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1 Podstawowe pojęcia statystyczne

1.1 Próba i przestrzeń prób

Próba to coś, co zostało zaobserwowane, na przykład wynik serii doświadczeń.
Często pojęcie próby formalizujemy jako skończony ciąg liczb rzeczystych ~x =
(x1, x2, . . . , xn) ∈ Rn.

Przestrzeń prób X to zbiór wszystkich spodziewanych obserwacji lub wszyst-
kich możliwych wyników serii doświadczeń. Zwykle X jest podzbiorem przestrzeni
Rn.

1.2 Przestrzenie i hipotezy statystyczne

Przestrzeń statystyczna to zbiór prób X i parametryczna rodzina {Pθ : θ ∈ Θ}
rozkładów prawdopodobieństwa na X . Parametry są zwykle liczbami rzeczywisty-
mi, rozkład Pθ może jednak zależeć od jednego lub kilku parametrów. Tak więc
Θ ⊆ Rm. Zbiór Θ może się składać z wszystkich dopuszczalnych z matematycznego
punktu widzenia układów liczb rzeczywistych lub z aktualnie rozważanych.

Hipoteza statystyczna to jakieś stwierdzenie o rozważanych rozkładach. Można
ją sformalizować jako zbiór parametrów (wyznaczających rozkłady, dla których
zachodzi to stwierdzenie). Zwykle rozważa się dwie hipotezy: hipotezę zerową H0 ⊆
Θ oraz hipotezę alternatywną H1 = Θ \H0. Obie hipotezy w sumie definiują zbiór
Θ.

1.3 Przykład

Możemy rozważać serie n-krotnych rzutów monetą. Dwa możliwe zdarzenia: wy-
padnięcie orła i reszki, możemy kodować za pomocą liczb naturalnych, odpowied-
nio 0 i 1. Próbą może być dowolny ciąg zero- jedynkowy. Przestrzeń prób w tym
przypadku to X = {0, 1}n ⊆ Rn.

Prawdopodobieństwo (nieznane) wyrzucenia w jednym rzucie orła (x = 0), a
także reszki (x = 1) można wyrazić jednolitym wzorem θx(1−θ)1−x (reszka wypada
z prawdopodobieństwem θ, orzeł – 1 − θ). Z matematycznego punktu widzenia θ
musi być liczbą rzeczywistą z przedziału (0, 1).

Przy niezależnych rzutach monetą można przyjąć, że prawdopodobieństwo uzy-
skania wyniku (x1, x2, . . . , xn) jest dane wzorem

Pθ(x1, x2, . . . , xn) =
n∏
i=1

θxi(1− θ)1−xi .

∗Niniejszy tekst powstał w oparciu o podręczniki Wnioskowanie statystyczne S.D. Silvey’a
(PWN 1978) oraz Statystyka matematyczna Mirosława Krzyśki (WN UAM 2004)
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Teraz możemy rozważać różne hipotezy dotyczące tego modelu, na przykład
H0 = {1/2} i H1 = (0, 1)\{1/2}. Statystycy zajmując się taką hipotezą powiedzie-
liby i zapisaliby raczej, że zajmują się weryfikacją hipotezy H0 : θ = 1/2 przeciwko
hipotezie H1 : θ 6= 1/2. W tym przypadku należy przyjąć, że Θ = (0, 1). Możnaby
też przyjąć, że Θ = {1/3, 1/4}, H0 = {1/3} i H1 = {1/4}. Wtedy byłaby weryfiko-
wana hipoteza H0 : θ = 1/3 przeciwko hipotezie H1 : θ 6= 1/4, czyli stwierdzenie,
że z dwóch podanych liczb lepiej opisuje rozważane doświadczenie liczba θ = 1/3.

1.4 Test, zbiór odrzucenia, statystyka testowa

Testem hipotezy H0 (przeciwko hipotezie H1) nazywamy dowolną funkcję ϕ : X →
{0, 1}. Przyjmujemy, że ϕ(~x) = 1 oznacza, że odrzucamy hipotezę H0, a jeżeli
ϕ(~x) = 0, to nie widzimy powodu odrzucenia H0. Raczej nie powinniśmy stwier-
dzać, że zachodzi hipoteza H0. Wskazane są słabsze sformułowania, że hipoteza ta
wydaje się prawdziwa, rekomendujemy jej przyjęcie, lub coś podobnego.

Zbiór B = {~x ∈ X : ϕ(~x) = 1} nazywamy zbiorem odrzucenia lub obszarem
krytycznym. Często zbiór B można zdefiniować tak, by spełniał równość postaci
B = {~x ∈ X : t(~x) ∈ A} dla pewnej funkcji t : X → R. Taką funkcję nazywamy
statystyką testową.

1.5 Błędy, moc testu

Mówimy, że popełniamy błąd I rodzaju, jeżeli niesłusznie odrzucamy hipotezę H0.
Błąd II rodzaju polega na niesłusznym nieodrzuceniu hipotezy H0.

Przypuśćmy, że mamy próbę ~x (znalezioną w wyniku przeprowadzenia stosow-
nych badań). Mocą testu nazywamy funkcję β : Θ→ [0, 1] zdefiniowaną wzorem

β(θ) = Pθ(~x ∈ B).

Zauważmy, że jeżeli prawdziwy rozkład ma parametry θ i θ ∈ H0, to

β(θ) = Pθ(~x ∈ B) = prawdopodobieństwo popełnienia błędu I rodzaju,

a gdy θ ∈ H1, to

β(θ) = Pθ(~x ∈ B) = 1− prawdopodobieństwo błędu II rodzaju,

Nietrudno zauważyć, że byłoby najlepiej, gdyby udało się znaleźć test, dla którego
prawdopodobieństwa popełnienia błędów obu rodzajów byłyby równe 0, a więc
taki, że β(θ) = 0 dla θ ∈ H0 oraz β(θ) = 1 w pozostałych przypadkach.

1.6 Poziom istotności i rozmiar testu

Mówimy, że test jest testem o poziomie istotności α, jeżeli

supθ∈H0β(θ) ¬ α.

Test ma rozmiar α, jeżeli
supθ∈H0β(θ) = α.

2 Testy oparte na ilorazie wiarygodności

(Cały czas są zachowywane wprowadzone oznaczenia.)
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2.1 Funkcja i iloraz wiarygodności

Zamiast rozkładu Pθ będziemy teraz posługiwać się jego gęstością Lθ. Przyjmijmy,
że L(θ, ~x) = Lθ(~x). Funkcja L jest funkcją dwóch zmiennych. Ustalając pierwszą
zmienną na θ przekształcamy L w gęstość rozkładu Pθ. Jeżeli ustalimy drugą
zmienną na ~x, to otrzymujemy funkcję wiarygodności ~x.

Ilorazem wiarygodności będziemy nazywać funkcję λ : X → R daną wzorem

λ(~x) =
sup θ∈H0L(θ, ~x)
sup θ∈ΘL(θ, ~x)

.

2.2 Test oparty o iloraz wiarygodności

Testem opartym o iloraz wiarygodności nazywamy test na poziomie istotności α
hipotezy H0 przeciwko hipotezie alternatywnej H1, który ma obszar odrzucenia
zdefiniowany nierównością

λ(~x) ¬ λ0,

gdzie λ0 jest tak dobrane, aby P (λ(~x) ¬ λ0|H0) = α.
Zauważmy od razu, że przeprowadzenie tego testu wymaga założenia o skoń-

czoności sup θ∈Θ L(θ, ~x).
Sensowność takiego testu, jego ewentualne własności to osobne zagadnienie,

zwykle wykraczające poza rozważania matematyczne.

3 Pierwszy przykład

Przypuśćmy, że z jakiś powodów wyliczyliśmy m wartości X = (x1, . . . , xm) zmien-
nych losowych o tym samym rozkładzie N(µ1, σ

2) i n wartości Y = (y1, . . . , Yn)
zmiennych losowych o (tym samym) rozkładzie N(µ2, σ

2). Chcemy skonstruować
test weryfikujący hipotezę H0 : µ1 = µ2 przeciwko hipotezie alternatywnej H1 :
µ1 6= µ2 (parametry µ1 i µ2 nie są znane, testujemy ich równość).

Oczywiście przyjmujemy, że

X = Rm+n, Θ = {(m1,m2, v) ∈ R3 : v > 0},

H0 = {(m,m, v) ∈ R3 : v > 0}, H1 = {(m1,m2, v) ∈ R3 : m1 6= m2 ∧ v > 0},

L(µ1, µ2, σ
2, X, Y ) =

1√
(2πσ2)m+n

e
−

m∑
i=1

(xi − µ1)2 +
n∑
i=1

(yi − µ2)2

2σ2
.

3.1 Obliczanie sup θ∈ΘL(θ, ~x)

Obliczanie tego supremum sprowadza się do znalezienia metodą największej wiary-
godności estymatorów parametrów rozkładu. Możemy więc postępować podobnie.
Najpierw logarytmujemy gęstość, następnie obliczamy pochodne cząstowe logaryt-
mu:

logL(µ1, µ2, σ
2, X, Y ) = −m+ n

2
log(2πσ2)−

m∑
i=1

(xi − µ1)2 +
n∑
i=1

(yi − µ2)2

2σ2 ,
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∂ logL(µ1, µ2, σ
2, X, Y )

∂µ1
=

m∑
i=1

(xi − µ1)

σ2 ,

∂ logL(µ1, µ2, σ
2, X, Y )

∂µ2
=

n∑
i=1

(yi − µ2)

σ2 ,

∂ logL(µ1, µ2, σ
2, X, Y )

∂σ2
= −m+ n

2σ2
+

m∑
i=1

(xi − µ1)2 +
n∑
i=1

(yi − µ2)2

2σ4 .

Licząc ostatnią pochodną różniczkujemy nie po σ, a po zmiennej, za którą
podstawiliśmy σ2. Wobec tego układ równań

∂ logL(µ1, µ2, σ
2, X, Y )

∂µ1
=
∂ logL(µ1, µ2, σ

2, X, Y )
∂µ2

=
∂ logL(µ1, µ2, σ

2, X, Y )
∂σ2

= 0

ma rozwiązanie

µ̂1 =
∑m
i=1 xi
m

= X̄, µ̂2 = Ȳ , σ̂2 =
1

m+ n

(
m∑
i=1

(xi − X̄)2 +
n∑
i=1

(yi − Ȳ )2

)
.

Dalej powinniśmy sprawdzić, że znaleźliśmy globalne maksimum interesującej
nas funkcji. Jeżeli tak rzeczywiście jest, to logarytm interesującego nas supremum
sup θ∈ΘL(θ, ~x) jest dany wzorem

log sup ΘL(µ1, µ2, σ
2, X, Y ) = logL(µ̂1, µ̂2, σ̂

2, X, Y ) = −m+ n

2
log(2πσ̂2)−m+ n

2
.

3.2 Obliczanie sup θ∈H0L(θ, ~x)

Analogicznie obliczamy drugie z dwóch potrzebnych supremów. Po uwzględnie-
niu równości µ1 = µ2 zachodzącej dla parametrów z H0 logarytmujemy gęstość,
następnie obliczamy pochodne cząstowe logarytmu:

logL(µ, σ2, X, Y ) = −m+ n

2
log(2πσ2)−

m∑
i=1

(xi − µ)2 +
n∑
i=1

(yi − µ)2

2σ2 ,

∂ logL(µ, σ2, X, Y )
∂µ

=

m∑
i=1

(xi − µ) +
n∑
i=1

(yi − µ)

σ2 ,

∂ logL(µ, σ2, X, Y )
∂σ2

= −m+ n

2σ2
+

m∑
i=1

(xi − µ)2 +
n∑
i=1

(yi − µ)2

2σ4 .

Tym razem układ równań

∂ logL(µ1, σ
2, X, Y )

∂µ
=
∂ logL(µ, σ2, X, Y )

∂σ2
= 0
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ma rozwiązanie

µ̃ =
∑m
i=1 xi +

∑n
i=1 yi

m+ n
=
mX̄ + nȲ

m+ n
, σ̃2 =

1
m+ n

(
m∑
i=1

(xi − µ̃)2 +
n∑
i=1

(yi − µ̃)2

)
.

Po sprawdzeniu, że mamy globalne maksimum interesującej nas funkcji otrzy-
mujemy, że logarytm interesującego nas supremum sup θ∈ΘL(θ, ~x) jest dany wzo-
rem

log sup ΘL(µ, µ, σ2, X, Y ) = logL(µ̃, µ̃, σ̃2, X, Y ) = −m+ n

2
log(2πσ̃2)− m+ n

2
.

3.3 Statystyka testowa

Test oparty o iloraz wiarygodności rozstrzyga hipotezę analizując wartość ilorazu
wiarygodności

λ(~x) =
sup θ∈H0L(θ, ~x)
sup θ∈ΘL(θ, ~x)

.

W naszym przypadku będziemy analizować wartość funkcji

T1(X, Y ) =
sup (µ,µ,σ2)∈H0L(µ, µ, σ2, X, Y )
sup (µ1,µ2,σ2)∈ΘL(µ1, µ2, σ2, X, Y )

.

Z przeprowadzonych obliczeń wynika, że logarytm tej funkcji jest dany wzorem

log T1(X, Y ) =
m+ n

2
log(2πσ̂2)− m+ n

2
log(2πσ̃2) = log

(
σ̂2

σ̃2

)m+n
2

.

Ostatecznie otrzymujemy, że

T1(X, Y ) =
(
σ̂2

σ̃2

)m+n
2

.

Wyliczona właśnie funkcja T1 pełni w rozważanym teście rolę jednej z możliwych
statystyk testowych: wynik testu otrzymujemy porównując wartość T1(X, Y ) z
pewną liczbą λ0.

3.4 Pewien wzór

Na siódmej liście zadań pojawił się następujący wzór:
m∑
i=1

(xi − µ)2 =
m∑
i=1

(xi − X̄)2 +m(X̄ − µ)2.

Korzystając z tego wzoru można pokazać także wzór następujący:

σ̃2

σ̂2
= 1 +

mn

(m+ n)2
· (X̄ − Ȳ )2

σ̂2
.

Jeżeli teraz przyjmiemy, że

T2(X, Y ) =
√
mn

m+ n
· X̄ − Ȳ

σ̂
,

to będzie prawdziwa zależność

T1(X, Y ) = (1 + T 2
2 (X, Y ))−

m+n
2 .

W tej sytuacji warunki

T1(X, Y ) ¬ (a2 + 1)−
m+n
2 oraz | T2(X, Y ) | ­ a

są równoważne. Dalej będziemy starać się zdefiniować odpowiednie a.
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3.5 Trochę o rozkładach różnych zmiennych

Przypuśćmy, że mamy niezależne zmienne losoweX1, . . . , Xm oraz Y1, . . . , Yn, wszyst-
kie o rozkładzie normalnym N(µ, σ2).

Znamy wiele faktów dotyczących rozkładów zmiennych, w szczególności

1) jeżeli X ∼ N(µ, σ2), to cX ∼ N(cµ, c2σ2),

2) jeżeli X ∼ N(µ1, σ
2
1) i Y ∼ N(µ2, σ

2
2), to X + Y ∼ N(µ1 + µ2, σ

2
1 + σ2

2),

3) jeżeli Xi ∼ N(µ, σ2) dla i = 1, . . . ,m, to X̄ ∼ N(µ, σ
2

m
).

W szczególności, dla rozważanych zmiennych, z powyższych faktów, z zadania
5 z listy 7 i z definicji odpowiednich rozkładów otrzymujemy

1) √
mn

m+ n
· X̄ − Ȳ

σ
∼ N(0, 1),

2) ∑m
i=1(Xi − X̄)2

σ2
∼ χ2(m− 1)

i analogicznie dla zmiennych Yi (patrz zadanie 5),

3) ∑m
i=1(Xi − X̄)2 +

∑n
i=1(Yi − Ȳ )2

σ2
∼ χ2(m+ n− 2).

Z definicji rozkładu Studenta1 otrzymujemy teraz, że zmienna

T3(X, Y ) =
√
m+ n− 2 · T2(X, Y ) =

√
m+ n− 2 ·

√
mn

m+ n
· X̄ − Ȳ

σ̂
=

=

√
mn

m+ n
· X̄ − Ȳ

σ√√√√ (m+ n)σ̂2

(m+ n− 2)σ2

=

√
mn

m+ n
· X̄ − Ȳ

σ√
1

m+ n− 2

∑m
i=1(xi − X̄)2 +

∑n
i=1(yi − Ȳ )2

σ2

ma właśnie taki rozkład t(m+ n− 2) z m+ n− 2 stopniami swobody.
Tak więc dowiedliśmy, że zmienna losowa T3 ma ściśle określony rozkład. Wy-

magało to jednak założenia, wszystkie m+ n analizowane liczby były wartościami
zmiennych losowych o tym samym rozkładzie.

1Rozkład Studenta t(k) z k stopniami swobody można zdefiniować jako rozkład zmiennej
losowej U√

V/k
, gdzie zmienne U i V mają odpowiednio rozkłady N(0, 1) i χ2(k) i są niezależne.
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3.6 Zapewnianie poziomu istotności testu

W rozważanym teście statystykami testowymi mogą być funkcje T1, T2 i T3.
Zauważmy, że jeżeli prawdziwa jest hipoteza H0, to warunki

| T3(X, Y ) | ­ b, | T2(X, Y ) | ­ b√
m+ n− 2

= a oraz T1(X, Y ) ¬ (a2 + 1)−
m+n
2

są równoważne, patrz str. 3.4. Co więcej, łatwo jest kontrolować prawdopodo-
bieństwo zachodzenia pierwszej nierówność. Jeżeli będzie zachodziła z pewnym
prawdopodobieństwem, to z tym samym prawdopodobieństwem będą zachodziły
pozostałe nierówności.

Weźmy teraz liczbę α, 0 < α < 1. Zagwarantujemy, że pierwsza z tych nierów-
ności zachodzi z prawdopodobieństwem α.

Niech F oznacza dystrybuantę rozkładu Studenta z m+n−2 stopniami swobo-
dy. Ponieważ dystrybuanta rozkładu Studenta jest funkcją ciągła, więc dla pewnej
liczby b zachodzi równość F (b) = 1 − α

2 . Ponieważ rozkład Studenta jest syme-
tryczny, więc F (0) = 1

2 oraz b > 0. Oczywiście,

P (T3(X, Y ) ­ b) = 1− F (b) = 1− (1− α

2
) =

α

2
.

Z symetryczności rozkładu otrzymujemy, że

P (| T3(X, Y ) | ­ b) = α.

4 Prostszy przykład, teoria Neumana - Pearsona

Sposób testowania wykorzystany w poprzednim przykładzie zastosujemy teraz do
dowolnych rozkładów w sytuacji, gdy rozważamy tylko dwa parametry θ0 oraz θ1.
Będziemy testować hipotezę H0 : θ = θ0 przeciwko hipotezie H1 : θ = θ1. W tym
przypadku iloraz wiarygodności ma postać

λ(X) =
L(θ0, X)

max{L(θ0, X), L(θ1, X)}
.

Poza tym λ(X) ∈ [0, 1]. Wobec tego jest sens rozważać tylko zbiory odrzucenia
postaci λ(X) < λ0 dla λ0 < 1. Wtedy jednak warunek λ(X) < λ0 można równo-
ważnie wyrazić w postaci

L(θ0, X) < λ0L(θ0, X) ∨ L(θ0, X) < λ0L(θ1, X) oraz L(θ0, X) < λ0L(θ1, X).

Powinniśmy zajmować się więc zbiorami odrzucenia postaci

B = {X ∈ X : L(θ0, X) < λ0L(θ1, X)}.

4.1 Intuicyjne uzasadnienie metody

W przypadku dyskretnym, a z pewnymi zastrzeżeniami także w ciągłym, gęstość
L(θ,X) to prawdopodobieństwo uzyskania wyniku X podczas losowych doświad-
czeń podlegających rozkładowi z parametrem θ. Liczba ta jest na ogół mała,
zwłaszcza jeżeli jest możliwe bardzo wiele różnych wyników. Interesuje nas jed-
nak, czy liczba ta jest relatywnie mała w porównaniu z prawdopodobieństwami
wyliczonymi dla innych parametrów. Prawdopodobieństwo wyliczone zgodnie z
właściwym rozkładem powinno dać wynik typowy dla rozważanej sytuacji. Jeżeli
wydaje się być bardzo małe i sprawia wrażenie zaniżonego, to może być wyliczone
zgodnie z rozkładem z niepoprawnym parametrem.
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4.2 Test i jego poziom istotności

Po pierwsze zauważmy, że w tym bardzo prostym przykładzie poziom istotności
testu powinien szacować tylko dla jednego rozkładu, z parametrem θ0, prawdopo-
dobieństwo odrzucenia hipotezy.

Tym razem będzie nas interesować test określonego rozmiaru α. Taki test po-
winien istnieć dla rozkładów ciągłych: dla danego α powinno dać się dobrać λ0

takie, że
Pθ0(λ(X) < λ0) = α.

Dla rozkładów dyskretnych może być jednak różnie. Wtedy, ustępując nieco z wy-
magań dotycząch α, może uda nam się zapewnić prawdziwość powyższej równości.

Jeżeli tak będzie, to test ze zbiorem odrzucenia B, polegający na sprawdzeniu,
czy λ(X) < λ0, będzie testem rozmiaru α. Dalej będziemy zajmować się tym
testem.

4.3 Lemat Neumana - Pearsona

Mówimy, że test jest jednostajnie najmocniejszy na poziomie istotności α, jeżeli w
tym teście prawdopodobieństwo popełnienia błędu II rodzaju jest możliwie małe,
czyli nie przekracza prawdopodobieństwa popełnienia błędu II rodzaju dla innych
testów rozważanej hipotezy o poziomie istotności α.

Dla rozważanych teraz hipotez prawdopodobieństwo popełnienia błędu II ro-
dzaju wyraża się wzorem

Pθ1(X \B) = 1− Pθ1(B).

Jest ono możliwie małe wtedy, gdy prawdopodobieństwo Pθ1(B) jest możliwie duże
i przekracza analogiczne prawdopodobieństwo dla innych testów tej samej hipotezy
na poziomie istotności α.

Lemat 4.1 (Neumana - Pearsona) Przypuśćmy, że α i B są takie, jak wyżej,
oraz B′ jest zbiorem odrzucenia pewnego testu hipotezy H0 : θ = θ0 przeciwko
hipotezie H1 : θ = θ1 na poziomie istotności α. Wtedy Pθ1(B) ­ Pθ1(B

′).

Dowód. Najpierw zauważmy, że z nierówności L(θ0, X) < λ0L(θ1, X) słusznej dla
X ∈ B wynika, że

Pθ1(B \B′) =
∫
B\B′

L(θ1, X) dX ­ 1
λ0

∫
B\B′

L(θ0, X) dX =
1
λ0
Pθ0(B \B′).

Analogicznie, z nierówności L(θ0, X) ­ λ0L(θ1, X) zachodzącej dla X 6∈ B
otrzymujemy, że

Pθ1(B
′ \B) ¬ 1

λ0
Pθ0(B

′ \B)).

Łącząc te dwie nierówności otrzymujemy, że

Pθ1(B \B′)− Pθ1(B′ \B) ­ 1
λ0

(Pθ0(B \B′)− Pθ0(B′ \B).

Łatwo zauważyć, że

Pθ(B)− Pθ(B′) = Pθ(B \B′)− Pθ(B′ \B)
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dla wszelkich rozkładów. Łącząc dwa ostatnie fakty dostajemy tezę lematu

Pθ1(B)− Pθ1(B′) ­
1
λ0

(Pθ0(B)− Pθ0(B′)) =
1
λ0

(α− Pθ0(B′)) ­ 0. 2

Jak widać, lemat Neumana - Pearsona stwierdza bezpośrednio, że w przypadku
hipotezy H0 : θ = θ0 przeciwko hipotezie H1 : θ = θ1 testy oparte na ilorazie
wiarygodności mają dobre własności: są jednostajnie najmocniejsze.
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