
1 Przykład dowodu poprawności programu

Rozważamy program P (nieco zmodyfikowany w porównaniu z programem z zad 6 z listy 8):

1) Dane: tablica a indeksowana liczbami od 0 do n – 1 i liczba w.

2) l = p = 0; s = a[0];

3) while (s 6= w oraz p < n – 1) {

4) if (s < w) {s = s + a[p]; p++}

5) else {s = s – a[l]; l++}

6) }

7) while (s > w) {

8) s = s – a[l]; l++

9) }

oraz jego specyfikację

{(∀i < n 0 ¬ a[i]) oraz 0 < w} P

{jeżeli ∃x, y (x ¬ y < n ∧
y∑
i=x

a[i] = w), to s = w oraz s 6= w w przeciwnym razie.}

Pokażemy poprawność tej specyfikacji. Zrobimy to pokazując poprawność dwóch innych specyfika-
cji: pierwszej

{∀i < n 0 ¬ a[i], 0 < w, 0 ¬ L ¬ P < n oraz
P∑
i=L

a[i] = w} P {s = w}

oraz drugiej

{∀i < n 0 ¬ a[i], 0 < w oraz ¬∃x, y (x ¬ y < n ∧
y∑
i=x

a[i] = w)} P {s 6= w}.

Mamy nadzieję, że jest przynajmniej intuicyjnie jasne, że przedstawiony plan jest poprawny. Polega
on na rozważeniu dwóch przypadków: albo istnieją x i y takie, że x ¬ y < n oraz

∑y
i=x a[i] = w,

albo nie. Zauważmy też, że podczas wykonywania programu P nie ulegają zmianie zarówno tablica
a, jak i wartość zmiennej w. Tak więc, jeżeli takie x i y istnieją przed wykonaniem P , to istnieją
także po wykonaniu. I jest analogicznie, jeżeli nie istnieją.



1.1 Poprawność pierwszej pomocniczej specyfikacji

Weźmy dwie formuły

Φ ≡ l ¬ L ∧ p ¬ P ∧ s =
p∑
i=l

a[i] ∧ l ¬ p+ 1

oraz

Ψ ≡ l ¬ L ∧ s =
p∑
i=l

a[i].

Zauważmy, że

Lemat 1.1 Z założeń ∀i < n a[i] ­ 0 oraz
∑P
i=L a[i] = w > 0 i z formuły Φ wynikają następujące

stwierdzenia:

1) s > 0⇒ l ¬ p,

2) s 6= w ⇒ l 6= L ∨ p 6= P ,

3) s > w ∧ p ¬ P ⇒ l < L,

4) s < w ∧ l ¬ L⇒ p 6= P .

Dowód. Lemat jest chyba oczywisty (wskazane są dowody metodą nie wprost), a drobne wyjaśnie-
nia są potrzebne najwyżej w przypadku własności 1). Dotyczy ona sumy

∑p
i=l a[i], która w jednym

przypadku ma postać
∑p
i=p+1 a[i]. Wtedy jest to suma pustego zbioru składników i należy przyjąć,

że jest równa 0. 2

Lemat 1.2 Jeżeli ∀i < n 0 ¬ a[i], P < n oraz
∑P
i=L a[i] = w > 0, to formuła Φ jest niezmienni-

kiem pętli while z punktu 3) programu P.

Dowód. Mamy więc wykazać, że przy podanych założeniach zachodzi następujące stwierdzenie:

{s 6= w ∧ p < n− 1 ∧ Φ} if (s < w) {s = s + a[p]; p++} else {s = s - a[l]; l++} {Φ}.

Łatwo zauważyć, że ta instrukcja warunkowa tak zmienia wartości zmiennych s, l i p, że jest za-
chowywany trzeci czon formuły Φ. Jeżeli wykonanie instrukcji zwiększa wartość p, to zachowywany
jest też czwarty człon Φ. Jeżeli jednak jest zwiększana wartość l, to z lematu 1.1 p. 1) otrzymujemy
silniejsze oszacowanie l ¬ p i po zwiększeniu l nadal będzie zachodzić l ¬ p + 1. Fakt, że zacho-
wywane są dwa pierwsze oszacowania wartości l i p wynika z trzech ostatnich punktów lematu
1.1. Stwierdzajź one, że w każdym z przypadków zachodzą silniejsze oszacowania, pozwalające na
zwiększenie wartości zmiennych z zachowaniem dowodzonych oszacowań. 2

Lemat 1.3 Jeżeli ∀i < n 0 ¬ a[i], p = P < n oraz
∑P
i=L a[i] = w > 0, to formuła Ψ jest

niezmiennikiem pętli while z punktu 7) programu P.



Dowód. Podobny do dowodu poprzedniego lematu. 2

Lemat 1.4 Program P spełnia pierwszą, pomocniczą specyfikację.

Dowód. Załóżmy, że 0 ¬ a[i] dla wszystkich i < n, 0 ¬ L ¬ P < n oraz
∑P
i=L a[i] = w > 0.

Nietrudno zauważyć, że w tej sytuacji, po wykonaniu podstawień z punktu 2) z programu P formuła
Φ staje się prawdziwa.

Wobec tego i na mocy lematu 1.2, po wykonaniu instrucji while z punktu 3) zachodzi formuła
Φ, a także negacja warunku z tej pętli, a więc przynajmniej jedna z formuł s = w lub p ­ n− 1.

Jeżeli s = w, to dalej nie są już wykonywane żadne podstawienia i ta rowność zachodzi także
po zakończeniu działania programu.

Jeżeli n − 1 ¬ p, to także p ¬ P < n (gdyż zakładamy również, że Φ) i, w konsekwencji,
mamy n− 1 = p = P . Zachodzi też formuła Ψ (gdyż jest konsekwencją formuły Φ), która na mocy
lematu 1.3 jest niezmiennikiem instrukcji while z punktu 7. Wobec tego, po zakończeniu działania
programu zachodzi formuła Ψ, negacja warunku z instrukcji while, czyli stwierdzenie s ¬ w, oraz
równości n− 1 = p = P (gdyż instrukcja z punktu 7 nie zmienia wartości p).

Zachodzą więc nierówność l ¬ L oraz równości p = P i s =
∑p
i=l a[i]. Stąd mamy

s =
p∑
i=l

a[i] =
P∑
i=l

a[i] ­
P∑
i=L

a[i] = w.

Ponieważ zachodzi także nierówność s ¬ w, więc mamy s = w. 2

1.2 Poprawność drugiej pomocniczej specyfikacji

Poprawność drugiej specyfikacji wynika z dwóch spostrzeń. Po pierwsze, własność

¬∃x, y (x ¬ y < n ∧
y∑
i=x

a[i] = w)

jest prawdziwa zawsze podczas wykonywania programu P , jeżeli tylko jest prawdziwa przed jego
uruchomieniem. Wynika to stąd, że program P w żadnym momencie nie zmienia wartości zmiennej
w i tablicy a.

Po drugie, równość

s =
p∑
i=l

a[i]

jest zachowywana przez obie pętle z programu P (jest niezmiennikiem tych pętli).
Powyższa równość jest prawdziwa przed wykoniem pętli z punktu 3). Jest więc prawdziwa także

po wykonaniu tej pętli, czyli przed wykonaniem pętli z punktu 7). Jako niezmiennik tej pętli jest
też prawdziwa po jej wykonaniu, na końcu programu.

Obie wspomniane własności, razem implikują, że s 6= w. Oznacza to, że zachodzi także druga z
rozważanych specyfikacji.


