b, program skoczy do etykiety wynik0, wypisze 0 i zatrzyma sie. W przeciwnym
razie, wartos¢ X nigdy nie bedzie = b, a gdy przekroczy b, to program napisze 1 i zakonczy prace.

3.3 O specyfikacjach — teoretycznie

Specyfikacja powinna dostarcza¢ wszystkich istotnych z punktu widzenia uzytkownika informa-
cji o programie. Uzytkownik zapewne chciatby wiedzie¢, jak zakonczy si¢ dziatanie programu dla
konkretnych danych. Chciatby tez wiedzie¢, co mozna sadzi¢ o danych znajac wynik dzialania
programu. Wobec tego uzasadnienie nastepujacej specyfikacji:

Specyfikacja:

Wejscie: liczby naturalne a i b wezytane odpowiednio do 1 i 2 komorki,

Wyjscie: 0, jezeli p(a,b)
oraz 1, w przeciwnym przypadku.

powinno polega¢ na wykazaniu o stusznos$ci dwoch réwnowaznosci
¢(a,b) < wynikiem obliczen jest 0

oraz
—p(a, b) < wynikiem obliczen jest 1.

Zwroty wynikiem obliczen jest 0 i podobne sg tutaj skrotami myslowymi oznaczajacym, ze tak jest
po uruchomieniu programu z danymi a i b.

Obie podane réwnowaznosci sa bardzo podobne i czesto wystarczy wykazaé tylko jedna z nich.
Tak jest w przypadku, gdy zachodzi alternatywa

wynikiem obliczen jest 0 V wynikiem obliczen jest 1.
Implikuje ona wtasciwie réwnowaznos¢
wynikiem obliczen nie jest 0 < wynikiem obliczen jest 1,

poniewaz obliczenia sa deterministyczne i 0 oraz 1 nie moga by¢ jednoczesnie wynikami obliczen.
Z kolei ta rownowazno$¢ oznacza, ze obie réwnowaznosci uzasadniajgce specyfikacje stwierdzaja to
samo.

W sytuacji jak wyzej mozna tez uzasadnic¢ specyfikacje pokazujac tylko dwie implikacje

¢(a,b) = wynikiem obliczen jest 0

oraz
—¢(a,b) = wynikiem obliczen jest 1.

Wiasnie taki jest ogélny plan uzasadnienia przytoczonego w rozdziale 3.1. To samo da sie uzyskac
wykazujac dwie implikacje odwrotne.
Zdarza si¢ jednak, ze podana alternatywa nie jest prawdziwa, a zachodzi dopiero alternatywa

wynikiem obliczen jest 0 V wynikiem obliczen jest 1 V program nie zatrzymuje sie.

Wtedy dziatanie programu ,konczy sie” na trzy sposoby. Bywa tez, ze jest wiecej dopuszczal-
nych wynikéw obliczen. W takich przypadkach specyfikacja powinna podawaé¢ warunki konczenia
dzialania programu na wszystkie mozliwe sposoby. Wtedy mozemy ja uzasadnia¢ analogicznie, a
wiekszos¢ poczynionych spostrzezen pozostaje prawdziwa.

3.4 Kilka uwag

Teraz musimy zauwazy¢, ze uzasadnienie przedstawione w punkcie 3.1 nie jest w petni poprawne.
Staranne przesledzenie podanej argumentacji pozwala znalezé w niej kilka usterek. Stawia to tez
pod znakiem zapytania stusznosé specyfikacji przytoczonej na poczatku rozdziatu.

Szukanie dziury w catym to podstawowy obowiazek studentow. Dlatego proponuje, aby przed
dalszym czytaniem tekstu wréoci¢ do podanej specyfikacji, a zwtaszcza jej uzasadnienia, i ponownie
sprobowadé ocenié¢ ich poprawnosc.

Wiaze sie to z problemem, czy zero jest liczbg naturalng. Na ten temat pojawiaja si¢ sprzeczne
opinie. Liczby naturalne stuza do liczenia rzeczy i moze by¢ trudne do wyobrazenia, jak mozna
policzy¢ co$, czego nie ma. Zgodzmy sie z tym na chwile i nie zaliczajmy 0 do liczb naturalnych. W
takim przypadku specyfikacja jest w petni poprawna, a jej uzasadnienie z punktu 3.1 jest wlasciwie
poprawne i mozna w nim znalez¢ najwyzej kilka luk. Inaczej jest w przeciwnym przypadku.

3.5 Lepsza specyfikacja

Jest kilka powodéw, dla ktoérych zero jednak powinno by¢ liczba naturalng. Zdarza sie, liczymy
przedmioty spelniajace warunek, ktory okazal sie sprzeczny. Tak wiec ostatnia specyfikacje trzeba
poprawi¢. Lepsza jest nastepujaca:

Specyfikacja:

Wejscie: liczby naturalne a i b wezytane odpowiednio do 1 i 2 komorki,

Wryjscie: 0, jezeli liczba b jest niezerowa wielokrotnoscia liczby a
oraz 1, jezeli a > 0 i b nie jest niezerowy wielokrotnoscig a.

Zamiast méwi¢, ze nie ma 0, méwimy, ze interesuja nas tylko liczby wieksze od 0, a takze wielo-
krotnosci wieksze od 0 (albo ,wiecej niz 0 razy”), czyli niezerowe!. Po takich zmianach uzasadnienie
3.1 staje sie wlasciwie poprawne. Moze warto je uzupelni¢ w dwdch miejscach.

Nasz program analizuje wielokrotnosci poczawszy od 1 - a. Bledem pierwszej specyfikacji byto
traktowanie wielokrotnosci 0 - a jak kazdej innej, mimo ze zwykle znajduje sie poza rozwazanym
zakresem. Teraz specyfikacja stwierdza, ze program bada mniej, tylko sprawdza, czy dana liczba
jest wielokrotnoscia z zakresu, ktory faktycznie jest badany przez program.

Podobny jest charakter drugiej usterki: program robi mniej, niz stwierdzata to pierwotna specy-
fikacja. Warunkiem wydrukowania liczby 1 bylo znalezienie wielokrotnosci a wigkszej niz b. Takiej
wielokrotnosci moze nie by¢ dla a = 0. Jezeli wymienionym w specyfikacji warunkiem wydruko-
wania 1 bedzie dodatnios¢ a, to zagwarantuje on istnienie dostatecznie duzych wielokrotnosci a i
pozwoli na udowodnienie poprawnosci specyfikacji.

Rozwazana teraz specyfikacja takze ma wade: nie opisuje dziatania programu we wszystkich
przypadkach. Jest to jednak poprawna specyfikacja w tym sensie, ze podaje poprawne warunki
wyprowadzenia na tasme wyjsciowa wartosci 0 i 1. Z drugiej strony, uzasadnienie tego faktu chyba
nie jest do konca jasne. SkupialiSmy sie na dowodzeniu pewnych implikacji, a z nich potrzebne
rownowaznosci — zgodnie z treécig punktu 3.3 — wynikaja tylko niektérych sytuacjach.

!Precyzyjna definicja niezerowej wielokrotnoéci jest nastepujaca: liczba b jest niezerowa wielokrotnoscia liczby a
wtedy i tylko wtedy, gdy b = k - a dla pewnej liczby naturalnej k > 0.

3.6 Najlepsza specyfikacja

Po usunieciu ostatniej usterki otrzymujemy nastepujaca specyfikacje:

Specyfikacja:

Wejscie: liczby naturalne a i b wezytane odpowiednio do 11 2 komorki,

Wyjscie: 0, jezeli liczba b jest niezerows wielokrotnoscia liczby a,
oraz 1, jezeli a > 0 i b nie jest niezerowg wielokrotnoscia a.
W pozostatych przypadkach program liczy bez korica (i na tasmie wyjsciowej nic nie
zostaje napisane).

Jest w niej do$¢ trudny do zrozumienia zwrot ,w pozostatych przypadkach”. Zauwazmy, ze
napis

(Fk>0b=k-a) V (a>0AVk>0b#£k-a)

mowi to samo, co
a>0Vb=0.

Wobec tego zwrot ,w pozostalych przypadkach” oznacza tu ,gdy a = 0 i b > 07. Uzycie tego
zwrotu datoby nieco bardziej zrozumiaty specyfikacje.

Rzecza niepokojaca jest to, ze o mozliwosci zapetlenia analizowanego programu wspomniata na
sprawdzianie chyba tylko jedna osoba.

3.7 Niezmienniki

Uzasadniajac taka specyfikacje, by¢ moze nalezy sie postuzy¢ niezmiennikami petli. Analizowany
program ma jedng petle, ktora ma wiele niezmiennikow. Dla tej petli niezmiennikiem jest wtasnosé
(X, A, B) wartosci zmiennych X, A, B oraz réznych stalych (np. liczb a i b), dla ktérej zachodzi
implikacja

jezeli X < B oraz przed wykonaniem instrukeji X « X + A zachodzi ¢(X, A, B),

to whasnos$é (X, A, B) zachodzi takze po jej wykonaniu.

Sledzgc dalsze wyjasnienie dobrze mie¢ przed oczami jakas wersje rozwazanego programu. Moze
to by¢ dowolna ostatnia z trzech podawanych w rozdziale 2 obok siebie. W pierwszej mamy petle
zaczynajaca sie etykieta pp i zakonczona instrukcja Idz do pp, w drugiej — petle dopéki. Wewnatrz
tych dwoch petli jest wykonywana tylko jedna instrukcja X «— X + A.

Méwiac w skrocie, whasnosé (X, A, B) jest niezmiennikiem petli, jezeli w sytuacji, gdy nie wy-
chodzimy z petli (np. w wyniku skoku), jej zachodzenie przed wykonaniem instrukcji wewnetrznych
petli gwarantuje tez jej prawdziwos$¢ po wykonaniu tych instrukcji.

7 teorii niezmiennikow wynika, ze niezmienniki prawdziwe przed przystapieniem do wykonywa-
nia petli sa prawdziwe podczas jej wykonywania, a zwlaszcza po jej zakonczeniu. Po zakonczeniu
petli dodatkowo zachodzi tez warunek powodujacy jej zakoniczenie. W rozwazanym teraz programie
jest to nierownos¢ X > B.

3.8 Dokladniejsze uzasadnienie specyfikacji

W rozwazanym tutaj programie, nastepujace wtasnosci sa niezmiennikami tej petli, ktéra w nim
wystepuje:

1) A=aoraz B =0,
2) X jest niezerowa wielokrotnoscia A,
3) X <A+ B,

Trzy pierwsze wtasnosci oczywiscie sa niezmiennikami. Dla przyktadu pokazemy, ze niezmiennikiem
jest takze ostatnia wtasnos¢.

Zatézmy wiec, ze przed wykonaniem przypisania X «— X + A zachodza nieréwnosci X < B
oraz X < A+ B. Z pierwszej nieréwnosci wynika, ze zachodzi takze X + A < A+ B. Po wykonaniu
przypisania, nowg wartoscig X staje sie dotychczasowe X + A, a wiec znowu zachodzi nieréwnosc¢
X <A+ B.

Aby wykaza¢ poprawnos¢ najlepszej specyfikacji, wystarczy uzasadnié¢ trzy implikacje:

1) jezeli b jest niezerowa wielokrotnoscia a, to na tasmie wyjsciowej zostaje wypisane 0,

2) jezeli a > 0 oraz b nie jest niezerowa wielokrotnoscia a, to na tasmie wyjsciowej zostaje
wypisane 1,

3) jezelia=01b> 0, to program nie koriczy pracy.

Implikacje odwrotne do wymienionych tez beda prawdziwe. Tak jest poniewaz kazda para liczb
naturalnych spelnia jeden z wymienionych w specyfikacji warunkow, a takze dlatego, ze zadne
wymienione w specyfikacji efekty dziatania programu nie moga zajs¢ jednocze$nie. Na przyktad,
jezeli na tasmie wyjsciowej pojawi sie liczba 0, to ani nie pojawi si¢ liczba 1, ani program nie
zapetli sie, gdyz instrukcja przekazujaca liczbe 0 znajduje si¢ na koncu programu i po jej wykonaniu
program nic juz nie zrobi, w szczeg6lnosci nie spowoduje zapisania na tasmie wyjsciowe]j liczby 1.

Najpierw pokazemy, ze w dwoch sytuacjach program zatrzymuje sie.

Tak jest wtedy, gdy b = 0. W tym przypadku, przed przystapieniem do wykonywania petli
spelniony jest warunek B < X przerywajacy jej wykonywanie. Zaleznie od $ledzonej wersji progra-
mu, w tej sytuacji albo nastepuje skok do instrukecji konczacych program, albo zostaje zakonczone
wykonywanie instrukcji dopéki.

Jezeli natomiast a > 0, to w petli jest wielokrotnie zmieniana wartos¢ zmiennej X, a ciag kolejno
przyjmowanych wartosci zmiennej X jest w tym przypadku rosnacy. Dostatecznie dtugi rosnacy ciag
liczb naturalnych zawiera liczby przekraczajace z géry zadana warto$é. Stad podczas wykonywania
petli w pewnym momencie staje si¢ prawdziwa nieréwnos¢ B < X, ktora w pierwszym rzedzie
powoduje zakonczenie wykonywania petli, a nastepnie — catego programu.

Sprobujmy teraz pokazaé pierwsza z wymaganych implikacji. Zaltézmy wiec, ze b jest niezerowa
wielokrotnoscig a. Jezeli a = 0, to takze b = 0 i od razu zachodzi warunek X = B. Jest oczywiste,
ze wtedy na tasmie wyjsciowej pojawia sie warto$¢ 0. Jezeli zas a > 0, to takze b > 0 i tuz
przed petla staje sie prawdziwa nieréowno$¢ X < A + B. Poniewaz jest ona niezmiennikiem, wiec
réwniez zachodzi po (ewentualnym) zakonczeniu wykonywania petli. Wiemy juz, ze ta petla nie
jest wykonywana ,w nieskonczono$¢” (poniewaz a > 0). Po jej zakonczeniu zachodzi tez warunek
zakonczenia petli, czyli B < X. Mamy wiec dwie liczby: wartos¢ zmiennej X po zakonczeniu petli
oraz b speliajace nieré6wnosé

X—-—a<b< X

Obie te liczby sa niezerowymi wielokrotnosciami a, a w przedziale (X — a, X| jedyna taka liczba
jest X. Stad X = b= B. W tej sytuacji, program zapisuje na tasmie wyjsciowej 0 i konczy prace.

W bardzo podobny sposob pokazujemy druga implikacje. Z zatozenia z tej implikacji mamy, ze
a > 0. Jak wyzej pokazujemy, ze B < X. Poniewaz X jest, a b nie jest niezerowa wielokrotnoscia
a, wigc B < X, program zapisuje na tasmie wyjsciowej 1 i konczy prace.

Pozostaje do udowodnienia trzecia implikacja. Zatézmy wiec, ze a = 0, b > 0 i — dla dowo-
du nie wprost — ze program jednak zatrzymuje siec. W tej sytuacji program wczesniej zakonczy
wykonywanie petli. Wtedy wartos¢ zmiennej X bedzie niezerows wielokrotnoscia a speliajaca nie-
rownosc b < X, czyli b bedzie rowne 0. To jednak przeczy warunkowi b > 0 i koniczy dowdd trzeciej
implikacji, a takze uzasadnienie ostatniej z rozwazanych specyfikacji.

4 Pierwsza czeS¢ zadania

Znajac dobra specyfikacje bardzo tatwo odpowiedzie¢ na pytanie, co zostanie zapisane na tasmie
wyjsciowej po uruchomieniu naszego programu z tasma wejsciowa, na ktorej znajduja sie liczby
514. Wtedy a = 51 b = 4. Oczywidcie, b nie jest niezerowa wielokrotnoscia a > 0. Zgodnie ze
specyfikacja, w tej sytuacji program spowoduje zapisanie na tasmie wyjsciowej liczby 1 i zakonczy
prace.

By¢ moze jednak jest uzasadnione szukanie odpowiedzi na takie pytanie przed znalezieniem
specyfikacji. Wtedy takie zadanie mozna rozwiaza¢ w inny sposob. Sprobujmy znalezé odpowiedz
na postawione pytanie przy zalozeniu, ze na tasmie wejéciowej mamy zapisane liczby 5 i 10. Mozna
to zrobi¢ poprzez utworzenie i wypetienie takiej oto tabelki, symulujac w ten sposob dziatanie
danego programu:

Instrukcja | Wejscie | Akum. | K. nr 1 | K. nr 2 | K. nr 3 | Wyjscie
5, 10

Mozemy nawet uzupetnié te tabele o wskaznik (licznik) rozkazéw. Sprébujmy to zrobié¢. Przyj-
mijmy jako zasade, ze zapisujemy liczbe w odpowiednim miejscu tabelki, jezeli w wyniku wykonania
instrukcji nastepuje zmiana zawartosci pewnej komorki. Tak wiec zawartos¢ komorki to ostatnia
liczba zapisana w odpowiadajacej jej kolumnie. Uméwmy sie takze, ze instrukcje danego progra-
mu zostaly ponumerowane w naturalny sposob i wskaznik rozkazu zawiera tak rozumiany numer
instrukcji, ktéra ma zosta¢ wykonana.

’ Instrukcja ‘ Wejscie ‘ Akum. ‘ K. nrl ‘ K.nr2 ‘ K.nr3 ‘ Wyjscie ‘ Wsk. . ‘

D, 10 ? ? ? ? puste 1
Read 1 10 5 2
Load 1 5 3
Store 3 5 4
Read 2 pusta 10)
Load 1 5! 6
Sub 2 -5 7
Jzero wO 8
Jgtz wi 9
Load 1 5 10
Add 3 10 11
Store 1 10 12
Jump pp)
Load 1 10 6
Sub 2 0 7
Jzero w0 15
Write =0 0 16

5 'Trzecia czes$¢ zadania

5.1 Adresowanie posrednie

Pozostata do oméwienia ostatnia cze$é zadania. Aby ja zrobié trzeba wiedzieé, co to jest adresowanie
posrednie, a wlasciwie w jaki sposdb jest wykonywana instrukcja Write “n. Zacznijmy wiec od
przypomnienia semantyki tej instrukcji. Aby o niej opowiadaé¢, dobrze jest wprowadzi¢ symbol
oznaczajacy zawarto$¢ n-tej komorki pamieci maszyny RAM. Przyjmijmy wiec, ze jest to wartosé
oznaczana wzorem mn|. W szczegdlnosci, napis m[0] oznacza zawartos¢ akumulatora.

Wykonanie instrukcji Write “n polega na

1) pobraniu z komérki pamieci o numerze (adresie) n numeru (adresu) adr komérki z interesujaca
nas wartoscia; mozna mysleé, ze wykonujemy przypisanie adr «— m|n|,

2) pobraniu z komoérki o adresie adr jej zawartosci, czyli na przyktad wykonaniu przypisania
liczba < mladr],

3) przekazaniu na tasme wyjsciowa pobranej wartosci liczba.

A

Piszac w skrécie, wykonanie instrukcji Write “n polega na przekazaniu na tasme wyjsciowa wartosci

m[mn]].

5.2 Analiza sytuacji

Teraz powinnismy zastanowi¢ sig, jakie konsekwencje bedzie mialo zastapienie w rozwazanym pro-
gramie instrukcji Write =0 poleceniem Write 0.

Zwykle instrukcja maszyny RAM moze zosta¢ wykonana w dwoch sytuacjach: bezposrednio
po wykonaniu poprzedniej instrukeji lub po wykonaniu odpowiedniego skoku. Instrukcja Write =0
moze zosta¢ wykonana tylko w wyniku skoku, poniewaz znajduje sie za instrukcja Halt przerywa-
jaca wykonywanie programu. Co wiecej, odpowiedni skok wykonuje tylko jedna instrukcja i jest ona
postaci Jzero wynik0O. Tak wiec skok do instrukeji Write =0 jest wykonywany po stwierdzeniu, ze
w akumulatorze znajduje sie 0, a wiec gdy m[0] = 0. Wykonanie skoku nie zmienia zawartosci aku-
mulatora, czyli podana réwnos¢ bedzie tez zachodzié¢ tuz przed wykonaniem instrukcji Write =0.
Wykonujac te instrukcje maszyna RAM wysyta na taéme wyjéciowa liczbe 0, a nastepnie przerywa
wykonywanie programu (wykonala ostatnig instrukcje).

Jezeli zamiast Write =0 pojawi si¢ instukcja Write "0, to maszyna RAM zrobi prawie to samo.
Zamiast przesyta¢ na tasme wyjsciowa wartos¢ podang w programie, wyliczy i przesle na tasme
wyjsciowg wartosé

m[m|0]] = m[0] =0,

a nastepnie zakonczy wykonywanie programu. Zmieniona cze$¢ programu dziata wiec tak samo, jak
pierwotna, i dokonana zmiana nie ma wplywu na specyfikacje.

5.3 Rozwigzanie

Aby rozwigzaé ostatnig cze$¢ zadania, nalezalo wiec swierdzi¢, ze po zmianie ostatniej instrukcji
program ma doktadnie taka sama specyfikacje, jak przed zmiang, i przytoczy¢ — moze w nieco
skroconej formie — kilka z wyzej przytoczonych argumentéw.

