Funkcje div i mod

Antoni Koscielski

1 Iloraz i reszta

1.1 Troche informacji wstepnych

Méwiac iloraz myslimy oczywiscie o ilorazie catkowitoliczbowym (ilorazie w sensie dzielenia z resz-
ta). W najprostszym przypadku liczb naturalnych z tym pojeciem i z reszta spotykamy sie juz w
szkole podstawowej, gdy zapoznajemy sie z algorytmem dzielenia. Z podobnymi pojeciami mamy do
czynienia w przypadku wielomianéw, a matematycy rozwazajq jeszcze inne, analogiczne struktury,
w ktorych mozemy méwié o dzieleniu, na przyktad pierscien Gaussa ztozony z liczb catkowitych i
dodatkowo rozszerzony o i (pierwiastek z —1).

Przypusémy, ze dzielimy x przez d. Na ogoét przyjmuje sie, ze iloraz q z dzielenia tych liczb i
reszta r powinny spetia¢ nastepujace warunki:

r=q-d+r oraz |r|<|d], (1)

gdzie | d| oznacza tzw. funkcje Euklidesa dla d: w przypadku liczb catkowitych jest to modut, a dla
wielomiandéw — stopien. Rzecz jasna nas w pierwszym rzedzie beda interesowacé liczby catkowite.
Oczywiscie, warunki (1) nie definiuja ani ilorazu, ani reszty. Mamy na przyktad ¢ - d +r =
(g+1)-d+ (r —d). Jednak w wielu przypadkach te warunki sa wystarczajace. Matematycy — w
przeciwienstwie do informatykéw — nie majg waznych powodéw, aby je ujednoznacznia¢. Przydaja
sie takze w bardziej ogdlnych sytuacjach. Wszyscy sie jednak zgadzaja, ze powinny by¢ spetnione.

1.2 Definicja matematyczna, zwana tez euklidesowg

Nastepujace twierdzenie (czasem przypisywane Euklidesowi) shuszne jest nawet w przypadku liczb
rzeczywistych:

Twierdzenie 1.1 Niech d bedzie niezerowq liczbg rzeczywistq. Dla kazdej liczby rzeczywistej x
1stniejqg jednoznacznie okreslone liczby q i r takie, Ze

r = gq-d+r oraz 0<r<|d| (2)

Nie jest trudne do udowodnienia i dla d # 0 pozwala zdefiniowaé¢ dwie wartosci = divg d oraz
x modg d. Aby to zrobi¢ wystarczy zazadaé, by zachodzily warunki (2), a wiec by

x = (zdivgd)-d+r dla pewnego r takiego,ze 0 <r < |d|

oraz

xmodg d = x— (xdivgd)-d.

Jak wida¢ nie zostal okreslony sposob obliczania wartosci x divg d. Zostaly tylko podane
warunki, jakie ta warto$¢ powinna spetnia¢. Dla dodatnich argumentéw do obliczenia = divg d
mozemy stosowac¢ znany ze szkoty algorytm dzielenia. Nizej sg przedstawione wykresy funkcji divg
i modg dla ustalonej, dodatniej wartosci d. Zauwazmy jeszcze, ze obie funkcje sa zdefiniowane dla
argumentow rzeczywistych, ale dalej zwykle bedziemy je ogranicza¢ do argumentéw catkowitych.

Rys. 1. Wykres funkcji « divg d dla d > 0.

Nietrudno zauwazy¢, ze x divg (—d) = —(x divg d) dla wszystkich d # 0. Wz6r ten pozwala
narysowa¢ wykres funkcji x divg d takze dla d < 0.

Przedstawiona definicja ilorazu i reszty jest bardzo naturalna i nie budzi zastrzezen informaty-
kow. Mimo to w wielu jezykach programowania sa implementowane inne definicje.

S S

t—d

Rys. 2. Wykres funkcji modg d dla d > 0, jest tez poprawny dla d < 0,
w tym drugim przypadku powinni$my na rysunku d zastapi¢ przez | d |.

1.3 Inne definicje ilorazu i reszty

Oprocz euklidesowej rozwaza sie wiele innych definicji ilorazu catkowitoliczbowego. Zajmiemy sie
teraz tylko dwoma podstawowymi i najczesciej stosowanymi.

Beda nam potrzebne dwie funkcje kownertujace liczby rzeczywiste na catkowite. Pierwsza bedzie
zwykla cze$¢ catkowita liczby, ktora powinna nam sie kojarzy¢ z literka F'. Przyjmijmy, ze

F(z) = floor(z) = |z| = max{a € Z | a < z}.

Druga funkcja — bedziemy ja oznaczaé¢ literka T — jest czasem okre$lana jako przycinanie i jest
zdefiniowana wzorem

max{a € Z |a <z} dla x>0,
T(x) = trunc(x) =
min{a € Z | x < a} w przeciwnym razie.

Mozemy wyobraza¢ sobie, ze F(z) to pierwsza napotkana liczba catkowita podczas wedréwki
wzdtuz osi z-6w od punktu o wspétrzednej z, w lewo, a T'(z) to pierwsza napotkana liczba catkowita
podczas wedréwki od punktu x w kierunku liczby 0. Mamy wiec F'(—1,33) = —2 oraz T(—1,33) =
—1.

Majac te dwie funkcje mozemy zdefiniowac iloraz i reszte na dwa sposoby przyjmujac, ze

x divp d = F(z/d) oraz x modr d =x — (x divg d) - d,
gdzie / oznacza dzielenie w liczbach rzeczywistych, oraz
x divy d =T(z/d) oraz x modr d =1z — (z divy d) - d.

Mozna zauwazy¢, ze funkcje F'i T dla kazdego argumentu dodatniego przyjmuja te same wartosci,
to samo dotyczy ilorazow divg, divg oraz divy, jak i reszt modg, modp i mody.

Obie zdefiniowane wyzej pary funkcji div 1 mod spetniaja warunki (1). Pare divg i modp anali-

zowat i moze polecat Donald Knuth.

Nizej zostaly przedstawione wykresy ilorazéw divy oraz divp, jak i reszt modr i modp, na-

rysowane czasem przy pewnych zatozeniach. Pro

ponuje sprawdzenia poprawnosci tych wykreséw.

Ogladajac je mozna zauwazy¢, ze mamy do czynienia z trzema réznymi definiacjami ilorazow i

reszt.

Rys. 3. Wykres funkcji « divr d dla d < 0.

L

—d

Rys. 4. Wykres funkcji modr d dla dowolnych d,
dla d < 0 powinnismy na rysunku zastapi¢ d przez | d |.

d i —d g
1
—o

Rys. 5. Wykres funkcji « divg d dla d < 0.

SN

Rys. 6. Wykres funkcji modp d dla d < 0.

1.4 Iloraz catkowitoliczbowy w réznych jezykach programowania

Dzielenie catkowitoliczbowe jest r6znie definiowane w réznych jezykach programowania. Nie jest mi
znany jezyk, ktory oferowalby euklidesows definicje ilorazu.

W Pascalu i kilku innych, starszych jezykach byty wykorzystywane definicje okreslane jako ,zte”.
Nie zawsze speliaty warunek (1).

W jezyku C' poczatkowo sposéb implementowania dzielenia zalezal od twércow kompilatora.
Teraz przyjmuje sie, ze dla liczb catkowitych z/d = = divy d oraz x%d = x modr d.

W Jawie prawdopodobnie jest tak samo, a autorzy jednego z opiséw uwazaja, ze dostatecznie
duzo informacji na ten temat zawiera zdanie Musimy takze wspomnie¢ o tym, ze operator procentu
(%) to reszta z dzielenia i moze zwrécié wartosé ujemna.

W Pythonie dzielenie jest definiowane za pomoca czesci catkowitej (uzywane sa funkcje divg i
modr). Podobie jest w Prologu, a podstawowy podrecznik do programowania w tym jezyku zawiera
bardzo dobrg definicje ilorazu.

W koncu Haskell oferuje programistom dwie pary funkcji: gout i rem oraz div i mod. Sa to
odpowiednio pary divy i modr oraz divg i modg.

2 Zadanie 2 z listy 2 (2018)

2.1 Sformulowanie

Podaj precyzyjna specyfikacje i zgodny z nig algorytm w postaci schematu blokowego dla naste-
pujacego, sformutowanego opisowo problemu algorytmicznego: dla danych dwéch liczb catkowitych
podaj wynik ich dzielenia catkowitego i reszte z tego dzielenia. Napisz w kodzie RAM program od-
powiadajacy podanemu schematowi i wyznacz jego ztozonos¢ asymptotyczng. Uwzglednij, ze moga
zosta¢ podane liczby ujemne.

2.2 Specyfikacje

Rozwazane zadanie moze by¢ chyba rozumiane na kilka sposobéw. Bierze si¢ to stad, ze — jak
sadze — nie ma ustalonej definicji dzielenia catkowitego w przypadku, gdy dzielna, dzielnik, lub
obie dzielone liczby sa ujemne.

Na wyktadzie jest rozwazana maszyna RAM, ktéra wykonuje dzielenie catkowite (rozkaz DIV),
takze dla ujemnych danych. Co wiecej, chyba wiadomo, jaki jest efekt wykonania tego rozkazu:
oblicza on iloraz rozumiany jako wartos¢ funkcji divp. Moze wiec trzeba jeszcze tylko wyliczy¢
reszte, czyli wartos¢ funkeji modg?

Takie rozumienie zadanie prowadzi do nastepujacej specyfikacji:

Specyfikacja 1.

Dane: dwie liczby catkowite: m (dzielna) i n # 0 (dzielnik),

Wyniki: dwie wartosci m dive n i m modp n (zdefiniowane wyzej).

Ta specyfikacja ma pewna wade. Zaktada, ze maszyna RAM dobrze dzieli (dzieli, jak chcemy)
wszelkiego rodzaju liczby catkowite i w konsekwencji nie musimy uwzglednia¢, ze co$ zalezy od
znakow danych. Moze wigc powinni$my mysleé¢ inaczej. Na przyktad: maszyna RAM, co prawda,
potrafi wykonywaé rozkaz DIV i liczy¢ wartodci funkcji divp, ale prawdziwym wynikiem dzielenia
jest warto$¢ funkcji divg, a prawdziwg reszte z dzielenia zwraca funkcja modg. Takie rozumienie
tresci zadania oddaje

Specyfikacja 2.
Dane: dwie liczby catkowite: m (dzielna) i n # 0 (dzielnik),
Wyniki: dwie wartosci m divg n i m modg n (zdefiniowane wyzej).

Mozna zaproponowaé jeszcze kilka dalszych specyfikacji opartych o takie rozumienie tresci za-
dania: moze mamy wyliczy¢ jakos rozumiany iloraz przy zalozeniu, ze maszyna potrafi obliczaé
jakis inny.

Specyfikacja 3. Najtadniejsze rozumienie tresci zadania moze by¢ jeszcze inne. Moze by¢ formalnie
zgodne ze specyfikacja 2, ale bedziemy dodatkowo zaktadac¢, ze RAM nie wykonuje ani rozkazu DIV,
ani MULT. Nie jest to dziwne zalozenie. Pierwotnie maszyny RAM nie wykonywaly tych dwéch
rozkazow, byty modelami rzeczywistych komputerow, a dawne procesory potrafity gtéwnie dodawac
i odejmowaé. Aby wtedy pomnozy¢ lub podzieli¢ dane, procesor musial juz wykonac jakis programik
wykorzystujacy dodawanie i odejmowanie a zwykle takze pewne rozkazy pomocnicze.

2.3 Algorytmy
2.4 Algorytm realizujacy specyfikacje 1

Podamy tylko program dla maszyny RAM realizujacy obliczenia zgodnie ze specyfikacja 1. Nie
bedzie on spekial wszystkich warunkéw wymienionych w definicji takich programow. W szczegdl-
nosci, zamiast numeréw (adresoéw) komoérek pamieci wystapia w nim symboliczne nazwy komorek
takie, jak (dzielna). W bardziej formalnym programie te nazwy powinny zostaé zastapione przez
odpowiednie numery, w sposob réznowartosciowy.

Programujac maszyne RAM mozemy nasladowaé¢ programowanie w zwyklych jezykach progra-
mowania. Mozemy tez nasladowa¢ programowanie procesora w kodzie wewnetrznym. W tym drugim
przypadku odczytywanie danych i wypisywanie wynikéw powinno by¢ wykonywane przez procesor
i powinnismy korzystac z rozkazéw READ 0 i WRITE 0. Bedziemy jednak raczej wyswietla¢ wartosci
komorek nasladujac wyswietlanie wartosci zmiennych. Wydtuza to program o przesytanie wynikéw
obliczen z procesora do komorki pamieci. Dodatkowo zmiane znaku liczby wykonujemy za pomoca
,skomplikowanego” rozkazu MULT = -1, za to robimy to w bardzo krétki sposéb.

READ (dzielna)

READ (dzielnik)

LOAD (dzielna)

DIV (dzielnik) //w akumulatorze F'(x/d)
STORE (iloraz)

MULT (dzielnik) //w akumulatorze F(z/d)-d
SUB (dzielna) //w akumulatorze F(z/d)-d—x
MULT = -1 //zmiana znaku, reszta w akumulatorze
STORE (reszta)

WRITE (iloraz)

WRITE (reszta)

2.5 Dla specyfikacji 2

Najpierw musimy opracowac algorytm obliczajacy divg i modg przy zalozeniu, ze potrafimy obliczaé
wartos¢ F'(z/d). Zauwazmy wiec, ze

F(z/d) < z/d < F(z/d) +1

(z definicji F'). Stad dla nieujemnych d otrzymujemy, ze 0 < = — F(x/d) - d < d. W przeciwnym
razie zachodzi nieréwnos$¢ d < x — F(z/d) - d < 0. Tak wigc zawsze mamy

|x — F(z/d)-d|<|d]|.

Mamy tez oczywista réwnos¢ x = F(z/d) - d + (v — F(x/d) - d). Jezeli dodatkowo zatozymy, ze
0 <z — F(z/d)-d, to na podstawie twierdzenia 1.1 mozemy stwierdzié, ze

x divg d = F(z/d) oraz x modg d=x — F(z/d) - d. (3)
Natomiast gdy = — F'(x/d) - d < 0, to liczba d musi by¢ ujemna i wtedy mamy
0<az—F(z/d)-d—d<—d=|d|.
Poniewaz © = (F(z/d) + 1) -d+ (x — F(z/d) - d — d), wiec z twierdzenia 1.1 otrzymujemy, ze
zdivg d=F(z/d)+1 oraz x modg d =z — F(x/d)-d—d. (4)

Przedstawione rozwazania pozwalajg opracowac algorytm realizujacy specyfikacje 2: obliczamy war-
tos¢ x — F(z/d) - d i w zaleznosci od tego, czy jest to liczba ujemna, czy nie, zwracamy wyzej okre-
Slone wyniki. Zgodnie z takim algorytmem dziata maszyna RAM wykonujaca nastepujacy program.
Program ten zostal napisany zgodnie z takimi samymi zasadami, jak poprzedni.

READ (dzielna)
READ (dzielnik)
LOAD (dzielna)
DIV (dzielnik) //w akumulatorze F'(x/d)
STORE (iloraz)
MULT (dzielnik) //w akumulatorze F(z/d)-d
SUB (dzielna) //w akumulatorze F'-reszta ze zmienionym znakiem
//czyli F(xz/d)-d— .
JGTZ mod //skok, gdy F'-reszta jest ujemna, sg wtedy konieczne poprawki
MULT =-1 //teraz reszte (oraz iloraz) liczymy zgodnie z (3)
STORE (reszta)
JUMP end
mod: MULT =-1 //wyliczenie E-reszty, liczymy zgodnie z (4)
ADD (dzielnik) //w akumulatorze z — F(z/d)-d—d
STORE (reszta)
LOAD (iloraz) //liczymy iloraz zgodnie z (4)
SUB =1
STORE (iloraz)
end: WRITE (iloraz) //przekazanie wynikéw
WRITE (reszta)

2.6 Specyfikacja 3

Tez najpierw musimy opracowaé potrzebny algorytm. Szukanie ilorazu i reszty jest proste, gdy
dzielna i dzielnik sa dodatnie. Wtedy odejmujemy dzielnik od dzielnej tak dtugo, az to, co zostaje z
dzielnej stanie sie mniejsze od dzielnika. [loraz w tym przypadku jest liczba wykonanych odejmowan.
Podobnie postepujemy, gdy dzielnik jest dodatni, a dzielna — ujemna: wtedy dzielng powiekszamy o
dzielnik tak dtugo, az przestanie by¢ ujemna. A co robimy, gdy dzielnik jest ujemny? Otdz mozemy
taka sytuacje sprowadzi¢ do poprzedniej korzystajac z wzoru a - (—b) = (—a) - b (mozemy zmienié¢
znak dzielnika, wyliczy¢ iloraz, a nastepnie poprawi¢ znak ilorazu).

Majac jakie$ wyobrazenie o algorytmie mozemy napisa¢ program. Tym razem napiszemy go w
jezyku przypominajacym C'.

read(dzielna); read(dzielnik);

iloraz = 0; reszta = dzielna; znak = 1; //znak ma by¢ znakiem dzielnika

if (dzielnik < 0) {znak = — 1; dzielnik = — dzielnik;}
//dzielnik jest teraz dodatni i od tego momentu podczas wykonywania programu
//stale zachodzi réwnosé: dzielna = iloraz - dzielnik + reszta

while (dzielnik < reszta) {reszta = reszta — dzielnik; iloraz = iloraz + 1;}
//teraz: reszta < dzielnik i nastepna instrukcja tego nie zmienia

while (reszta < 0) {reszta = reszta + dzielnik; iloraz = iloraz — 1;}
//zachodzi: 0 < reszta < dzielnik

dzielnik = znak - dzielnik; iloraz = znak - iloraz; //dzielnik odzyskal poczatkowa warto$¢
//nadal dzielna = iloraz - dzielnik + reszta, a takze 0 < reszta < | dzielnik |

write(iloraz); write(reszta);

