
Sprawdzian z WDI, rozwiązanie zadania 1

Antoni Kościelski

15 grudnia 2015

1 Sformułowanie zadania

Dany jest następujący program w kodzie RAM:

READ 1
LOAD 1
STORE 3
READ 2

pętla: LOAD 1
SUB 2
JZERO wynik0
JGTZ wynik1
LOAD 1
ADD 3
STORE 1
JUMP pętla

wynik1: WRITE =1
HALT

wynik0: WRITE =0

1) Podaj wartość wypisywaną na taśmie wyjściowej dla podanych zawartości taśmy wejściowej
(konkretne zawartości, a także inne – zbędne teraz – szczegóły, zostaną podane później).

2) Uzupełnij specyfikację powyższego programu. Odpowiedź uzasadnij – najlepiej poprzez
podanie schematu blokowego, uzasadnienie, w tym schemat blokowy, możesz zamieścić na
odwrocie kartki.

3) Rozważmy modyfikację powyższego programu polegającą na zamianie instrukcji "write =0"
na "write ∧0". Uzupełnij specyfikację tak uzyskanego programu. Odpowiedź uzasadnij.

2 Coś w rodzaju schematu blokowego

Rozwiązując takie zadanie, najpierw trzeba zrozumieć dany program. Może w tym pomóc nary-
sowanie schematu blokowego. Tutaj dany program będzie stopniowo przekształcany do prostszej,
bardziej zrozumiałej postaci. Najpierw zapiszemy ten program używając instrukcji przypisania i
zmiennych zamiast poleceń dla maszyny RAM. Użyjemy czterech zmiennych Acc, X, A i B, które
będą odpowiadać kolejno komórkom maszyny RAM o numerach od 0 do 3. W pierwszym rzędzie

1



polecenia dla maszyny RAM wyrazimy za pomocą instrukcji przypisania, następnie usuniemy z pro-
gramu instrukcje przypisania z udziałem zmiennej Acc, odpowiednika akumulatora. Przekształcając
tak dany otrzymamy następujące programy:

READ 1 Czytaj(X) Czytaj(X)
LOAD 1 Acc ← X
STORE 3 A ← Acc A ← X
READ 2 Czytaj(B) Czytaj(B)

pętla: LOAD 1 pp: Acc ← X pp:
SUB 2 Acc ← Acc - B
JZERO wynik0 Jeśli Acc = 0, Jeśli X - B = 0,

to Idź do w0 to Idź do w0
JGTZ wynik1 Jeśli Acc > 0, Jeśli X - B > 0,

to Idź do w1 to Idź do w1
LOAD 1 Acc ← X
ADD 3 Acc ← Acc + A
STORE 1 X ← Acc X ← X + A
JUMP pętla Idź do pp Idź do pp

wynik1: WRITE =1 w1: Pisz(1) w1: Pisz(1)
HALT Stop Stop

wynik0: WRITE =0 w0: Pisz(0) w0: Pisz(0)

Ostatni z powyższych programów ma już postać, która bez trudu może zostać przekształcona
w schemat blokowy. Nie zostanie to zrobione, ale zainteresowane osoby mogą zrobić to same. Ten
program można już wykorzystać w dalszych rozważaniach. Można go też jeszcze bardziej uprościć.
Możemy na przykład wyjść z pętli tylko w jeden sposób, trochę wcześniej niż w podanym programie,
przed ustaleniem wyniku, a wynik obliczeń określić poza pętlą. W końcu możemy do programu
wprowadzić instrukcję dopóki. W ten sposób otrzymamy dwie kolejne wersje naszego programu:

Czytaj(X) Czytaj(X) Czytaj(X)
A ← X A ← X A ← X
Czytaj(B) Czytaj(B) Czytaj(B)

pp: Jeśli X - B = 0 pp: Jeśli X ­ B, dopóki X < B wykonuj
to Idź do w0 to Idź do w0

Jeśli X - B > 0,
to Idź do w1

X ← X + A X ← X + A X ← X + A
Idź do pp Idź do pp

w1: Pisz(1) w0: Jeśli X > B, Jeśli X > B,
Stop to Pisz(1) to Pisz(1)

w0: Pisz(0) wpp Pisz(0) wpp Pisz(0)

Szczególnie prosta jest ostatnia wersja. Można ją łatwo zapisać w języku C lub w Pascalu.
Podczas sprawdzianu kilka osób zauważyło, że to samo, co dany, robi także inny, nieco prostszy

program:



READ 1
READ 2
LOAD 1
SUB 2

pętla: JZERO wynik0
JGTZ wynik1
ADD 1
JUMP pętla

wynik1: WRITE =1
HALT

wynik0: WRITE =0

Proszę sprawdzić, że tak jest w rzeczywistości.

3 Specyfikacja

Wiedząc już, co robi nasz program, możemy pokusić się o odtworzenie jego specyfikacji. Wśród
pozytywnie ocenianych rozwiązań najczęściej pojawiała się taka oto:

Specyfikacja:

Wejście: liczby naturalne a i b wczytane odpowiednio do 1 i 2 komórki,

Wyjście: 0, jeżeli liczba a dzieli liczbę b, oraz 1 w przeciwnym przypadku.

Niektóre osoby zamiast a dzieli liczbę b pisały równoważny zwrot b jest wielokrotnością a. Po
podaniu specyfikacji należało ją uzasadnić.

3.1 Krótkie uzasadnienie przytoczonej specyfikacji

Po początkowych przypisaniach wartości zmiennych A oraz B nie ulegają zmianie i są stale rów-
ne odpowiednio pierwszej wczytanej liczbie a oraz drugiej – b. Stąd w szczególności wynika, że
wartościami zmiennej X są kolejne wielokrotności liczby a i są one porównywane z liczbą b.

Przed zakończeniem działania programu wartość zmiennej X jest większa lub równa b. Wobec
tego, jeżeli liczba b jest wielokrotnością a, to w pewnym momencie wartość zmiennej X stanie się
równa b, nastąpi skok do etykiety wynik0, na taśmie wyjściowej pojawi się 0 i program zatrzyma
się. W przeciwnym razie, wartość zmiennej X nigdy nie będzie równa b, a gdy przekroczy b nastąpi
skok do etykiety wynik1, na taśmie wyjściowej zostanie zapisana liczba 1 i program zakończy pracę.

Tak więc rozważany program działa zgodnie z powyższą specyfikacją.

3.2 Jeszcze krótsze uzasadnienie

Oczywiście na sprawdzianie takie uzasadnienia można pisać krótszymi zdaniami, na przykład taki-
mi:

Wartości A oraz B nie ulegają zmianie i są stale równe odpowiednio a oraz b. Stąd wartościami
X są kolejne wielokrotności a. Każda obliczona wielokrotność jest porównywana z b.

Przed zakończeniem programu mamy X ­ b. Jeżeli b jest wielokrotnością a, to w pewnym
momencie X = b, program skoczy do etykiety wynik0, wypisze 0 i zatrzyma się. W przeciwnym
razie, wartość X nigdy nie będzie = b, a gdy przekroczy b, to program napisze 1 i zakończy pracę.



3.3 O specyfikacjach – teoretycznie

Specyfikacja powinna dostarczać wszystkich istotnych z punktu widzenia użytkownika informa-
cji o programie. Użytkownik zapewne chciałby wiedzieć, jak zakończy się działanie programu dla
konkretnych danych. Chciałby też wiedzieć, co można sądzić o danych znając wynik działania
programu. Wobec tego uzasadnienie następującej specyfikacji:

Specyfikacja:

Wejście: liczby naturalne a i b wczytane odpowiednio do 1 i 2 komórki,

Wyjście: 0, jeżeli ϕ(a, b)
oraz 1, w przeciwnym przypadku.

powinno polegać na wykazaniu o słuszności dwóch równoważności

ϕ(a, b)⇔ wynikiem obliczeń jest 0

oraz
¬ϕ(a, b)⇔ wynikiem obliczeń jest 1.

Zwroty wynikiem obliczeń jest 0 i podobne są tutaj skrótami myślowymi oznaczającym, że tak jest
po uruchomieniu programu z danymi a i b.

Obie podane równoważności są bardzo podobne i często wystarczy wykazać tylko jedną z nich.
Tak jest w przypadku, gdy zachodzi alternatywa

wynikiem obliczeń jest 0 ∨ wynikiem obliczeń jest 1.

Implikuje ona właściwie równoważność

wynikiem obliczeń nie jest 0⇔ wynikiem obliczeń jest 1,

ponieważ obliczenia są deterministyczne i 0 oraz 1 nie mogą być jednocześnie wynikami obliczeń.
Z kolei ta równoważność oznacza, że obie równoważności uzasadniające specyfikację stwierdzają to
samo.

W sytuacji jak wyżej można też uzasadnić specyfikację pokazując tylko dwie implikacje

ϕ(a, b)⇒ wynikiem obliczeń jest 0

oraz
¬ϕ(a, b)⇒ wynikiem obliczeń jest 1.

Właśnie taki jest ogólny plan uzasadnienia przytoczonego w rozdziale 3.1. To samo da się uzyskać
wykazując dwie implikacje odwrotne.

Zdarza się jednak, że podana alternatywa nie jest prawdziwa, a zachodzi dopiero alternatywa

wynikiem obliczeń jest 0 ∨ wynikiem obliczeń jest 1 ∨ program nie zatrzymuje się.

Wtedy działanie programu „kończy się” na trzy sposoby. Bywa też, że jest więcej dopuszczal-
nych wyników obliczeń. W takich przypadkach specyfikacja powinna podawać warunki kończenia
działania programu na wszystkie możliwe sposoby. Wtedy możemy ją uzasadniać analogicznie, a
większość poczynionych spostrzeżeń pozostaje prawdziwa.



3.4 Kilka uwag

Teraz musimy zauważyć, że uzasadnienie przedstawione w punkcie 3.1 nie jest w pełni poprawne.
Staranne prześledzenie podanej argumentacji pozwala znaleźć w niej kilka usterek. Stawia to też
pod znakiem zapytania słuszność specyfikacji przytoczonej na początku rozdziału.

Szukanie dziury w całym to podstawowy obowiązek studentów. Dlatego proponuję, aby przed
dalszym czytaniem tekstu wrócić do podanej specyfikacji, a zwłaszcza jej uzasadnienia, i ponownie
spróbować ocenić ich poprawność.

Wiąże się to z problemem, czy zero jest liczbą naturalną. Na ten temat pojawiają się sprzeczne
opinie. Liczby naturalne służą do liczenia rzeczy i może być trudne do wyobrażenia, jak można
policzyć coś, czego nie ma. Zgódźmy się z tym na chwilę i nie zaliczajmy 0 do liczb naturalnych. W
takim przypadku specyfikacja jest w pełni poprawna, a jej uzasadnienie z punktu 3.1 jest właściwie
poprawne i można w nim znaleźć najwyżej kilka luk. Inaczej jest w przeciwnym przypadku.

3.5 Lepsza specyfikacja

Jest kilka powodów, dla których zero jednak powinno być liczbą naturalną. Zdarza się, liczymy
przedmioty spełniające warunek, który okazał się sprzeczny. Tak więc ostatnią specyfikację trzeba
poprawić. Lepsza jest następująca:

Specyfikacja:

Wejście: liczby naturalne a i b wczytane odpowiednio do 1 i 2 komórki,

Wyjście: 0, jeżeli liczba b jest niezerową wielokrotnością liczby a
oraz 1, jeżeli a > 0 i b nie jest niezerową wielokrotnością a.

Zamiast mówić, że nie ma 0, mówimy, że interesują nas tylko liczby większe od 0, a także wielo-
krotności większe od 0 (albo „więcej niż 0 razy”), czyli niezerowe1. Po takich zmianach uzasadnienie
3.1 staje się właściwie poprawne. Może warto je uzupełnić w dwóch miejscach.

Nasz program analizuje wielokrotności począwszy od 1 · a. Błędem pierwszej specyfikacji było
traktowanie wielokrotności 0 · a jak każdej innej, mimo że zwykle znajduje się poza rozważanym
zakresem. Teraz specyfikacja stwierdza, że program bada mniej, tylko sprawdza, czy dana liczba
jest wielokrotnością z zakresu, który faktycznie jest badany przez program.

Podobny jest charakter drugiej usterki: program robi mniej, niż stwierdzała to pierwotna specy-
fikacja. Warunkiem wydrukowania liczby 1 było znalezienie wielokrotności a większej niż b. Takiej
wielokrotności może nie być dla a = 0. Jeżeli wymienionym w specyfikacji warunkiem wydruko-
wania 1 będzie dodatniość a, to zagwarantuje on istnienie dostatecznie dużych wielokrotności a i
pozwoli na udowodnienie poprawności specyfikacji.

Rozważana teraz specyfikacja także ma wadę: nie opisuje działania programu we wszystkich
przypadkach. Jest to jednak poprawna specyfikacja w tym sensie, że podaje poprawne warunki
wyprowadzenia na taśmę wyjściową wartości 0 i 1. Z drugiej strony, uzasadnienie tego faktu chyba
nie jest do końca jasne. Skupialiśmy się na dowodzeniu pewnych implikacji, a z nich potrzebne
równoważności – zgodnie z treścią punktu 3.3 – wynikają tylko niektórych sytuacjach.

1Precyzyjna definicja niezerowej wielokrotności jest następująca: liczba b jest niezerową wielokrotnością liczby a
wtedy i tylko wtedy, gdy b = k · a dla pewnej liczby naturalnej k > 0.



3.6 Najlepsza specyfikacja

Po usunięciu ostatniej usterki otrzymujemy następującą specyfikację:

Specyfikacja:

Wejście: liczby naturalne a i b wczytane odpowiednio do 1 i 2 komórki,

Wyjście: 0, jeżeli liczba b jest niezerową wielokrotnością liczby a,
oraz 1, jeżeli a > 0 i b nie jest niezerową wielokrotnością a.
W pozostałych przypadkach program liczy bez końca (i na taśmie wyjściowej nic nie
zostaje napisane).

Jest w niej dość trudny do zrozumienia zwrot „w pozostałych przypadkach”. Zauważmy, że
napis

(∃k > 0 b = k · a) ∨ (a > 0 ∧ ∀k > 0 b 6= k · a)

mówi to samo, co
a > 0 ∨ b = 0.

Wobec tego zwrot „w pozostałych przypadkach” oznacza tu „gdy a = 0 i b > 0”. Użycie tego
zwrotu dałoby nieco bardziej zrozumiałą specyfikację.

Rzeczą niepokojącą jest to, że o możliwości zapętlenia analizowanego programu wspomniała na
sprawdzianie chyba tylko jedna osoba.

3.7 Niezmienniki

Uzasadniając taką specyfikację, być może należy się posłużyć niezmiennikami pętli. Analizowany
program ma jedną pętlę, która ma wiele niezmienników. Dla tej pętli niezmiennikiem jest własność
ψ(X,A,B) wartości zmiennych X, A, B oraz różnych stałych (np. liczb a i b), dla której zachodzi
implikacja

jeżeli X < B oraz przed wykonaniem instrukcji X ← X + A zachodzi ψ(X,A,B),

to własność ψ(X,A,B) zachodzi także po jej wykonaniu.

Śledząc dalsze wyjaśnienie dobrze mieć przed oczami jakaś wersję rozważanego programu. Może
to być dowolna ostatnia z trzech podawanych w rozdziale 2 obok siebie. W pierwszej mamy pętlę
zaczynającą się etykietą pp i zakończoną instrukcją Idź do pp, w drugiej – pętlę dopóki. Wewnątrz
tych dwóch pętli jest wykonywana tylko jedna instrukcja X ← X + A.

Mówiąc w skrócie, własność ψ(X,A,B) jest niezmiennikiem pętli, jeżeli w sytuacji, gdy nie wy-
chodzimy z pętli (np. w wyniku skoku), jej zachodzenie przed wykonaniem instrukcji wewnętrznych
pętli gwarantuje też jej prawdziwość po wykonaniu tych instrukcji.

Z teorii niezmienników wynika, że niezmienniki prawdziwe przed przystąpieniem do wykonywa-
nia pętli są prawdziwe podczas jej wykonywania, a zwłaszcza po jej zakończeniu. Po zakończeniu
pętli dodatkowo zachodzi też warunek powodujący jej zakończenie. W rozważanym teraz programie
jest to nierówność X ­ B.

3.8 Dokładniejsze uzasadnienie specyfikacji

W rozważanym tutaj programie, następujące własności są niezmiennikami tej pętli, która w nim
występuje:



1) A = a oraz B = b,

2) X jest niezerową wielokrotnością A,

3) X < A+B,

Trzy pierwsze własności oczywiście są niezmiennikami. Dla przykładu pokażemy, że niezmiennikiem
jest także ostatnia własność.

Załóżmy więc, że przed wykonaniem przypisania X ← X + A zachodzą nierówności X < B
oraz X < A+B. Z pierwszej nierówności wynika, że zachodzi także X+A < A+B. Po wykonaniu
przypisania, nową wartością X staje się dotychczasowe X + A, a więc znowu zachodzi nierówność
X < A+B.

Aby wykazać poprawność najlepszej specyfikacji, wystarczy uzasadnić trzy implikacje:

1) jeżeli b jest niezerową wielokrotnością a, to na taśmie wyjściowej zostaje wypisane 0,

2) jeżeli a > 0 oraz b nie jest niezerową wielokrotnością a, to na taśmie wyjściowej zostaje
wypisane 1,

3) jeżeli a = 0 i b > 0, to program nie kończy pracy.

Implikacje odwrotne do wymienionych też będą prawdziwe. Tak jest ponieważ każda para liczb
naturalnych spełnia jeden z wymienionych w specyfikacji warunków, a także dlatego, że żadne
wymienione w specyfikacji efekty działania programu nie mogą zajść jednocześnie. Na przykład,
jeżeli na taśmie wyjściowej pojawi się liczba 0, to ani nie pojawi się liczba 1, ani program nie
zapętli się, gdyż instrukcja przekazująca liczbę 0 znajduje się na końcu programu i po jej wykonaniu
program nic już nie zrobi, w szczególności nie spowoduje zapisania na taśmie wyjściowej liczby 1.

Najpierw pokażemy, że w dwóch sytuacjach program zatrzymuje się.
Tak jest wtedy, gdy b = 0. W tym przypadku, przed przystąpieniem do wykonywania pętli

spełniony jest warunek B ¬ X przerywający jej wykonywanie. Zależnie od śledzonej wersji progra-
mu, w tej sytuacji albo następuje skok do instrukcji kończących program, albo zostaje zakończone
wykonywanie instrukcji dopóki.

Jeżeli natomiast a > 0, to w pętli jest wielokrotnie zmieniana wartość zmiennej X, a ciąg kolejno
przyjmowanych wartości zmiennej X jest w tym przypadku rosnący. Dostatecznie długi rosnący ciąg
liczb naturalnych zawiera liczby przekraczające z góry zadaną wartość. Stąd podczas wykonywania
pętli w pewnym momencie staje się prawdziwa nierówność B ¬ X, która w pierwszym rzędzie
powoduje zakończenie wykonywania pętli, a następnie – całego programu.

Spróbujmy teraz pokazać pierwszą z wymaganych implikacji. Załóżmy więc, że b jest niezerową
wielokrotnością a. Jeżeli a = 0, to także b = 0 i od razu zachodzi warunek X = B. Jest oczywiste,
że wtedy na taśmie wyjściowej pojawia się wartość 0. Jeżeli zaś a > 0, to także b > 0 i tuż
przed pętlą staje się prawdziwa nierówność X < A + B. Ponieważ jest ona niezmiennikiem, więc
również zachodzi po (ewentualnym) zakończeniu wykonywania pętli. Wiemy już, że ta pętla nie
jest wykonywana „w nieskończoność” (ponieważ a > 0). Po jej zakończeniu zachodzi też warunek
zakończenia pętli, czyli B ¬ X. Mamy więc dwie liczby: wartość zmiennej X po zakończeniu pętli
oraz b spełniające nierówność

X − a < b ¬ X.

Obie te liczby są niezerowymi wielokrotnościami a, a w przedziale (X − a,X] jedyną taką liczbą
jest X. Stąd X = b = B. W tej sytuacji, program zapisuje na taśmie wyjściowej 0 i kończy pracę.

W bardzo podobny sposób pokazujemy drugą implikację. Z założenia z tej implikacji mamy, że
a > 0. Jak wyżej pokazujemy, że B ¬ X. Ponieważ X jest, a b nie jest niezerową wielokrotnością
a, więc B < X, program zapisuje na taśmie wyjściowej 1 i kończy pracę.



Pozostaje do udowodnienia trzecia implikacja. Załóżmy więc, że a = 0, b > 0 i – dla dowo-
du nie wprost – że program jednak zatrzymuje się. W tej sytuacji program wcześniej zakończy
wykonywanie pętli. Wtedy wartość zmiennej X będzie niezerową wielokrotnością a spełniającą nie-
równość b ¬ X, czyli b będzie równe 0. To jednak przeczy warunkowi b > 0 i kończy dowód trzeciej
implikacji, a także uzasadnienie ostatniej z rozważanych specyfikacji.

4 Pierwsza część zadania

Znając dobrą specyfikację bardzo łatwo odpowiedzieć na pytanie, co zostanie zapisane na taśmie
wyjściowej po uruchomieniu naszego programu z taśmą wejściową, na której znajdują się liczby
5 i 4. Wtedy a = 5 i b = 4. Oczywiście, b nie jest niezerową wielokrotnością a > 0. Zgodnie ze
specyfikacją, w tej sytuacji program spowoduje zapisanie na taśmie wyjściowej liczby 1 i zakończy
pracę.

Być może jednak jest uzasadnione szukanie odpowiedzi na takie pytanie przed znalezieniem
specyfikacji. Wtedy takie zadanie można rozwiązać w inny sposób. Spróbujmy znaleźć odpowiedź
na postawione pytanie przy założeniu, że na taśmie wejściowej mamy zapisane liczby 5 i 10. Można
to zrobić poprzez utworzenie i wypełnienie takiej oto tabelki, symulując w ten sposób działanie
danego programu:

Instrukcja Wejście Akum. K. nr 1 K. nr 2 K. nr 3 Wyjście
5, 10

. . .

Możemy nawet uzupełnić tę tabelę o wskaźnik (licznik) rozkazów. Spróbujmy to zrobić. Przyj-
mijmy jako zasadę, że zapisujemy liczbę w odpowiednim miejscu tabelki, jeżeli w wyniku wykonania
instrukcji następuje zmiana zawartości pewnej komórki. Tak więc zawartość komórki to ostatnia
liczba zapisana w odpowiadającej jej kolumnie. Umówmy się także, że instrukcje danego progra-
mu zostały ponumerowane w naturalny sposób i wskaźnik rozkazu zawiera tak rozumiany numer
instrukcji, która ma zostać wykonana.

Instrukcja Wejście Akum. K. nr 1 K. nr 2 K. nr 3 Wyjście Wsk. r.
5, 10 ? ? ? ? puste 1

Read 1 10 5 2
Load 1 5 3
Store 3 5 4
Read 2 pusta 10 5
Load 1 5 6
Sub 2 -5 7
Jzero w0 8
Jgtz w1 9
Load 1 5 10
Add 3 10 11
Store 1 10 12
Jump pp 5
Load 1 10 6
Sub 2 0 7
Jzero w0 15
Write =0 0 16



5 Trzecia część zadania

5.1 Adresowanie pośrednie

Pozostała do omówienia ostatnia część zadania. Aby ją zrobić trzeba wiedzieć, co to jest adresowanie
pośrednie, a właściwie w jaki sposób jest wykonywana instrukcja Write ∧n. Zacznijmy więc od
przypomnienia semantyki tej instrukcji. Aby o niej opowiadać, dobrze jest wprowadzić symbol
oznaczający zawartość n-tej komórki pamięci maszyny RAM. Przyjmijmy więc, że jest to wartość
oznaczana wzorem m[n]. W szczególności, napis m[0] oznacza zawartość akumulatora.

Wykonanie instrukcji Write ∧n polega na

1) pobraniu z komórki pamięci o numerze (adresie) n numeru (adresu) adr komórki z interesującą
nas wartością; można myśleć, że wykonujemy przypisanie adr ← m[n],

2) pobraniu z komórki o adresie adr jej zawartości, czyli na przykład wykonaniu przypisania
liczba← m[adr],

3) przekazaniu na taśmę wyjściową pobranej wartości liczba.

Pisząc w skrócie, wykonanie instrukcji Write ∧n polega na przekazaniu na taśmę wyjściową wartości
m[m[n]].

5.2 Analiza sytuacji

Teraz powinniśmy zastanowić się, jakie konsekwencje będzie miało zastąpienie w rozważanym pro-
gramie instrukcji Write =0 poleceniem Write ∧0.

Zwykle instrukcja maszyny RAM może zostać wykonana w dwóch sytuacjach: bezpośrednio
po wykonaniu poprzedniej instrukcji lub po wykonaniu odpowiedniego skoku. Instrukcja Write =0
może zostać wykonana tylko w wyniku skoku, ponieważ znajduje się za instrukcją Halt przerywa-
jącą wykonywanie programu. Co więcej, odpowiedni skok wykonuje tylko jedna instrukcja i jest ona
postaci Jzero wynik0. Tak więc skok do instrukcji Write =0 jest wykonywany po stwierdzeniu, że
w akumulatorze znajduje się 0, a więc gdy m[0] = 0. Wykonanie skoku nie zmienia zawartości aku-
mulatora, czyli podana równość będzie też zachodzić tuż przed wykonaniem instrukcji Write =0.
Wykonując tę instrukcję maszyna RAM wysyła na taśmę wyjściową liczbę 0, a następnie przerywa
wykonywanie programu (wykonała ostatnią instrukcję).

Jeżeli zamiast Write =0 pojawi się instukcja Write ∧0, to maszyna RAM zrobi prawie to samo.
Zamiast przesyłać na taśmę wyjściową wartość podaną w programie, wyliczy i prześle na taśmę
wyjściową wartość

m[m[0]] = m[0] = 0,

a następnie zakończy wykonywanie programu. Zmieniona część programu działa więc tak samo, jak
pierwotna, i dokonana zmiana nie ma wpływu na specyfikację.

5.3 Rozwiązanie

Aby rozwiązać ostatnią część zadania, należało więc swierdzić, że po zmianie ostatniej instrukcji
program ma dokładnie taką samą specyfikację, jak przed zmianą, i przytoczyć – może w nieco
skróconej formie – kilka z wyżej przytoczonych argumentów.


