Troche o statystyce (2016) *

Antoni Koscielski

1 Podstawowe pojecia statystyczne

1.1 Préba i przestrzen préb

Préba to co$, co zostalo zaobserwowane, na przykitad wynik serii doswiadczen.
Czesto pojecie proby formalizujemy jako skonczony ciag liczb rzeczystych @ =
(x1,29,...,2,) € R"™

Przestrzen prob X to zbiér wszystkich spodziewanych obserwacji lub wszyst-
kich mozliwych wynikow serii doSwiadczen. Zwykle X jest podzbiorem przestrzeni
R™.

1.2 Przestrzenie i hipotezy statystyczne

Przestrzen statystyczna to zbiér prob X i parametryczna rodzina {P : 6 € O}
rozktadéw prawdopodobienstwa na X'. Parametry sg zwykle liczbami rzeczywisty-
mi, rozktad Py moze jednak zaleze¢ od jednego lub kilku parametréw. Tak wiec
© C R™. Zbiér © moze sie sktada¢ z wszystkich dopuszczalnych z matematycznego
punktu widzenia uktadow liczb rzeczywistych lub z aktualnie rozwazanych.

Hipoteza statystyczna to jakie$ stwierdzenie o rozwazanych rozktadach. Mozna
ja sformalizowa¢ jako zbiér parametréow (wyznaczajacych rozktady, dla ktérych
zachodzi to stwierdzenie). Zwykle rozwaza sie dwie hipotezy: hipoteze zerowa Hy C
© oraz hipoteze alternatywna H; = © \ Hy. Obie hipotezy w sumie definiuja zbiér
0.

1.3 Przyktad

Mozemy rozwazaé¢ serie n-krotnych rzutéow moneta. Dwa mozliwe zdarzenia: wy-
padniecie orta i reszki, mozemy kodowac¢ za pomocg liczb naturalnych, odpowied-
nio 0 i 1. Préba moze by¢ dowolny ciag zero- jedynkowy. Przestrzen prob w tym
przypadku to X = {0,1}" C R".

Prawdopodobienstwo (nieznane) wyrzucenia w jednym rzucie orta (x = 0), a
takze reszki (x = 1) mozna wyrazi¢ jednolitym wzorem 6%(1—6)'~% (reszka wypada
z prawdopodobienstwem 6, orzet — 1 — 6). Z matematycznego punktu widzenia 6
musi by¢ liczba rzeczywista z przedziatu (0, 1).

Przy niezaleznych rzutach monetg mozna przyjaé, ze prawdopodobienstwo uzy-
skania wyniku (1, xe, ..., z,) jest dane wzorem

n

P()(Ihxg, . ,xn) = H 6)331'(1 - 0)1—;1:1-'

=1

*Niniejszy tekst powstal w oparciu o podreczniki Wnioskowanie statystyczne S.D. Silvey’a
(PWN 1978) oraz Statystyka matematyczna Miroslawa Krzyski (WN UAM 2004)



Teraz mozemy rozwazaé¢ rozne hipotezy dotyczace tego modelu, na przyktad
Hy={1/2}i H; = (0,1)\ {1/2}. Statystycy zajmujac sie taka hipoteza powiedzie-
liby i zapisaliby raczej, ze zajmuja sie weryfikacja hipotezy Hy : 0 = 1/2 przeciwko
hipotezie H1: 0 # 1/2. W tym przypadku nalezy przyjaé, ze © = (0,1). Moznaby
tez przyjac, ze © = {1/3,1/4}, Hy = {1/3} i H; = {1/4}. Wtedy bytaby weryfiko-
wana hipoteza Hy : 0 = 1/3 przeciwko hipotezie H; : 6 # 1/4, czyli stwierdzenie,
ze z dwoch podanych liczb lepiej opisuje rozwazane doswiadczenie liczba 0 = 1/3.

1.4 Test, zbior odrzucenia, statystyka testowa

Testem hipotezy Hy (przeciwko hipotezie H;) nazywamy dowolna funkcje ¢ : X —
{0,1}. Przyjmujemy, ze ¢(Z) = 1 oznacza, ze odrzucamy hipoteze Hy, a jezeli
©(Z) = 0, to nie widzimy powodu odrzucenia Hy. Raczej nie powinni$my stwier-
dzac, ze zachodzi hipoteza Hy. Wskazane sg stabsze sformutowania, ze hipoteza ta
wydaje sie prawdziwa, rekomendujemy jej przyjecie, lub co$ podobnego.

Zbiér B = {¥ € X : (&) = 1} nazywamy zbiorem odrzucenia lub obszarem
krytycznym. Czesto zbiér B mozna zdefiniowaé tak, by spetnial réwnosé postaci
B ={#¥ € X : (%) € A} dla pewnej funkcji t : X — R. Taka funkcje nazywamy
statystyka testows.

1.5 Btledy, moc testu

Moéwimy, ze popetniamy btad I rodzaju, jezeli niestusznie odrzucamy hipoteze Hj.
Btad II rodzaju polega na niestusznym nieodrzuceniu hipotezy H,.

Przypuéémy, ze mamy probe & (znaleziona w wyniku przeprowadzenia stosow-
nych badan). Moca testu nazywamy funkcje 5 : © — [0, 1] zdefiniowana wzorem

B(0) = Py(T € B).
Zauwazmy, ze jezeli prawdziwy rozktad ma parametry 6 i 0 € Hy, to
B(0) = Py(Z € B) = prawdopodobienistwo popelnienia btedu I rodzaju,
agdy 6 € Hy, to
B(0) = Py(Z € B) =1 — prawdopodobienstwo btedu II rodzaju,

Nietrudno zauwazy¢, ze bytoby najlepiej, gdyby udato sie znalez¢ test, dla ktorego
prawdopodobienstwa popetnienia btedéw obu rodzajow bytyby rowne 0, a wiec
taki, ze 5(0) =0 dla 6 € Hy oraz $(0) = 1 w pozostatych przypadkach.

1.6 Poziom istotnosci i rozmiar testu

Mowimy, ze test jest testem o poziomie istotnosci «, jezeli

supoem, 0(0) < o

Test ma rozmiar «, jezeli
supgen,5(0) = a.

2 Testy oparte na ilorazie wiarygodnosci

(Caly czas sa zachowywane wprowadzone oznaczenia.)
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2.1 Funkcja i iloraz wiarygodnosci

Zamiast rozktadu Py bedziemy teraz poshugiwac sie jego gestoscig Ly. Przyjmijmy,
ze L(0,%) = Ly(Z). Funkcja L jest funkcja dwdch zmiennych. Ustalajac pierwsza
zmienng na 6 przeksztalcamy L w gestos¢ rozktadu Fy. Jezeli ustalimy druga
zmienng na &, to otrzymujemy funkcje wiarygodnosci .

llorazem wiarygodnosci bedziemy nazywac¢ funkcje A : X — R dana wzorem

sup gem, L(6, %)

\NT) = )
(#) sup geo L(0, T)

2.2 Test oparty o iloraz wiarygodnosci

Testem opartym o iloraz wiarygodnosci nazywamy test na poziomie istotnosci a
hipotezy H, przeciwko hipotezie alternatywnej H;, ktéry ma obszar odrzucenia
zdefiniowany nieréwnoécig

AF) < Ao,

gdzie \g jest tak dobrane, aby P(A(Z) < A\o|Hp) = a.

Zauwazmy od razu, ze przeprowadzenie tego testu wymaga zatozenia o skon-
czonosci sup peo L(0, T).

Sensownos¢ takiego testu, jego ewentualne wtasnosci to osobne zagadnienie,
zwykle wykraczajace poza rozwazania matematyczne.

3 Pierwszy przyklad

Przypuséémy, ze z jakis powodéw wyliczyliSmy m wartosci X = (x4, ..., z,,) zmien-
nych losowych o tym samym rozktadzie N(ui,0?) i n wartosci Y = (yi,...,Y,)
zmiennych losowych o (tym samym) rozkladzie N(uo,0?). Chcemy skonstruowaé
test weryfikujacy hipoteze Hy : puy = po przeciwko hipotezie alternatywnej H; :
(1 # pe (parametry g i po nie sa znane, testujemy ich réwnosé).

Oczywiscie przyjmujemy, ze

X =R™" 0O ={(m,mv) € R*:v>0},

Hy = {(m,m,v) € R® :v >0}, H; = {(mi,my,v) € R*:my #myAv >0},

Z(fﬁi — )+ Z(Z/i — p2)?
1 =1 i=1
L(p1, po, 0%, X)Y) = ————e 207

(27r02)m+n

3.1 Obliczanie suppcoL(0, 7)

Obliczanie tego supremum sprowadza sie do znalezienia metoda najwiekszej wiary-
godnosci estymatorow parametréw rozktadu. Mozemy wiec postepowa¢ podobnie.
Najpierw logarytmujemy gestos¢, nastepnie obliczamy pochodne czastowe logaryt-
mu:

m n

(= )+ Y (i — )’

log(2mo?) — = 5 — ;
o

1085[1(#17#27027)(, Y) = _m+ t
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dlog L(pn, pa, 0, X, Y) m+n+i:1 A i=1

Jo? 202 204

Liczac ostatnig pochodng rézniczkujemy nie po o, a po zmiennej, za ktorag
podstawiliémy o2. Wobec tego uklad réwnan

dlog Ly, pia, 0%, X,Y)  0log L(pu, p2, 0%, X, YY) dlog L(pu, pa, 0, X, Y')

Oy 0o Jo? =0

ma rozwiazanie

) Z;’i 2 - ) B ) 1 m B n _
,LL1:71:X, fo =Y, 6% = <Z($i—X)2+Z(yz‘—Y)2>-

m m+n \;Z{ i=1

Dalej powinnismy sprawdzi¢, ze znalezlismy globalne maksimum interesujacej
nas funkcji. Jezeli tak rzeczywiscie jest, to logarytm interesujacego nas supremum
sup geo L (0, ¥) jest dany wzorem

m-+n . m-+n

log sup o L(jy, pr2, 0%, X, Y) = log L(ji1, jia, 6%, X,Y) = — 5 log(2m6®)— 5

3.2 Obliczanie sup gep,L(0, %)

Analogicznie obliczamy drugie z dwoch potrzebnych supremoéw. Po uwzglednie-
niu réwnosci p; = po zachodzacej dla parametrow z Hj logarytmujemy gestosc,
nastepnie obliczamy pochodne czastowe logarytmu:

e n > (@i =)+ 3 (v — )’
10gL(M7 027Xa Y) - — 1Og(27TO'2) _ =l 5 21:1 ’
o
Ti— M)+ P —
dlog L(p, 02, X, Y) B ;( 1) ;(y 1)
a,u o 0_2 )

dlog L(p,0*,X.Y)  m+n
do? 202 20!
Tym razem uktad rownan
810g L(,ula 027 X7 Y) _ 8logL(,u, 025 X: Y)
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ma rozwigzanie

Yy, mX+nY o, 1 (i

p= = , 00 =
m—+n m-+n m-+n

(0 — i)+ é(:yi _ mZ) .

Po sprawdzeniu, ze mamy globalne maksimum interesujacej nas funkcji otrzy-
mujemy, ze logarytm interesujacego nas supremum sup geoL(0, Z) jest dany wzo-
rem

log sup o L(p, 1, 0%, X, V') = log L(fi, j1, 6%, X,Y) = —

=1

m-+n
2

m-+n
5

log(275?) —

3.3 Statystyka testowa

Test oparty o iloraz wiarygodnosci rozstrzyga hipoteze analizujac wartosé ilorazu
wiarygodnosci
sup pen, L(0, X)

MT) = .
(@) sup geo L(0, X)

W naszym przypadku bedziemy analizowaé¢ wartos¢ funkcji
sup (,u,,u,t72)6H0L(HJ> 22 027 X7 Y)
sup (u1,u2,02)6@L(M17 M2, 027 Xv Y)

Z przeprowadzonych obliczen wynika, ze logarytm tej funkcji jest dany wzorem

T(X,)Y) =

m-+n
~9 —

m-+n m-+n o

logTh(X,Y) = log(276?) — log(276°) = log <

5—2

Ostatecznie otrzymujemy, ze

~9 m;—n
o

Wyliczona wtasnie funkcja 77 pelni w rozwazanym tescie role jednej z mozliwych
statystyk testowych: wynik testu otrzymujemy poréwnujac wartosé¢ T1(X,Y) z
pewna liczba .

3.4 Pewien wzor

Na siodmej liscie zadan pojawit sie nastepujacy wzor:

m m

D (@i — ) = (i — X)* +m(X — ).

i=1 =1

Korzystajac z tego wzoru mozna pokazac¢ takze wzor nastepujacy:
~2 TR VAV
o mn X-Y
oy LAY
52 (m +n)? 52

Jezeli teraz przyjmiemy, ze

V X-Y
TQ(X7 Y) = = ) A ?
m-+n o
to bedzie prawdziwa zaleznosc¢
Ti(XY) = (L+T3(X,Y)) "2,

W tej sytuacji warunki

m-+n

T(X,Y)<(a*+1) 2z oraz |To(X,Y)|>a

sg rownowazne. Dalej bedziemy staraé sie zdefiniowa¢ odpowiednie a.



3.5 Troche o rozkladach r6znych zmiennych

Przypusémy, ze mamy niezalezne zmienne losowe X1, ..., X,, oraz Yy, ... Y, wszyst-
kie o rozkladzie normalnym N (p, 0?).
Znamy wiele faktow dotyczacych rozktadéw zmiennych, w szczegdlnosci

1) jezeli X ~ N(u,0?), to cX ~ N(cu,c*o?),
2) jezeli X ~ N(p1,02)1Y ~ N(pg,03), to X +Y ~ N(uy + po, 02 + 03),
3) jezeli X; ~ N(p,02) dlai=1,...,m, to X ~ N(u, Z).

W szczegdlnosei, dla rozwazanych zmiennych, z powyzszych faktow, z zadania
5 7z listy 7 i z definicji odpowiednich rozktadéw otrzymujemy

1)

X —
i ~ N(0,1),
m+n o
2)
(X — X)?
! - ~x*(m—1)
i analogicznie dla zmiennych Y; (patrz zadanie 5),
3)

(X — X)? + 50, (Y - Y)?

o2

~x3(m+n—2).

Z definicji rozkladu Studental otrzymujemy teraz, ze zmienna,

V/ X-Y
T(X,Y)=vVmtn—2-T(X.Y)=vVmin_2. Y 277 _

m-—+n o

mn X =Y mn X-Y
o m-+n o . m-+n o
\l (m+n)a? \/ 1 Mo — X)2 4+ (= Y)?

(m +n —2)02 m+n—2 o?

ma wtasnie taki rozktad t(m + n — 2) z m + n — 2 stopniami swobody.

Tak wiec dowiedlidémy, ze zmienna losowa T35 ma $cidle okreslony rozktad. Wy-
magalo to jednak zatozenia, wszystkie m + n analizowane liczby byty wartosciami
zmiennych losowych o tym samym rozktadzie.

'Rozklad Studenta t(k) z k stopniami swobody mozna zdefiniowaé¢ jako rozklad zmiennej
losowej \/%/k, gdzie zmienne U i V maja odpowiednio rozktady N(0,1) i x%(k) i sa niezalezme.



3.6 Zapewnianie poziomu istotnosci testu

W rozwazanym tescie statystykami testowymi moga by¢ funkcje T, Ts i T5.

Zauwazmy, ze jezeli prawdziwa jest hipoteza Hy, to warunki

b
Jmino2
sg rownowazne, patrz str. 3.4. Co wiecej, tatwo jest kontrolowaé¢ prawdopodo-
bienstwo zachodzenia pierwszej nieréwnosé. Jezeli bedzie zachodzita z pewnym
prawdopodobienstwem, to z tym samym prawdopodobienstwem beda zachodzity
pozostate nieréwnosci.

WezZmy teraz liczbe «, 0 < a < 1. Zagwarantujemy, ze pierwsza z tych nierow-
nosci zachodzi z prawdopodobienstwem «.

Niech F' oznacza dystrybuante rozktadu Studenta z m+n — 2 stopniami swobo-
dy. Poniewaz dystrybuanta rozktadu Studenta jest funkcja ciggta, wiec dla pewnej
liczby b zachodzi réwno$¢ F'(b) = 1 — §. Poniewaz rozklad Studenta jest syme-

1

tryczny, wiec F'(0) = 5 oraz b > 0. Oczywiscie,

m—+n

=aoraz Ty (X,Y) < (a®* +1) 2

| T5(X,Y)| >0, |To(X,Y)|>

P(T5(X,Y)>b)=1—-F(b)=1— (1 - %) - %
Z symetrycznosci rozktadu otrzymujemy, ze

P(|T3(X,Y) | >0) = a.

4 Prostszy przyklad, teoria Neumana - Pearsona

Sposob testowania wykorzystany w poprzednim przyktadzie zastosujemy teraz do
dowolnych rozktadow w sytuacji, gdy rozwazamy tylko dwa parametry 6, oraz 6;.
Bedziemy testowac hipoteze Hy : 6 = 6y przeciwko hipotezie H; : 8 = 6;. W tym
przypadku iloraz wiarygodnosci ma postac

o L(907X)
AX) = max{L(6y, X), L(6;, X))}

Poza tym A(X) € [0,1]. Wobec tego jest sens rozwazaé tylko zbiory odrzucenia
postaci A(X) < A\ dla A\g < 1. Wtedy jednak warunek A(X) < Ap mozna réwno-
waznie wyrazi¢ w postaci

L(Qo, X) < )\0.[/(00, X) V L(@Q, X) < /\OL(Gl, X) oraz L(@Q, X) < /\OL(01, X)
Powinnismy zajmowa¢ sie wiec zbiorami odrzucenia postaci

B={Xe€X:L(0,X)<NL(0:,X)}.

4.1 Intuicyjne uzasadnienie metody

W przypadku dyskretnym, a z pewnymi zastrzezeniami takze w cigglym, gestos¢
L(6, X) to prawdopodobienstwo uzyskania wyniku X podczas losowych doswiad-
czen podlegajacych rozktadowi z parametrem 6. Liczba ta jest na ogdt mata,
zwlaszcza jezeli jest mozliwe bardzo wiele réznych wynikéw. Interesuje nas jed-
nak, czy liczba ta jest relatywnie mata w poréwnaniu z prawdopodobienstwami
wyliczonymi dla innych parametréw. Prawdopodobienstwo wyliczone zgodnie z
wlasciwym rozktadem powinno da¢ wynik typowy dla rozwazanej sytuacji. Jezeli
wydaje sie by¢ bardzo mate i sprawia wrazenie zanizonego, to moze by¢ wyliczone
zgodnie z rozktadem z niepoprawnym parametrem.
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4.2 Test i jego poziom istotnosci

Po pierwsze zauwazmy, ze w tym bardzo prostym przyktadzie poziom istotnosci
testu powinien szacowaé tylko dla jednego rozktadu, z parametrem 6,, prawdopo-
dobienstwo odrzucenia hipotezy.

Tym razem bedzie nas interesowaé test okreslonego rozmiaru «. Taki test po-
winien istnie¢ dla rozktadéw cigglych: dla danego o powinno da¢ sie dobraé¢ Ag
takie, ze

Py, (AMX) < Xo) = .

Dla rozktadow dyskretnych moze by¢ jednak réznie. Wtedy, ustepujac nieco z wy-
magan dotyczach a, moze uda nam si¢ zapewnic¢ prawdziwos¢ powyzszej rOWNosci.

Jezeli tak bedzie, to test ze zbiorem odrzucenia B, polegajacy na sprawdzeniu,
czy AMX) < Ao, bedzie testem rozmiaru a. Dalej bedziemy zajmowaé sie tym
testem.

4.3 Lemat Neumana - Pearsona

Mowimy, ze test jest jednostajnie najmocniejszy na poziomie istotnosci «, jezeli w
tym tescie prawdopodobienstwo popekienia btedu II rodzaju jest mozliwie mate,
czyli nie przekracza prawdopodobienstwa popekienia btedu II rodzaju dla innych
testow rozwazanej hipotezy o poziomie istotnosci a.

Dla rozwazanych teraz hipotez prawdopodobienstwo popetnienia btedu II ro-
dzaju wyraza sie wzorem

Py, (X \ B)=1- Py, (B).

Jest ono mozliwie mate wtedy, gdy prawdopodobienstwo Py, (B) jest mozliwie duze
i przekracza analogiczne prawdopodobienstwo dla innych testéw tej samej hipotezy
na poziomie istotnosci a.

Lemat 4.1 (Neumana - Pearsona) Przypusémy, Ze o i B sq takie, jak wyzej,
oraz B’ jest zbiorem odrzucenia pewnego testu hipotezy Hy : 0 = 6y przeciwko
hipotezie Hy : 6 = 01 na poziomie istotnosci . Wtedy Py, (B) > Py, (B').

Dowdd. Najpierw zauwazmy, ze z nieréwnosci L(6y, X) < AgL(6, X) stusznej dla
X € B wynika, ze
1 1
Py (B\ B') = / L6y, X) dX > —/ L6y, X) dX = — Py (B\ B).
B\B' Ao JB\B’ Ao
Analogicznie, z nieréwnosci L(60y, X) > MNogL(61, X) zachodzacej dla X ¢ B
otrzymujemy, ze

Py (B'\ B) < jOP%(B' \ B)).

Laczac te dwie nieréwnosci otrzymujemy, ze
1

Po(B\B)) = Pu(B'\ B) > 5

(Pay(B\ B') = Py, (B"\ B).

Latwo zauwazy¢, ze

Py(B) — Py(B') = Py(B\ B') — Py(B'\ B)



dla wszelkich rozktadéw. Laczac dwa ostatnie fakty dostajemy teze lematu

1 1
Fy,(B) = Py, (B') > (P, (B) = Py (B')) = (o — Py (B') > 0. D
0 0
Jak wida¢, lemat Neumana - Pearsona stwierdza bezposrednio, ze w przypadku
hipotezy Hy : 60 = 6y przeciwko hipotezie H, : § = 0, testy oparte na ilorazie
wiarygodnosci maja dobre wlasnosci: sg jednostajnie najmocniejsze.



