
1 Sortowanie przez scalanie

1.1 Sformułowanie zadania

Zad. 2 (8 pkt.) Podaj iteracyjną (a nie rekurencyjną) wersję algorytmu sortowania przez scalanie.
Przyjmij, że dane znajdują się w n elementowej tablicy indeksowanej liczbami naturalnymi.

Podczas scalania możesz użyć n elementowej tablicy pomocniczej. Poza tym – skończenie wielu
zmiennych prostych.
Idea: Na dany ciąg liczb (zapisany w tablicy) można spojrzeć też w inny sposób: jest to ciąg uporząd-

kowanych ciągów liczb. Na początku jest to ciąg ciągów jednoelementowych, a więc uporządkowanych.
Możemy brać uporządkowane ciągi parami i scalać je. Po pierwszym scalaniu wszystkich kolejnych par
otrzymamy ciąg uporządkowanych ciągów dwuelementowych. Po drugim – czteroelementowych, itd. Za-
uważ jednak, że ostatni z uporządkowanych ciągów nie musi być pełnej długości.

1.2 Analiza zadania i krok pierwszy

Daną dla programu jest tablica np. liczb całkowitych, indeksowana liczbami od 0 do n − 1. Tę
tablicę mamy uporządkować (posortować) przez scalanie. Metoda porządkowania bardziej szcze-
gółowo została opisana w treści zadania. Zakłada, że w danej tablicy kolejne fragmenty ustalonej
długości są uporządkowane. Potrzebna więc będzie zmienna pamiętająca długość uporządkowanych
fragmentów. Powiedzmy, że będzie to zmienna dl. Dane powinny więc być takie, że fragmenty

a[0] . . . a[dl − 1], a[dl] . . . a[2dl − 1], a[2dl] . . . a[3dl − 1], a[3dl] . . . a[4dl − 1], . . .

są już uporządkowane. Powinniśmy też umieć je przekształcić w takie dane, aby uporządkowane
były fragmenty

a[0] . . . a[2dl − 1], a[2dl] . . . a[4dl − 1], . . .
Będziemy nazywać tę czynność słowem scal wszystkie pary. Główny program może więc mieć
postać:

1) Dane: tablica a indeksowana liczbami od 0 do n – 1.

2) dl = 1

3) while (dl < n) {

4) scal wszystkie pary;

5) dl = dl + dl;

6) }

Niezmiennikiem pętli w tym programie powinno być stwierdzenie, że w tablicy a kolejne frag-
menty długości dl są uporządkowane. Jeżeli tak będzie, to program będzie poprawnie sortować.
Proszę sprawdzić.



1.3 Procedura scal wszystkie pary

Należy więc jeszcze opracować procedurę scal wszystkie pary. Będą w niej potrzebne dwie zmien-
ne pamiętające, które fragmenty danej tablicy są scalane. początkowo zmienne te będą pamiętać
pierwsze elementy scalanych fragmentów. Poźniej będą pamiętać indeksy scalanych elementów in-
teresujących nas fragmentów. Indeksy do pierwszego fragmentu będzie pamiętać zmienna pw, a do
drugiego – zmienna dr. Cała procedura może zostać napisana w następujący sposób i korzystać z
pomocniczej procedury scal parę (która robi to, na co wskazuje jej nazwa):

1) pw = 0; dr = dl;

2) while (dr < n) {

3) scal parę;

4) Komentarz: powyższa linia powinna scalać dwa fragmenty tablicy a, a mianowicie a[pw] . . .
a[dr− 1] oraz a[dr] . . . a[dr+ dl− 1] (z pewnymi wyjątkami) w jeden uporządkowany frgment
a[pw] . . . a[dr + dl − 1]

5) pw = dr + dl;

6) dr = pw + dl;

7) }

1.4 Procedura scal parę

Jest to zwykłą procedurą scalającą, ale trochę powinna zostać dostosowana do sytuacji, w której się
znaleźliśmy (musimy dostosować się sposobu operowania danymi, nie musimy przepisywać części
danych). Można ją tak oto napisać:

1) Komentarz: najpierw pierwszy scalany fragment przepisujemy do pomocniczej tablicy. Robi-
my w ten sposób miejsce do zapisywania scalanego ciągu.

2) i = 0;

3) for (k = pw; k++; k < dr) {

4) pom[i] = a[k]; i++; }

5) Komentarz: przystępujemy do scalania danych z tablicy pomocniczej i z drugiego fragmentu
tablicy a. Wynik scalania ma zostać zapisany początkowo na miejscu pierwszego fragmentu,
a później – także drugiego. Zmienne i, j i k wskazują aktualne elementy odpowiednio tablicy
pomocniczej, drugiego fragmentu tablicy a i i fragmentu a przeznaczonego do zapisywania
ciągu wynikowego. Zaczynamy od wartości początkowych tych zmiennych.



6) i = 0; j = dr; k = pw;

7) Komentarz: dalej obliczamy, gdzie jest koniec drugiego fragmentu danych. Pamiętajmy, że
ten fragment może być niepełny. W rzeczywistości znajdujemy najmniejszą liczbę, która nie
może być indeksem danej z drugiego fragmentu.

8) ogr = dr + dl;

9) if (ogr > n) ogr = n;

10) Komentarz: w końcu zaczynamy scalać ciągi pom[0] . . . pom[dr − 1] oraz a[dr] . . . a[ogr − 1],
wynik scalania powinien znaleźć w tablicy a[pw] . . . a[ogr − 1].

11) while (i < dr && j < ogr) {

12) if (pom[i] < a[j]) { a[k] = pom[i]; i++; }

13) else { a[k] = a[j]; j++; };

14) k++;

15) }

16) Komentarz: pozostało przepisać nie scalone dotychczas części danych. W istniejącej sytuacji
wystarczy przepisać resztę danych z tablicy pomocniczej: niescalone dane z drugiego frag-
mentu są już na swoim miejscu.

17) while (i < dl) {

18) a[k] = pom[i]; i++; k++; }

To już cały program sortujący przez scalanie, ale przydałoby się jeszcze zastanowić, czy jest
on poprawny. Główne argumenty o tym świadczące są podobne do używanych w uzasadnieniu
poprawności zwykłego algorytmu sortującego przez scalanie. Dodatkowo przydałoby się sprawdzić,
czy zapisując wyniki do tablicy z danymi nie zniszczymy przedwcześnie jakiejś danej lub kopiując za
mało danych doprowadzimy do przypadkowego powielenia jakiejś liczby (efekt w obu przypadkach
będzie podobny, coś zniknie i coś się pojawi, ale będzie to spowodowane różnymi przyczynami) .


