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1 Funkcje dwóch zmiennych i podstawianie

Dla funkcji dwóch zmiennych zachodzi następujący wzór na całkowanie przez pod-
stawianie: ∫ ∫

P
f(x(a, b), y(a, b)) · |ϕ′(a, b)| dadb =

∫ ∫
ϕ(P )

f(x, y) dxdy, (1)

gdzie
ϕ : R2 → R2 oraz ϕ(a, b) = (x(a, b), y(a, b))

jest pewnym przekształceniem płaszczyzny R2 w siebie, spełniającym długą listę
założeń, ϕ(P ) = {(x(a, b), y(a, b)) ∈ R2 : (a, b) ∈ P} jest obrazem zbioru P
wyznaczonym przez przekształcenie ϕ, a

ϕ′(a, b) =

∣∣∣∣∣ xa(a, b) xb(a, b)
ya(a, b) yb(a, b)

∣∣∣∣∣
jest jakobianem przekształcenia ϕ, czyli wyznacznikiem (funkcyjnej w ogólnym
przypadku) macierzy pochodnych składowych przekształcenia ϕ, czyli

xa(a, b) =
dx(a, b)
da

= pochodna x(a, b) ze względu na a przy ustalonym b

itd. Zauważmy jeszcze, że |ϕ′(a, b)| to wartość bezwzględna jakobianu.
Wśród założeń gwarantujących prawdziwość wzoru na całkowanie przez pod-

stawiania, oprócz wymagań „regularności” podstawienia i wykonalności potrzeb-
nych operacji (np. istnienia pochodnych występujących w jakobianie), jest też za-
łożenie o różnowartościowości podstawienia ϕ.

Na wykładzie z rachunku prawdopodobieństwa i statystyki, twierdzenie o cał-
kowaniu przez podstawianie jest przyjmowane jako rzecz dana, uzasadniona wcze-
śniej.

2 Całka Poissona i zadanie 2 z listy 8

2.1 Plan rozwiązania

W zadaniu 2 z listy 8 należy obliczyć całkę Poissona (?)

I =
∫ ∞
−∞

e−
x2

2 dx

(lub równoważną całkę od 0 do ∞ z tej samej funkcji). Sens tego zadania polega
na weryfikacji znanego wzoru, prezentacji metody obliczania całek tego rodzaju,
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ważnych, ale zwykle trudnych do wyliczenia, wymagających pomysłowych sposo-
bów, a zwłaszcza na kolejnym ćwiczeniu stosowania wzoru na całkowanie przez
podstawianie.

Zamiast wyżej podanej całki będziemy liczyć jej kwadrat

I2 =
(∫ ∞
−∞

e−
x2

2 dx
)(∫ ∞

−∞
e−

y2

2 dy
)

=
∫ ∫

R2
e−

x2+y2

2 dxdy.

Licząc będziemy korzystać z wzoru (1) na całkowanie przez podstawianie w sposób
odwrotny niż zwykłe, „komplikując” (pozornie) wyrażenie, biorąc

f(x, y) = e−
x2+y2

2 .

Będziemy starać się dobrać P tak, aby ϕ(P ) = R2. W ten sposób prawa strona
wzoru (1) będzie interesującą nas całką.

Podstawienie będzie polegać na zamianie współrzędnych biegunowych na kar-
tezjańskie, a więc będzie dane wzorami

ϕ(r, θ) = (x(r, θ), y(r, θ)), gdzie x(r, θ) = r cos θ i y = r sin θ.

Łatwo wyliczyć jakobian podstawienia ϕ

ϕ′(r, θ) =

∣∣∣∣∣ xr(r, θ) xθ(r, θ)
yr(r, θ) yθ(r, θ)

∣∣∣∣∣ =

∣∣∣∣∣ cos θ −r sin θ
sin θ r cos θ

∣∣∣∣∣ = r(cos2 θ + sin2 θ) = r.

Ponieważ ϕ(P ) ma być zbiorem wszystkich możliwych współrzędnych kar-
tezjańskich, za P można wziąć zbiór wszystkich możliwych współrzędnych bie-
gunowych, czyli chcielibyśmy przyjąć P = [0,∞) × [0, 2π). Oczywiście, mamy
ϕ(P ) ⊆ R2 (nawet dla dowolnego P ). Zawieranie przeciwne jest znane i łatwo
się je uzasadnia. Dla dowolnej pary (x, y) ∈ R2 bierzemy r =

√
x2 + y2. Liczbę θ

znajdujemy rozwiązując układ równań trygonometrycznych

cos θ =
x√

x2 + y2
, sin θ =

y√
x2 + y2

.

Z ogólnej teorii takich równań, która powinna być znana ze szkoły średniej (lub
lepiej, z własności Darboux, która powinna być znana z podstawowego wykładu z
analizy matematycznej), otrzymujemy, że ten układ równań ma rozwiązanie θ, dla
którego mamy ϕ(r, θ) = (x, y). To dowodzi równości ϕ(P ) = R2.

Podstawiając wszystkie powyższe ustalenia do wzoru (1) otrzymujemy∫ ∫
R2
e−

x2+y2

2 dxdy =
∫ ∫

P
e−

x2(r,θ)+y2(r,θ)
2 · |r|drdθ =

∫ ∫
P
e−

r2

2 · |r|drdθ.

Jest jeszcze drobne pytanie, czy te równości na pewno są prawdziwe.
Zauważmy, że jeżeli zamiast P weźmiemy P ′ = [0,∞) × [0, 4π), to właściwie

wszystko, co do tej pory zostało powiedziane, pozostanie prawdziwe. Z drugiej
strony, całka po prawej stronie powyższego wzoru dla P ′ (zamiast P ) będzie dwa
razy większa, a to raczej nie powinno mieć miejsca. Proponuję teraz ponowne
przejrzenie powyższego tekstu w poszukiwaniu usterek, które mogą mieć wpływ
na prawdziwość obliczeń.

Opisana wyżej sytuacja jest spowodowana tym, że nie sprawdziliśmy istotnego
założenia, jakim jest różnowartościowość podstawienia ϕ. Na zbiorze P ′ przekształ-
cenie ϕ nie jest różnowartościowe, mamy ϕ(1, π) = ϕ(1, 3π) dla par (1, π), (1, 3π) ∈
P ′. Co więcej, tak jest również w wielu innych przypadkach.
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Przekształcenie ϕ też nie jest różnowartościowe na zbiorze P , mamy ϕ(0, π) =
ϕ(0, π/2) dla par (0, π), (0, π/2) ∈ P .

Radą jest dalsze zmniejszenie zbioru P . Powinniśmy przyjąć, że P = (0,∞)×
[0, 2π), lub nawet P = (0,∞) × (0, 2π). Nietrudno sprawdzić, że w pierwszym
przypadku ϕ(P ) = R2\{(0, 0)}. W drugim – ϕ(P ) = {(x, y) ∈ R2 : y 6= 0∨x < 0}
jest płaszczyzną R2 bez początku układu współrzędnych i dodatniej częścu osi x-
ów.

2.2 Rozwiązanie zadania 2 z listy 8

Weźmy podstawienie

ϕ(r, θ) = (x(r, θ), y(r, θ)), gdzie x(r, θ) = r cos θ i y = r sin θ

oraz zbiór
P = (0,∞)× [0, 2π).

Zauważmy, że zachodzi wzór

ϕ(P ) = R2 \ {(0, 0)}.

Przystępujemy do obliczenia interesującej nas całki:∫ ∫
R2
e−

x2+y2

2 dxdy
(1)
=
∫ ∫

R2\{(0,0)}
e−

x2+y2

2 dxdy =
∫ ∫

ϕ(P )
e−

x2+y2

2 dxdy =

(2)
=
∫ ∫

P
e−

x2(r,θ)+y2(r,θ)
2 · |r| drdθ (3)=

∫ ∞
0

∫ 2π
0

e−
r2

2 · r dθdr =
∫ ∞
0

e−
r2

2 · r ·
(∫ 2π
0

dθ
)
dr

= π
∫ ∞
0

e−
r2

2 · 2r dr (4)= π
∫ ∞
0

e−
t
2 dt = −2πe−

t
2 |∞
0

= 2π.

Uzasadnienie niektórych przejść:

(1) całka (oznaczona) nie zależy od wartości funkcji całkowanej w pojedyńczym
punkcie,

(2) wynika z twierdzenia o całkowaniu przez podstawianie, x2(r, θ) to kwadrat
wartości x(r, θ) podstawianej za x, korzystamy też z wzoru ϕ′(r, θ) = r na
jakobian podstawienia ϕ,

(3) przejście od całki podwójnej do iterowanej, całkujemy po zbiorze, w którym r
przyjmuje wartości dodatnie, z definicji podstawienia ϕ wynika, że x2(r, θ) +
y2(r, θ) = r2,

(4) całkowanie przez podstawianie funkcji jednej zmiennej, podstawiane jest
t(r) = r2.

Z przeprowadzonych rachunków wynika, że

I =
∫ ∞
−∞

e−
x2

2 dx =
√

2π.
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3 Zadanie 1 z listy 7

W zadaniu 1 z listy 7 mamy dwuwymiarową zmienną losową (X, Y ), która ma
rozkład jednostajny, o gęstości

f(x, y) = 1 dla argumentów takich, że 0 < x, y ¬ 1.

Mamy znaleźć gęstość zmiennej Z = X/Y . Rozwiązując to zadanie też możemy
skorzystać z twierdzenia o całkowaniu przez podstawianie. Dziedziną funkcji f
niech będzie zbiór

P = {(x, y) ∈ R2 : 0 < x, y ¬ 1}.

Najpierw trzeba wymyślić podstawienie. Oczywiście podstawiamy z(x, y) = x
y
.

Drugą funkcją niech będzie t(x, y) = y (ta druga funkcja powinna umożliwiać prze-
prowadzanie łatwych rachunków). Będziemy więc posługiwać się podstawieniem

ϕ : R2 → R2 oraz ϕ(x, y) = (z(x, y), t(x, y)) = (
x

y
, y).

Od razu wyliczmy jakobian

ϕ′(x, y) =

∣∣∣∣∣ zx(x, y) zy(x, y)
tx(x, y) ty(x, y)

∣∣∣∣∣ =

∣∣∣∣∣
1
y
−x
y2

0 1

∣∣∣∣∣ =
1
y

i znajdźmy ϕ(P ). Jest to zbiór

ϕ(P ) = {(x
y
, y) ∈ R2 : 0 < x, y ¬ 1} = {(z, t) ∈ R2 : 0 < t ¬ 1 ∧ 0 < z ¬ 1

t
}.

Plan rozwiązania jest następujący: najpierw znajdujemy gęstość dwuwymia-
rowej zmiennej losowej (Z, T ), a następnie, posługując się znalezioną gęstością
znajdujemy gęstość zmiennej Z.

Aby w algorytmizowany sposób wyliczyć gęstość pary zmiennych (Z, T ), bie-
rzemy całkę ∫ ∫

P
f(x, y) dxdy

(gęstości zmiennych (X, Y )) i całkujemy ją przez podstawianie podstawiając ϕ.
Otrzymujemy w ten sposób całkę z pewnej funkcji g(z, t), która jest gęstością
dwuwymiarowej zmiennej (Z, T ).

Metoda pierwsza. Biorę funkcję f(x, y) i jakoś przekształcam tak, aby otrzymać
wyrażenie postaci g(z(x, y), t(x, y))|ϕ′(x, y)|. Zwykle mnożę i dzielę f(x, y) przez
jakobian, a później coś kombinuję:

f(x, y) =
f(x, y)
|ϕ′(x, y)|

· |ϕ′(x, y)| = g(z(x, y), t(x, y))|ϕ′(x, y)|.

W naszym zadaniu (ponieważ y > 0)

f(x, y) =
1
1
y

· 1
y

= y · 1
y

= t(x, y) · 1
y
.

Stąd na mocy twierdzenia o całkowaniu przez podstawianie (wzór (1))∫ ∫
P
f(x, y) dxdy =

∫ ∫
P
t(x, y) · 1

y
dxdy =

∫ ∫
ϕ(P )

t dzdt
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i gęstością zmiennych (Z, T ) jest funkcja g(z, t) = t, określona na zbiorze ϕ(P ).
Metoda druga, jeszcze bardziej zalgorytmizowana. Wiedząc, jak zmienne Z i

T zależą od X i Y , znajdujemy zależność odwrotną, wyrażamy X i Y przez Z
i T . W naszym zadaniu, Y = T i X = ZT (albo y = t i x = zt). Znajdujemy
więc podstawienie odwrotne ϕ−1(z, t) = (zt, t). Piszemy ϕ′(x, y) dxdy = dzdt, a
stąd, po formalnych przekształceniach otrzymujemy dxdy = dzdt

ϕ′(x,y) . Teraz bierzemy
całkę ∫ ∫

P
f(x, y) dxdy

i podstawiamy w niej wyliczone wartości∫ ∫
P
f(x, y) dxdy =

∫ ∫
ϕ(P )

f(zt, t) · dzdt

ϕ′(zt, t)
=
∫ ∫

ϕ(P )
1 · dzdt1

t

=
∫ ∫

ϕ(P )
t dzdt

po uwzględnieniu wzorów na f i ϕ′.
Aby teraz wyliczyć gęstość zmiennej X

Y
wystarczy gęstość pary (Z, T ) scałkować

po t. Aby to zrobić trzeba dobrze wyobrazić sobie zbiór ϕ(P ) (można go sobie
narysować). Dla całki z gęstości (Z, T ) mamy

∫ ∫
ϕ(P )

t dzdt =
∫ 1
0

∫ 1
0
t dtdz +

∫ ∞
1

∫ 1
z

0
t dtdz.

Stąd dla z ∈ (0, 1] gęstość fZ zmiennej Z dana jest wzorem

fZ(z) =
∫ 1
0
t dt =

t2

2 |
1

0
=

1
2
,

a dla pozostałych z – wzorem:

fZ(z) =
∫ 1

z

0
t dt =

t2

2 |
1
z

0
=

1
2z2

.

Ostatecznie, gęstością zmiennej Z jest funkcja fZ taka, że

fZ(z) =


1
2

jeżeli 0 < z ¬ 1
1

2z2
jeżeli 1 < z.


