
Zadania z listy 9

Antoni Kościelski

1 Zadanie 2

1.1 Treść zadania

Napisz funkcję, która dla zadanej wartości n wyznaczy liczbę wszyskich możliwych usta-
wień n hetmanów na szachownicy o wymiarach n×n, w których hetmany nie atakują się
wzajemnie.

Najpierw zauważmy, że sfomułowanie tego zadania nie jest do końca jasne. Zacznijmy
jednak od ustalenia jakiegoś sposobu opisywania ustawień.

1.1.1 Opis ustawienia

Interesują nas takie ustawieniach, w których hetmany nie atakują się wzajemnie. W
takich ustawieniach na szachownicy w każdej poziomej linii (w każdym wierszu) znajduje
się dokładnie jeden hetman, i to samo dotyczy linii pionowych (czyli kolumn).

Linie szachownicy zazwyczaj numerujemy począwszy od lewego górnego rogu. Infor-
matycy lubią numerować od 0. Tak więc pole w lewym górnym rogu znajduje się w
kolumnie o numerze 0 i w wierszu o tym samym numerze. Na prawo od tego pola znaj-
duje się umieszczone w tym samym wierszu (o numerze 0) i w kolumnie o numerze 1.
Ostatni od góry wiersz ma numer n − 1, podobnie ostatnia kolumna (licząc oczywiście
od lewej), o ile mamy szachownicę o wymiarach n× n.

Wiele ustawień, w tym wszystkie, które nas interesują, możemy opisać podając ciąg
liczb b0, b1, . . . , bn−1. Taki ciąg oznacza, że mamy na myśli takie ustawienie hetmanów, w
którym hetman z i-tej kolumny znajduje się w bi-tym wierszu. Oczywiście, w ten sposób
można opisać takie ustawienia, w których w każdej kolumnie znajduje się dokładnie jeden
hetman. Możemy też dodatkowo przyjąć, że umieszczenie w opisie ustawienia liczby −1
oznacza, że w odpowiedniej kolumnie nie znajduje się żaden hetman, oraz że mamy prawo
skrócić opis pomijając −1 znajdujące się na końcu ciągu.

1.1.2 Doprecyzowanie zadania

Nietrudno zauważyć, że dwie osoby obserwujące to samo ustawienie z różnych pozycji
mogą opisać je w różny sposób. Na przykład ustawienie 0,2,4,1,3 hetmanów na szachow-
nicy o wymiarach 5×5 zostanie opisane przez osobę stojącej z boku, z prawej strony jako
2,4,1,3,0. Powstaje więc pytanie, czy te dwa ciągi opisują dwa różne ustawienia, czy też
jedno i to samo.

Na to pytanie nie można jednoznacznie odpowiedzieć. Najprościej przyjąć, że sza-
chownicę obserwujemy z ustalonego miejsca, i jeżeli widzimy coś innego, to są to różne

1



2

ustawienia. Tak rozumiane ustawienie jest tożsame z jego opisem, licząc ustawienia wy-
starczy więc policzyć ich opisy. Tak też pojęcie ustawienia będziemy rozumieć w dalszym
ciągu.

Oczywiście, możemy także przyjąć, że jeżeli do szachownicy podejdą z czterech stron
różne osoby i opiszź, co widzą, to ich opisy będą opisywać to samo ustawienie. Takie
podejście prowadzi do bardziej skomplikowanych rachunków.

A może nawet ciągi 0,2,4,3,1 oraz 2,0,3,1,4 opisują to samo ustawienie?

1.2 Rozwiązanie zadania

Jeżeli już wiemy, co chcemy policzyć, to możemy pokusić się o rozwiązanie zadania. Pro-
blem ustawienia hetmanów można rozwiązać także za pomocą następującego programu:

int hetmany(int n)
{ int k;
b[0] = 0; //ustaw hetmana w lewym, górnym rogu
k = 1; //ustaw hetmana nad drugą kolumną
while ( k >= 0 ) //dopóki na szachownicy jest jakikolwiek hetman
{ b[k]++; //przesuń ostatniego hetmana w dół
if (b[k] < n) //jeżeli pozostał on na szachownicy
{ if ( poprawne(k, b[k]) ) //jest poprawnie ustawiony

{ if ( k = n-1 ) //i stoi w ostatniej kolumnie
return k; //to zakończ
else //a gdy nie stoi w ostatniej kolumnie
k++; //weź i ustaw kolejnego hetmana nad następną kolumną

}
}
else //a gdy przesuwany hetman wypadł poza szachownicę
{b[k] = -1; k--;}//zabierz go i zajmij się poprzednim (jeżeli jest)

}
}

Ma on trochę prostszą strukturę od programu podanego na wykładzie, łatwiej go mo-
dyfikować i analizować. Warto zastanowić się nad jego poprawnością. Zakładamy, że jest
on uruchamiany i analizowany zawsze po uprzednim wypełnieniu tablicy b wartościa-
mi −1.

W podanym programie jest wywoływana funkcja poprawne. O tej funkcji musimy
założyć, że wykorzystuje tablicę b i zmienną n, ale nie zmienia ich wartości. Przyjmujemy
też, że zwraca wartości 0 i 1 (albo fałsz i prawda). Co więcej, po wywołaniu postaci
poprawne(k, a) zwraca wartość 1 dokładnie wtedy, gdy ciąg liczb (b[0], b[1], ...,
b[k-1], a) opisuje poprawne rozmieszczenie hetmanów na szachownicy o wymiarze
n× n.

Jeżeli usuniemy z wyżej przedstawionego programu instrukcję return k;, to powinien
on przejrzeć wszystkie możliwe poprawne ustawienia hetmanów w początkowych kolum-
nach (pamiętajmy, że nie przegląda ustawień np. bez hetmana w pierwszej kolumnie), w
szczególności wszystkie możliwe poprawne ustawienia hetmanów na szachownicy o danym
wymiarze.



3

Jeżeli w tym programie dodatkowo umieścimy licznik (zmienną, której wartość po-
czątkowa jest równa 0), i zamiast instrukcji return będziemy zwiększać jego wartość o 1,
końcowa wartość licznika będzie równa liczbie znalezionych poprawnych maksymalnych
rozmieszczeń hetmanów na szachownicy o danym wymiarze.

Jeżeli z programu usuniemy instrukcję return i dodamy do niego licznik, ale instrukcję
zwiększającą o 1 wartość licznika dodamy tuż przed instrukcją if (poprawne(k, b[k])),
to końcowa wartość licznika będzie równa liczbie wywołań funkcji poprawne wykonanych
podczas wykonania programu. Możemy dodatkowo zwiększanie licznika uzależnić od war-
tości parametru k. W ten sposób uzyskamy informację o tym, ile razy program bada
rozmieszczenie określonej liczby hetmanów.

1.3 Poprawność rozwiązania

Zawsze trzeba zastanawiać się nad poprawnością programu. Jedna wątpliwość już została
zgłoszona. Być może licząc możliwe ustawienia hetmanów za pomocą podanego wyżej
programu (z odpowiednią modyfikacją) niektóre ustawienia będą liczone wielokrotnie.
Część wątpliwości została już jakoś rozstrzygnięta, ale może nadal to samo ustawienie
jest liczone kilkakrotnie. Może niektóre ustawienia są pomijane. Może nawet program nic
nie liczy, gdyż zapętla się. Aby odpowiedzieć na te pytania, trzeba program staranniej
przeanalizować.

Program ten ma wiele niezmienników. Na przykład podczas działania programu nie
ulega zmianie wartość zmiennej n. Dalej, wartość zmiennej k jest mniejsza od n i na ogół
nieujemna, spadek wartości k poniżej 0 powoduje zatrzymanie programu.

W tablicy b elementy b[0], b[1], . . . , b[k − 1] są nieujemne, a elementy b[i] dla i speł-
niających k < i < n są równe −1. Zdarza się, że element b[k] ma wartość −1, ale prawie
natychmiast staje się on nieujemny. Zawsze jest on nieujemny, w momencie wywołania
funkcji poprawne(k, b[k]). Wymienione niezmienniki są dość oczywiste.

Następujący fakt podaje nieco ważniejszy niezmiennik:

Fakt 1.1 Niezmiennikiem pętli z rozważanego programu jest stwierdzenie, że ciąg (b[0],
b[1], . . . , b[k − 1]) opisuje poprawne rozmieszczenie hetmanów.

W dalszym ciągu będziemy rozważać zbiór ciągów liczb naturalnych < n o długościach
nie większych od n. Wykorzystamy również fakt, że elementy tego zbioru są uporządko-
wane leksykograficznie.

Zdefiniujmy sobie teraz pomocniczą funkcję U przyporządkowującą niektórym liczbom
naturalnym ciągi liczb naturalnych, taką że

U(i) = (b[0], b[1], . . . , b[k]),

która numerowi porządkowemu i wywołania funkcji poprawne w podanym wyżej progra-
mie, uruchomionym z ustaloną daną n > 1, przypisuje wskazany ciąg wartości elementów
tablicy b wyliczony w tuż przed wykonaniem tego wywołania. Krótko mówiąc, U(i) to
ciąg opisujący ustawienie hetmanów badane podczas i-tego wywołania funkcji poprawne.

O funkcji U można wykazać następujące fakty1:
1Gdyby można było korzystać z dodatkowego elementu tablicy b, o indeksie −1 (taka możliwość jest

w Pascalu), lub w sztuczny sposób zwolnić element b[0] (na przykład przesuwając dane z tablicy b o
jedno pole w prawo) lub też gdyby numerować wiersze i kolumny szachownicy od 1, to bez obawy, że
wyjdziemy poza zakres indeksów, można by wykonać wstępne przypisanie b[k]++ przed pętlą, a pozostałe
przypisania przenieść na koniec pętli. Wtedy poniższe fakty stałyby się normalnymi niezmiennikami pętli
z rozważanego programu.



4

Fakt 1.2 Jeżeli ciągi U(i) oraz U(i + 1) są określone oraz U(i) opisuje poprawne usta-
wienie hetmanów, to ciąg U(i+ 1) jest następnikiem U(i) w sensie porządku leksykogra-
ficznego.

Fakt 1.3 Jeżeli ciągi U(i) oraz U(i + 1) są określone oraz U(i) nie opisuje poprawnego
ustawienie hetmanów, to ciąg U(i + 1) jest następnikiem w sensie porządku leksykogra-
ficznego ciągu U(i) uzupełnionego do ciągu n elementowego o stosowną liczbę wyrazów
n− 1.

Dowody obu faktów nie są trudne, w większości przypadków wymagają prześledzenia
jednorazowego wykonania instrukcji znajdujących się w pętli.

Z tych dwóch lematów właściwie wynikają wszystkie, interesujące nas fakty o pro-
gramie. Tak więc zawsze kończy on pracę: podczas pracy stale rośnie pewien parametr
przyjmujący skończenie wiele wartości. Dalej, program nie analizuje żadnego ustawienia
dwukrotnie: każde ustawienie później analizowane jest większe w sensie porządku leksy-
kograficznego. Co prawda, pewne ustawienia nie są analizowane przez program, ale są to
wyłącznie ustawienia niepoprawne: jeżeli ustawienie (b0, b1, . . . , bk) jest niepoprawne, a
ustawienie (a0, a1, . . . , al) spełnia nierówności

(b0, b1, . . . , bk) <lex (a0, a1, . . . , al) ¬lex (b0, b1, . . . , bk, n− 1, . . . , n− 1),

to ciąg (a0, a1, . . . , al) jest wydłużeniem ciągu (b0, b1, . . . , bk) i też opisuje ustawienie nie-
poprawne. Tak więc zliczając podczas pracy programu tylko ustawienia poprawne jakiegoś
rodzaju powinniśmy uzyskać poprawne rezultaty.

2 Zadanie 1

2.1 Treść zadania

Mówimy, że algorytm przeszukiwania z nawrotami z wykładu sprawdza jakieś ustawienie
n hetmanów, jeżeli jest wywoływana funkcja isfree(n-1, y) dla 0 ¬ y < n (czyli
sprawdzamy możliwość dostawienia n-tego hetmana do ustawionych już poprawnie n− 1
hetmanów). Uzasadnij, że dla n ­ 4 algorytm sprawdza nie więcej niż (n/2 + 1) · n!
różnych ustawień na szachownicy n hetmanów.

2.1.1 Kilka uwag

Po pierwsze, nie ma istotnych różnic między algorytmem, o którym mowa w zadaniu,
podanym na wykładzie, i sformułowanym w tym tekście, w rozwiązaniu zadania 2. W
tym tekście, rolę funkcji isfree przejmuje funkcja poprawne. Analiza obu algorytmów
jest bardzo podobna.

Sformułowanie zadania zawiera mylące fragmenty. Nie jest jasno powiedziane, czym
jest n. W przytoczonej definicji sprawdzania n może być dowolną liczbą. Przyjmujemy, że
algorytm (przytoczony wyżej lub podany na wykładzie) sprawdza ustawienie m hetma-
nów, jeżeli wywołuje funkcję poprawne (lub jej odpowiednik) z pierwszym parametrem o
wartości m− 1.

Po starannym przeczytaniu należy dość do wniosku, że chodzi w nim o oszacowanie
liczby maksymalnych ustawień hetmanów sprawdzanych przed znalezieniem pierwszego



5

poprawnego takiego ustawienia. Liczba n w poleceniu oznacza więc rozmiar szachownicy,
czyli parametr wywołania algorytmu. Podane oszacowanie jest trochę zbyt duże.

Po pobieżnym przeczytaniu doszedłem do wniosku, że w zadaniu chodzi o oszacowanie
liczby wszelkich badanych ustawień. Obie interpretacje zadania mają bardzo podobne
rozwiązania i wymagają pokonania tych samych trudności.

2.2 Główny lemat

Przypuśćmy, że będziemy uruchamiać rozważany program z parametrem n.
Na razie będą nas interesowały zbiory

Pa,m = {(b0, b1, . . . , bm−1) : b0 = a ∧ ∃ i U(i) = (b0, b1, . . . , bm−1)},

a więc zbiory tych ustawieńm hetmanów, w których hetman z pierwszej kolumny znajduje
się w wierszu o numerze a, i które są sprawdzane podczas działania algorytmu.

Pokażemy następujący

Lemat 2.1 Dla liczb naturalnych n ­ 2 i a < n oraz liczby m takiej, że n ­ m ­ 2,
zbiór Pa,m ma najwyżej

n!
(n−m+ 1)!

elementów.

Dowód. Każdemu ustawieniu (a, b1, b2, . . . , bm−2, b) ∈ Pa,m przyporządkowujemy ciąg
(b1, b2, . . . , bm−2) oraz liczbę b. Przyporządkowanie to jest różnowartościowe.

Z Faktu 1.1, definicji U otrzymujemy, że ciąg (a, b1, b2, . . . , bm−2) opisuje popraw-
ne rozmieszczenie hetmanów i jako taki, jest różnowartościowy. Stąd otrzymujemy, że
ciąg (b1, b2, . . . , bm−2) jest różnowartościowym ciągiem długości m − 2 elementów zbioru
{i < n : i 6= a}, mającego n− 1 elementów. Wiadomo z kombinatoryki, że takich ciągów
jest najwyżej

(n− 1) · (n− 2) · . . . · (n− (m− 2)) =
(n− 1)!

(n−m+ 1)!
.

Tak więc każdemu elementowi zbioru Pa,m przyporządkowaliśmy parę, której pierwsza
współrzędna należy do zbioru o (n−1)!

(n−m+1)! elementach, a druga – do zbioru n elementowego.
Takich par jest najwyżej

n!
(n−m+ 1)!

.

Ponieważ przyporządkowanie to jest różnowartościowe, zbiór Pa,m ma najwyżej taką wła-
śnie liczbę elementów. 2

Wniosek 2.2 Zbiór
n⋃
m=1

Pa,m ma najwyżej (e−1)·n! ¬ 2·n! elementów, a więc rozważany

algorytm sprawdza najwyżej taką liczbę ustawień hetmanów, w których pierwszy hetman
znajduje się w wierszu a.

Dowód. Ponieważ wzór z poprzedniego lematu jest słuszny także dla m = 1, więc mamy

|
n⋃
m=1

Pa,m | ¬
n∑
m=1

n!
(n−m+ 1)!

= n! ·
n∑
m=1

1
(n−m+ 1)!

= n! ·
n∑
m=1

1
m!
¬ n! · (e− 1). 2



6

2.3 Kolejny krok

Mamy oczywisty

Lemat 2.3 Dla dowolnych liczb naturalnych n i a < n, przynajmniej jedna z liczb a oraz
n− a− 1 jest mniejsza od n/2.

Dowód. Gdyby obie te liczby były przynajmniej równe połowie n, to ich suma, czyli
n− 1, byłaby przynajmniej równa n. 2

Natomiast szachiści doskonale wiedzą, że zachodzi

Lemat 2.4 Jeżeli (b0, b1, . . . , bm) opisuje poprawne rozmieszczenie hetmanów na sza-
chownicy o wymiarach n × n, to także (n − 1 − b0, n − 1 − b1, . . . , n − 1 − bm) opisuje
poprawne rozmieszczenie. 2

Stąd otrzymujemy

Wniosek 2.5 Jeżeli na szachownicy o wymiarach n × n można poprawnie rozstawić n
hetmanów, to można je tak poprawnie rozstawić, aby w pierwszej kolumnie hetman stał
w wierszu o numerze < n/2. 2

Wiadomo też, że zachodzi

Lemat 2.6 Jest najwyżej (n+ 1)/2 liczb naturalnych < n/2. 2

Łącząc dotychczasowe ustalenia możemy też wykazać

Lemat 2.7 Jeżeli na szachownicy o wymiarach n× n można poprawnie rozstawić n het-
manów, to program z rozdziału 1.2 zatrzymuje się bezpośrednio po sprawdzeniu pewnego
poprawnego rozstawienia n hetmanów, w którym hetman z pierwszej kolumny znajduje się
w wierszu o numerze < n/2. Opis tego rozstawienia należy więc do zbioru

⋃
a<n/2 Pa,n.

Dowód. Ten lemat już ma trudniejszy dowód. Wymaga pokazania, że pewne szczególne
ustawienie jest sprawdzane przez program. Próba bardziej szczegółowej analizy naszego
programu została przedstawiona w rozdziale 1.3.

Po pierwsze musimy wiedzieć, że program zatrzyma się. Tak będzie, ponieważ prze-
gląda kolejno, w porządku leksykograficznym, wszystkie poprawne rozstawienia. Więc w
końcu znajdzie poprawne rozmieszczenie n hetmanów, jeżeli takie istnieje.

Powinniśmy ponadto pokazać, że dla takiego programu stwierdzenie „wszystkie roz-
mieszczenia n hetmanów mniejsze w sensie porządku leksykograficznego lub równe (b[0],
b[1], . . . , b[k]) nie są poprawne” jest niezmiennikiem pętli.

Teraz możemy wziąć dwa poprawne rozstawienia: (b0, b1, . . . , bn−1), czyli to, które
spowodowało zatrzymanie programu, oraz (a0, a1, . . . , an−1) takie, że a0 < n/2, istniejące
na mocy założenia. Nierówność

(a0, a1, . . . , an−1) <lex (b0, b1, . . . , bn−1)

przeczy temu, że wyżej podane stwierdzenie jest niezmiennikiem programu. Nierówność
przeciwna implikuje, że b0 ¬ a0 < n/2. 2

Lemat 2.8 Jeżeli na szachownicy o wymiarach n× n można poprawnie rozstawić n het-
manów, to program z rozdziału 1.2 analizuje tylko te rozstawienia n hetmanów, które
należą do

⋃
a<n/2 Pa,n.



7

Dowód. Zbiór
⋃
a<n/2 Pa,n wraz z każdym elementem zawiera wszystkie ciągi n elemen-

towe mniejsze od niego w porządku leksykograficznym. Ponieważ program analizuje roz-
mieszczenia w porządku leksykograficznym, i ostatnie analizowane rozmieszczenie n het-
manów należy do tego zbioru, więc wszystkie wcześniej analizowane rozmieszczenia n
hetmanów też należą do tego zbioru. 2

Wniosek 2.9 Jeżeli na szachownicy o wymiarach n × n można poprawnie rozstawić n
hetmanów, to program z rozdziału 1.2 analizuje nie więcej niż (n + 1)!/2 rozstawień n
hetmanów.

Dowód.Wystarczy policzyć liczbę elementów zbioru, o którym jest mowa w poprzednim
lemacie, korzystając z lematów 2.1 oraz 2.6:

|
⋃
a<n/2

Pa,n | =
∑
a<n/2

| Pa,n | ¬
∑
a<n/2

n! ¬ n+ 1
2
· n! =

(n+ 1)!
2
. 2

Wniosek 2.10 Jeżeli na szachownicy o wymiarach n× n można poprawnie rozstawić n
hetmanów, to program z rozdziału 1.2 analizuje nie więcej niż (n+ 1)! rozstawień hetma-
nów.

Dowód. Najpierw trzeba zauważyć (podobnie jak w lemacie 2.8), że wszystkie rozstawie-
nia hetmanów analizowane przez rozważany program należą do zbioru

⋃
a<n/2

⋃n
m=1 Pa,m.

Dalej liczymy jak w poprzednim lemacie, korzystając z wniosku 2.2 oraz lematu 2.6:

|
⋃
a<n/2

n⋃
m=1

Pa,m | ¬
∑
a<n/2

|
n⋃
m=1

Pa,m | ¬
∑
a<n/2

2 · n! ¬ n+ 1
2
· 2 · n! = (n+ 1)!. 2

Zauważmy jeszcze, że ostatni wniosek pozwala na dość dobre oszacowanie złożoności
programu szukającego poprawnego rozstawienia hetmanów. Co prawda, podaje oszacowa-
nie liczby sprawdzanych rozmieszczeń, ale – jak wiemy – jest to także oszacowanie liczby
wywołań funkcji poprawne (każde wywołanie tej funkcji sprawdza inne rozstawienie het-
manów). Oszacowanie jest dobre w tym sensie, że jest widoczna zależność między liczbą
wykonanych pętli, a liczbą sprawdzonych rozmieszczeń. Tym nie mniej, samo szacowanie
można wyrażnie poprawić.


