1 Sortowanie przez scalanie

1.1 Sformulowanie zadania

Zad. 2 (8 pkt.) Podaj iteracyjna (a nie rekurencyjna) wersje algorytmu sortowania przez scalanie.

Przyjmij, ze dane znajduja si¢ w n elementowej tablicy indeksowanej liczbami naturalnymi.
Podczas scalania mozesz uzy¢ n elementowej tablicy pomocniczej. Poza tym — skonczenie wielu
zmiennych prostych.

Idea: Na dany ciag liczb (zapisany w tablicy) mozna spojrzeé tez w inny sposéb: jest to ciag uporzad-
kowanych ciaggéw liczb. Na poczatku jest to ciag ciagdéw jednoelementowych, a wiec uporzadkowanych.
Mozemy braé¢ uporzadkowane ciagi parami i scala¢ je. Po pierwszym scalaniu wszystkich kolejnych par
otrzymamy cigg uporzadkowanych ciaggdéw dwuelementowych. Po drugim — czteroelementowych, itd. Za-
uwaz jednak, ze ostatni z uporzadkowanych ciggdéw nie musi by¢ pelnej dtugosci.

1.2 Analiza zadania i krok pierwszy

Dana dla programu jest tablica np. liczb catkowitych, indeksowana liczbami od 0 do n — 1. Te
tablice mamy uporzadkowaé (posortowaé) przez scalanie. Metoda porzadkowania bardziej szcze-
gblowo zostata opisana w tresci zadania. Zaktada, ze w danej tablicy kolejne fragmenty ustalonej
dhugosci sa uporzadkowane. Potrzebna wigc bedzie zmienna pamig¢tajaca dtugosé uporzadkowanych
fragmentéw. Powiedzmy, ze bedzie to zmienna dl. Dane powinny wiec by¢ takie, ze fragmenty

al0]...aldl — 1], aldl]...al2dl — 1], a[2dl]...a[3dl — 1], a[3dl]...alddl —1],...

sg juz uporzadkowane. Powinniémy tez umie¢ je przeksztatci¢ w takie dane, aby uporzadkowane
byly fragmenty
al0]...al2dl — 1], a[2dl]...al4dl —1],...

Bedziemy nazywac¢ te czynnos¢ stowem scal_wszystkie_pary. Gléwny program moze wiec mieé
postac:

1) Dane: tablica a indeksowana liczbami od 0 do n — 1.
2
3) while (dl < n) {

5 dl = dl + dl;

}

Niezmiennikiem petli w tym programie powinno by¢ stwierdzenie, ze w tablicy a kolejne frag-
menty dtugosci dl sa uporzadkowane. Jezeli tak bedzie, to program bedzie poprawnie sortowac.
Prosze sprawdzi¢.

) d
)
4) scal_wszystkie_pary;
)
6)

1.3 Procedura scal wszystkie pary

Nalezy wiec jeszcze opracowac procedure scal_wszystkie_pary. Beda w niej potrzebne dwie zmien-
ne pamietajace, ktére fragmenty danej tablicy sa scalane. poczatkowo zmienne te beda pamietac
pierwsze elementy scalanych fragmentéw. PozZniej bedg pamietaé indeksy scalanych elementow in-
teresujacych nas fragmentéow. Indeksy do pierwszego fragmentu bedzie pamieta¢ zmienna pw, a do
drugiego — zmienna dr. Cala procedura moze zosta¢ napisana w nastepujacy sposob i korzystacé z
pomocniczej procedury scal_pare (ktora robi to, na co wskazuje jej nazwa):

1) pw = 0; dr = dl;

[\

while (dr < n) {

w

)
)
) scal pareg;
)

4) Komentarz: powyzsza linia powinna scala¢ dwa fragmenty tablicy a, a mianowicie a[pw]. ..
a[dr — 1] oraz a[dr] ... aldr +dl — 1] (z pewnymi wyjatkami) w jeden uporzadkowany frgment

alpw)] .. .aldr + dl — 1]
5) pw = dr + dl;
6) dr = pw + dl;
o}

1.4 Procedura scal _pare

Jest to zwykta procedura scalajaca, ale troche powinna zostaé¢ dostosowana do sytuacji, w ktorej sie
znalezliSmy (musimy dostosowaé si¢ sposobu operowania danymi, nie musimy przepisywaé czesci
danych). Mozna ja tak oto napisaé:

1) Komentarz: najpierw pierwszy scalany fragment przepisujemy do pomocniczej tablicy. Robi-
my w ten sposéb miejsce do zapisywania scalanego ciggu.

2) 1=

4

)

3) for (k = pw; k++4; k < dr) {
) poml[i] = a[k]; i++; }
)

5) Komentarz: przystepujemy do scalania danych z tablicy pomocniczej i z drugiego fragmentu
tablicy a. Wynik scalania ma zostac¢ zapisany poczatkowo na miejscu pierwszego fragmentu,
a pozniej — takze drugiego. Zmienne i, j i k wskazuja aktualne elementy odpowiednio tablicy
pomocniczej, drugiego fragmentu tablicy a i i fragmentu a przeznaczonego do zapisywania

ciaggu wynikowego. Zaczynamy od wartosci poczatkowych tych zmiennych.

6)
7)

17)
18)

i=0;j) =dr; k = pw;

Komentarz: dalej obliczamy, gdzie jest koniec drugiego fragmentu danych. Pamietajmy, ze
ten fragment moze by¢ niepelny. W rzeczywistosci znajdujemy najmniejsza liczbe, ktéra nie
moze by¢ indeksem danej z drugiego fragmentu.

ogr = dr + dl;
if (ogr > n) ogr = n;

Komentarz: w koncu zaczynamy scala¢ ciagi pom|0]...pom[dr — 1] oraz al[dr]|...alogr — 1],
wynik scalania powinien znalez¢ w tablicy a[pw] ... alogr — 1].

while (i < dr && j < ogr) {
if (poml[i] < alj]) { a[k] = pomli]; i++; }
else { alk] = a[j]; j++; };
k++;
}

Komentarz: pozostalo przepisa¢ nie scalone dotychczas czesci danych. W istniejacej sytuacji
wystarczy przepisaé reszte danych z tablicy pomocniczej: niescalone dane z drugiego frag-
mentu sg juz na swoim miejscu.

while (i < dl) {
alk] = pomli]; i++; k++; }

To juz caly program sortujacy przez scalanie, ale przydaltoby sie jeszcze zastanowic, czy jest
on poprawny. Gléwne argumenty o tym swiadczace sa podobne do uzywanych w uzasadnieniu
poprawnosci zwyktego algorytmu sortujacego przez scalanie. Dodatkowo przydatoby sie sprawdzic,
czy zapisujac wyniki do tablicy z danymi nie zniszczymy przedwczesnie jakiejs danej lub kopiujac za
malo danych doprowadzimy do przypadkowego powielenia jakiejs liczby (efekt w obu przypadkach
bedzie podobny, co$ zniknie i co$ sie pojawi, ale bedzie to spowodowane réznymi przyczynami) .

