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1 System typów prostych wg Curry’ego

1.1 Podstawowe pojęcia i notacja

Zapis M : σ będziemy uważać za stwierdzenie, że „term M jest typu σ”. W takim
kontekscie M zwykle będzie termem rachunku λ, czasem nieco zmodyfikowanym,
a σ – typem. Czasem zapis ten będzie rozumieć jako parę uporządkowaną złożoną
z termu M i typu σ.

Typy będą napisami zbudowanymi ze zmiennych typowych, zbiór zmiennych
typowych będziemy oznaczać symbolem V, oraz z symbolu →. Zbiór typów T
będzie najmniejszym zbiorem zawierającym V i spełniającym warunek

jeżeli σ, τ ∈ T, to (σ → τ) ∈ T.
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Zapisując typy będziemy opuszczać niepotrzebne nawiasy. Przyjmujemy, że napis
σ1 → σ2 → σ3 oznacza typ (σ1 → (σ2 → σ3)).

Kontekstem nazywamy skończony i jednoznaczny zbiór par postaci x : σ, gdzie
x jest zmienną rachunku λ, a σ – typem. Kontekst Γ musi więc spełniać warunek

jeżeli x : σ1, x : σ2 ∈ Γ, to σ1 = σ2.

Konteksty są więc funkcjami, będziemy też w odniesieniu do kontekstów stosować
notacje związane z funkcjami. Tak więc Γ(x) = σ oznacza, że x : σ ∈ Γ, dom(Γ) to
dziedzina Γ, czyli zbiór zmiennych występujących w Γ, Γ[dom(Γ)] to zbiór wartości
przyjmowanych przez Γ, albo typów występujących w Γ. Zapis Γ, x : σ oznacza
Γ ∪ {x : σ}.

1.2 Relacja typowania à la Curry

Zdefiniujemy teraz relację Γ ` M : σ, gdzie Γ jest kontekstem, M – termem
rachunku λ, a σ – typem. Jest to najmniejsza relacja mająca następujące własności:

Γ, x : σ ` x : σ
,

Γ, x : σ `M : τ
Γ ` λxM : σ → τ

,
Γ `M : σ → τ, Γ ` N : σ

Γ `MN : τ
.

W powyższej definicji termy powinny być rozumiane jako klasy abstrakcji re-
lacji α-konwersji.

2 Semantyka mnogościowa typów prostych

2.1 Semantyka pojęcia typu

Wartościowaniem zmiennych typowych nazywamy dowolną funkcję ξ przyporząd-
kowującą zmiennym niepuste zbiory. Dalej będziemy rozważać ustalone wartościo-
wanie zmiennych typowych i parametr ξ będzie pomijany. Za to zbiór przyporząd-
kowany zmiennej α będziemy oznaczać symbolem [|α|]. Mamy więc [|α|] = ξ(α).

Funkcję [| · |] określoną dla zmiennych typowych rozszerzamy teraz do funkcji
określonej dla wszystkich typów prostych przyjmując, że

[|σ → τ |] = [|τ |][|σ|].

Tak więc znaczeniem typu σ → τ jest zbiór wszystkich funkcji całkowitych okre-
ślonych na zbiorze [|σ|] i przyjmujących wartości zbiorze [|τ |].

Można myśleć, że symbol [|τ |] oznacza zbiór wszystkich rzeczy typu τ .

2.2 Semantyka pojęcia termu

2.2.1 Wartościowanie zmiennych

Wartościowaniem zmiennych (występujących w λ-termach) nazywamy dowolną
funkcję określoną na zbiorze zmiennych. Często przyjmuje się, że wartościowanie
jest określone dla niektórych zmiennych, na przykład dla zmiennych występujących
w rozważanym termie. Może być też określone dla wszystkich zmiennych.

2.2.2 Zgodność z deklaracjami i kontekstami

Wartościowanie h jest zgodne z deklaracją x : σ, jeżeli h(x) ∈ [|σ|].
Wartościowanie h jest zgodne z kontekstem Γ, jeżeli jest zgodne z wszystkimi

deklaracjami tego kontekstu. Wtedy możemy też powiedzieć, że wartościowanie
spełnia kontekst. Fakt ten zapiszemy symbolicznie jako h |= Γ.



2.2.3 Wartość termu

Zdefiniujemy teraz wartość termu, albo jego znaczenie, czyli to, co term ozna-
cza. Wartość termu zależy od wartościowania zmiennych, określającego wartości
poszczególnych zmiennych. Wartość termu M przy wartościowaniu h będziemy
oznaczać symbolem 〈M〉h.

Potrzebne nam będzie symbol h(x → a) oznaczający funkcję, która argumen-
towi x przyporządkowuje a, a innym argumentom – te same wartości, co h (od-
powiednio zmieniamy wartość h(x) lub powiększamy dziedzinę h o x przyjmując
jednocześnie, że h(x) = a).

Wartość termu chcielibyśmy zdefiniować indukcyjnie, przez indukcję ze względu
na budowę termu, przyjmując, że

1) 〈x〉h = h(x), czyli wartością zmiennej x przy wartościowaniu h jest h(x),

2) 〈MN〉h = 〈M〉h(〈N〉h), a więc wartość aplikacji MN jest wartością funkcji
〈M〉h dla argumentu 〈N〉h,

3) 〈λx.M〉h(a) = 〈M〉h[x:=a], to znaczy, 〈λx.M〉h jest funkcją przyjmującą dla
argumentu a wartość 〈M〉h(x→a).

Nietrudno dostrzeć, że ta definicja jest mało precyzyjna i budzi wiele wąt-
pliwości. Oddaje jednak dość dobrze to, co chcemy zrobić. Dalej można znaleźć
formalnie poprawną definicję wartości termu.

2.2.4 Dokładniejsza definicja wartości termu

Zdefiniujemy teraz relację R o pięciu współrzędnych

(h, Γ, M, σ, a)

takich, że

1) Γ jest kontekstem,

2) h jest wartościowaniem zmiennych określonym przynajmniej dla zmiennych
występujących w Γ (czyli dom(Γ) ⊆ dom(h)), spełniającym Γ,

3) M jest λ-termem,

4) σ jest typem,

5) oraz a ∈ [|σ|]

Ostatni element powyższej piątki w końcu okaże się wartością termu M przy war-
tościowaniu h.

Niech R będzie najmniejszą relacją spełniającą następujące warunki:

1) jeżeli x ∈ dom(Γ) oraz h |= Γ, to

(h,Γ, x,Γ(x), h(x)) ∈ R,

2) jeżeli (h,Γ,M, σ → τ, f) ∈ R oraz (h,Γ, N, σ, a) ∈ R, to

(h,Γ,MN, τ, f(a)) ∈ R,

3) jeżeli f jest funkcją określoną na [|σ|] taką, że dla wszystkich a ∈ [|σ|] za-
chodzi (h(x→ a), (Γ, x : σ),M, τ, f(a)) ∈ R, to

(h,Γ, λxM, σ → τ, f) ∈ R.



Lemat 2.1 Jeżeli Γ ` M : σ, to dla każdego wartościowania h określonego na
dom(Γ) i spełniającego Γ istnieje dokładnie jedno a ∈ [|σ|] takie, że do relacji R
należy piątka (h,Γ,M, σ, a).

Dowód. Standardowy dowód indukcyjny przez indukcję wynikającą z definicji
relacji typowania. 2

Powyższy lemat pozwala zdefiniować wartość termu dla wszystkich termów
mających typ i wartościowań. Dokładniej, mając dane wartościowanie zmiennych
h, kontekst Γ zgodny z h i term M taki, że Γ `M : σ, możemy zdefiniować wartość
〈M〉h termu M przy wartościowaniu h przyjmując, że

〈M〉h = f ⇔ (h,Γ,M, σ, f) ∈ R.

Poprawność tej definicji jest konsekwencją przytoczonego lematu.

2.3 Semantyka relacji typowania

W tej chwili podstawowa trudność polega na rozróżnieniu dwóch sytuacji, pierw-
szej: gdy wykazaliśmy, że w kontekście Γ term M ma typ σ (gdy Γ ` M : σ), i
drugiej, że rzeczywiście w kontekście Γ term M jest typu σ. Ta druga sytuacja wy-
maga doprecyzowania, ustalenia symboliki, a nawet zwrotów języka naturalnego
używanych do jej przedstawienia. W tej sytuacji będziemy pisać, że Γ |= M : σ
i będzie to znaczyć, że dla każdego wartościowania zmiennych h zgodnego z Γ,
wartość termu M przy wartościowaniu h jest rzeczywiście typu σ, a dokładniej
należy do [|σ|] (czyli 〈M〉h ∈ [|σ|]).

Zapisując przytoczoną definicję w sposób sformalizowany otrzymujemy

Γ |= M : σ ⇔ ∀h (h |= γ ⇒ 〈M〉h ∈ [|σ|]) .

2.3.1 Twierdzenie o poprawności

Mając semantykę fajnie byłoby dowieść twierdzenie o pełności, a przynajmniej
o poprawności. Z twierdzenie o pełności może być problem. Za to twierdzenie o
poprawności jest oczywiste. Dla semantyki mnogościowej mamy bowiem

Twierdzenie 2.2 (o poprawności) Jeżeli Γ `M : σ, to Γ |= M : σ.

Dowód. Jest dość oczywista konsekwencja lematu 2.1, w właściwie pewna jego
wersja. 2

2.3.2 Jakiś komentarz i przykład

Chyba niewiele z tego wszystkiego wynika. Główny wniosek jest może taki, że
znana z λ-rachunku operacja aplikacji w pewnym zakresie, po ograniczeniu się do
termów mających typ prosty, rzeczywiście odpowiada operacji liczenia wartości
funkcji. Tak więc funkcyjne intuicje związane z rachunkiem λ są w jakiejś mierze
uzasadnione.

Z drugiej strony, pewien niepokój może budzić fakt (zresztą dość trudny do
zinterpretowania), że znaczeniem termu w przedstawionej semantyce jest funkcja
całkowita. Może sugerować rozbieżność między rachunkiem lambda z typami i
obliczalnością.

W końcu, udało nam się w przypadku λ-rachunku zastosować pewną metodę
znaną z logiki matematycznej, pozwalającą na analizowanie tego, co można dowieść
w rachunku formalnym.



Przyjrzyjmy się jeszcze pewnej konkretnej semantyce mnogościowej. Wybie-
rając wartościowanie ξ zmiennych typowych i definiując znaczenie najprostszych
typów możemy przyjąć, że ξ(α) = {α}. Wtedy każdy typ jest reprezentowany
przez jeden przedmiot, wszystkie zbiory [|σ|] są jednoelementowe, jedyny element
zbioru [|σ|] można nawet utożsamiać z typem σ. Ewentualnie można przyjąć, że
napis α→ β oznacza funkcję określoną tylko dla elementu α i przyjmującą dla je-
dynego możliwego argumentu wartość β. Wtedy możnaby napisać, że [|σ|] = {σ}.
Dla takiej semantyki i termu M takiego, że Γ ` M : σ i dla wartościowania
h(x) = Γ(x), zgodnie z twierdzeniem o poprawności, mamy 〈M〉h = σ. Krótko
mówiąc, wartością termu może być jego typ.

3 Inna semantyka

3.1 Wartości termów

Tym razem wartościowania będą funkcjami przyporządkowującymi zmiennym ja-
kieś λ-termy. Możemy zakładać, że wartościowanie na ogół zmiennej x przyporząd-
kowuje x i jest skończenie wiele wyjątków od tej reguły.

Za wartość 〈M〉h termu M przy wartościowaniu h będziemy teraz uważać wynik
jednoczesnego podstawienia w termie M za jego zmienne wolne termów przypisa-
nym im przez wartościowanie h. Tak więc w zasadzie mamy

〈M〉h = M [x1 := h(x1), x2 := h(x2), . . . , xn := h(xn)],

przy czym {x1, x2, . . . , xn} = FV (M). Musimy jednak pamiętać, że nie każde pod-
stawianie może być wykonane. W razie potrzeby zapewniamy sobie wykonalność
podstawiania zastępując term M odpowiednim termem α-konwertowalnym do M .

Jak widać, zgodnie z przyjętą definicją, wartością termu jest inny term.

3.2 Semantyka pojęcia typu

Oczywiście, najpierw powinniśmy zdefiniować wartościowanie zmiennych typowych
ξ i zbiory [|α|] = ξ(α) dla wszystkich zmiennych typowych α. Zostawimy sobie to
jednak na później. Ustalmy jednak, że wartości ξ(α) będą zbiorami termów.

Zdefiniujmy teraz operację ⇒ odpowiadającą symbolowi →. Dla danych zbio-
rów termów A i B przyjmujemy, że

A⇒ B = {F ∈ Λ : ∀M ∈ A FM ∈ B}.

Operacja ta umożliwia rozszerzenie wartościowania ξ do funkcji określonej na
wszystkich typach. Wystarczy przyjąć, że

[|α→ β|] = [|α|]⇒ [|β|].

Na razie powinno wystarczyć nam tyle szczegółów dotyczących definicji zbiorów
[|σ|]. Znając te zbiory możemy wyjaśnić znaczenie relacji typowania tak, jak jest
to zrobione w rozdziale 2.3.

3.3 Wstęp do twierdzenia o poprawności

Lemat 3.1 Zachodzi następujący fakt: Γ, x : σ |= x : σ.

Dowód. Lemat jest właściwie oczywisty. jeżeli weźmiemy h spełniające kontekst
Γ, x : σ, to dla niego w szczególności będzie zachodzić h(x) ∈ [|σ|]. Stąd wynika,
że 〈x〉h = x[x := h(x)] = h(x) ∈ [|σ|]. 2



Lemat 3.2 Jeżeli Γ |= M : σ → τ oraz Γ |= N : σ, to Γ |= MN : τ .

Dowód. Mamy dowieść, że dla każdego wartościowania h spełniającego Γ zachodzi
warunek 〈MN〉h ∈ [|τ |].

Weźmy więc wartościowanie h spełniające Γ. Z założeń wynika, że 〈M〉h ∈
[|σ → τ |] = [|σ|]⇒ [|τ |] oraz 〈N〉h ∈ [|σ|]. Definicja operacji⇒ pozwala stwierdzić,
że 〈MN〉h = 〈M〉h〈N〉h ∈ [|τ |]. 2

Lemat 3.3 Przypuśćmy, że rozważana semantyka spełnia następujący warunek
dla wszystkich typów σ i τ , a także dla wszystkich termów P i A:

jeżeli A ∈ [|σ|] oraz P [y := A] ∈ [|τ |], to (λy P )A ∈ [|τ |]. (1)

Wtedy warunek Γ, x : σ |= M : τ pociąga za sobą, że Γ |= λxM : σ → τ .

Dowód. Aby dowieść, że Γ |= λxM : σ → τ bierzemy dowolne wartościowanie h
spełniające Γ.

Naszym celem jest wykazanie, że 〈λxM〉h ∈ [|σ → τ |] = [|σ|] ⇒ [|τ |]. Weźmy
więc dowolny term A ∈ [|σ|] i spróbujmy dowieść, że 〈λxM〉hA ∈ [|τ |].

Jeżeli mamy wartościowanie h i term A, to możemy zadbać o podstawialność
potrzebnych wartości h w termie λxM , a także termu A w M , odpowiednio α-
konwertując term M . W szczególności, powinno być możliwe wyliczenie wartości
〈λxM〉h przez wykonanie odpowiedniego podstawiania.

Najpierw nieco zmienimy h i będziemy rozważać wartościowanie h(x → A)
(patrz str. 3). Nietrudno zauważyć, że h(x→ A) spełnia kontekst Γ, x : σ. Dzięki
temu, z założenia, otrzymujemy, że 〈M〉h(x→A) ∈ [|τ |].

Zauważmy, że
〈M〉h(x→A) = 〈M〉h[x := A].

Wynika to stąd, że zmienna x nie jest wolna w termach h(xi) dla xi ∈ FV (λxM),
w przeciwnym razie te termy nie byłyby podstawialne w λxM . W tej sytuacji
liczenie wartości 〈M〉h nie powoduje pojawienia się nowych wystąpień x, poza
istniejącymi cały czas w M .

Wobec tego, 〈M〉h[x := A] ∈ [|τ |]. Teraz założona własność semantyki impli-
kuje, że także (λx 〈M〉h)A ∈ [|τ |]. Aby w tej sytuacji zakończyć dowód wystarczy
zauważyć, że λx 〈M〉h = 〈λxM〉h. Wynika to ze znanej własności podstawiania.
2

Od razu zauważmy, że lemat 3.3 nie jest precyzyjnie sformułowany, a jego do-
wód zawiera tylko schemat pewnego rozumowania, które z konkretnej sytuacji mo-
że znaleźć zastosowanie. Łatwo zgadnąć, że trzy powyższe lematy powinny umożli-
wić uzasadnienie twierdzenia o poprawności semantyki, zawierają fragmenty przy-
szłego indukcyjnego dowodu tego twierdzenia. Najpierw jednak musimy uzupełnić
wszystkie definicje i rozumowania.

Możnaby przyjąć, że ξ(α) jest zbiorem wszystkich możliwych termów. W ten
sposób otrzymalibyśmy semantykę, z której nie wynikałoby nic ciekawego.

4 Silna normalizowalność

Jedno z zastosowań semantyki przedstawionej w poprzednim rozdziale dotyczy sil-
nej normalizowalności. Możemy przyjąć, że wartościowanie ξ zmiennych typowych
dowolnej zmiennej α przypisuje zbiór ξ(α) wszystkich termów silnie normalizowal-
nych. Pozwala to zdefiniować semantykę i chcielibyśmy dla niej dowieść twierdzenie
o poprawności. Pozwoliłoby to również dowieść twierdzenie o silnej normalizowal-
ności.



4.1 Pojęcie silnej normalizowalności

Term M jest silnie normalizowalny, jeżeli nie można go redukować w nieskończo-
ność, a więc jeżeli nie istnieje taki nieskończony ciąg termów, który zaczyna się
termem M i każdy kolejny wyraz tego ciągu powstaje w wyniku β-redukcji wyrazu
poprzedniego.

Zbiór wszystkich termów silnie normalizowalnych będziemy oznaczać symbo-
lem SN .

Mamy dość oczywisty sposób badania, czy term jest silnie normalizowalny,
wyrażony w następującym lemacie:

Lemat 4.1 Przypuśćmy, że mamy term M , w którym jest n redeksów. Dla i =
1, . . . , n niech Mi oznacza term otrzymamy w wyniku redukcji i-tego redeksu w
termie M . Wtedy term M jest silnie normalizowalny wtedy i tylko wtedy, gdy dla
i = 1, . . . , n wszystkie termy Mi są silnie normalizowalne. 2

4.2 Definicja interesującej nas semantyki

Semantyka ta właściwie już została zdefiniowana.
Rozważamy wartościowanie zmiennych typowych ξ(α) = SN i w sposób opisany

w rozdziale 3.2 wartościowanie to rozszerzamy do funkcji [| · |] spełniającej warunek

[|σ → τ |] = [|σ|]⇒ [|τ |].

Symbol ⇒ oznacza operację zdefiniowaną wzorem

A⇒ B = {F ∈ Λ : ∀M ∈ A FM ∈ B},

określoną dla zbiorów A i B złożonych z termów.
Oczywiście, zbiory [|σ|] są zbiorami termów, być może można myśleć, że są

zbiorami tych termów, które mogą być typu ogólniejszego niż σ. Przyjrzyjmy się
kilku przykładom.

Termy x (x to zmienna), xx, I = λxx, ω = λxxx są silnie normalizowalne, a
więc należą do SN , czyli do [|α|] dla dowolnej zmiennej typowej α. To samo dotyczy
termów xxωω oraz ωxωω. Termy x, xx oraz I należą także do zbioru SN ⇒ SN ,
czyli do zbiorów postaci [|α → α|], ale term ω do tego zbioru nie należy. Z kolei
term I nie należy do zbioru SN ⇒ (SN ⇒ SN) = [|α→ α→ α|]. Zwróćmy uwagę,
że niektóre z tych termów mają typ, inne – nie mają.

Wartość termu została zdefiniowana w rozdziale 3.1. Zgodnie z tamtą definicją
wartościowania zmiennym przypisują termy, a wartość termu M przy wartościo-
waniu h jest dana wzorem

〈M〉h = M [x1 := h(x1), x2 := h(x2), . . . , xn := h(xn)],

przy czym {x1, x2, . . . , xn} = FV (M).
Odpowiedź na pytanie, czy jest to sensowna semantyka, cały czas wymaga

jeszcze sprawdzenia, czy przy przyjętych definicjach daje się dowieść twierdzenie
o poprawności. Na razie spróbujemy wyobrazić sobie dowód twierdzenia o silnej
normalizowalności.

4.3 Twierdzenie o silnej normalizowalności

Twierdzenia o silnej normalizowalności wymaga dwóch faktów o naszej semantyce,
a mianowicie twierdzenia o poprawności i następnego lematu.

Twierdzenie 4.2 (o poprawności) Jeżeli Γ `M : σ, to Γ |= M : σ.



Lemat 4.3 Dla każdego typu σ, zbiór [|σ|] jest zawarty w SN i należą do niego
wszystkie zmienne, czyli V ⊆ [|σ|] ⊆ SN .

Dowody tych faktów zostaną przedstawione później, teraz wyprowadzimy z
nich następujące

Twierdzenie 4.4 (o silnej normalizowalności) Jeżeli term ma typ w pewnym
kontekście, to jest on silnie normalizowalny.

Dowód. Weźmy term M i załóżmy, że udało się wykazać, że w kontekście Γ ma
typ σ (czyli Γ ` M : σ). Z twierdzenia o poprawności 4.2 wynika, że fakt ten jest
prawdziwy w rozważanej semantyce, a więc Γ |= M : σ.

Niech i oznacza teraz indentycznościowe wartościowanie zmiennych (i(x) = x
(przynajmniej) dla x ∈ FV (M)). Lemat 4.3 implikuje, że wartościowanie i spełnia
wszystkie deklaracje, także z kontekstu Γ (a więc i |= Γ). Wobec tego,

M = 〈M〉i ∈ [|σ|].

Korzystając raz jeszcze z lematu 4.3 otrzymujemy, że M jest termem silnie nor-
malizowalnym, gdyż M ∈ [|σ|] ⊆ SN . 2

4.4 Jak dowieść założenie z lematu 3.3

Szkic dowodu twierdzenia o poprawności jest już nam znany z rozdziału 3.3. Aby
ten szkic przekształcić w poprawny dowód w pierwszym rzędzie należy jakoś do-
wieść własność (1), czyli jedno z założeń lematu 3.3. Podejmiemy teraz próbę
przeprowadzenia najzwyklejszego dowodu tej własności. Można się spodziewać, że
w dowodzie zostanie wykorzystana indukcja ze względu na budowę typu τ i jakoś
sobie poradzimy z pierwszym krokiem dowodu.

Aby przeprowadzić dowód drugiego kroku dowodu indukcyjnego, powinniśmy
wziąć dwa termy A i P , założyć, że P [x := A] ∈ [|τ1|]⇒ [|τ2|] i spróbować wykazać,
że (λxP )A ∈ [|τ1|]⇒ [|τ2|]. W tym celu zapewne skorzystamy z definicji operacji
⇒, weźmiemy więc term B i będziemy dowodzić, że

jeżeli P [y := A]B ∈ [|τ2|], to (λy P )AB ∈ [|τ2|].

Ta własność przypomina założenie indukcyjne, ale jednak ma bardziej złożoną
postać. Łatwo też zauważyć, że gdyby τ2 był typem funkcyjnym, to próba dowodu
powyższej własności wymagałaby odwołania się do implikacji

jeżeli P [y := A]BC ∈ [|τ3|], to (λy P )ABC ∈ [|τ3|]

dla pewnego C. Wszystko to wskazuje na konieczność skomplikowania własności
potrzebnej nam w dowodzie lematu 3.3.

W dowodzie twierdzenia o silnej normalizowalności korzystaliśmy też z faktu,
że zmienne należą do zbiorów reprezentujących typy (patrz lemat 4.3). Nietrudno
zauważyć, że aby wykazać, że x ∈ [|τ1|] ⇒ [|τ2|], powinniśmy wiedzieć, że xA ∈
[|τ2|], a to z kolei wymaga własności xAB ∈ [|τ3|] itd.

4.5 Zbiory nasycone

Rozważania z poprzedniego rozdziału uzasadniają wprowadzenie zbiorów nasyco-
nych.

Zbiór termów X ⊆ SN nazywamy nasyconym, jeżeli



1) do X należą termy postaci xM1 . . . Mn dla dowolnej zmiennej x, dowolnego
n ­ 0 i dowolnych termów M1, . . . ,Mn ∈ SN , w szczególności X zawiera
wszystkie zmienne λ-rachunku,

2) z tego, że M0[x := M1]M2 . . . Mn ∈ X wynika, 0(λxM0)M1M2 . . .Mn ∈ X,
dla dowolnego n ­ 1 i dowolnych termów M1, . . . ,Mn ∈ SN .

Zbiory nasycone mają dwie ważne własności:

Lemat 4.5 Zbiór SN termów silnie normalizowalnych jest nasycony.

Dowód.
2

Lemat 4.6 Jeżeli A i B są zbiorami nasyconymi, to A ⇒ B też jest zbiorem
nasyconym.

Dowód.
2

4.6 Wnioski o nasyconości i twierdzenie o poprawności

Wniosek 4.7 Dla każdego typu σ zbiór [|σ|] jest nasycony.

Dowód. Jest to oczywisty wniosek z dwóch powyższych lematów. 2

Wniosek 4.8 (właściwie lemat 4.3) Dla każdego typu σ, zbiór [|σ|] jest zawar-
ty w SN i należą do niego wszystkie zmienne, czyli V ⊆ [|σ|] ⊆ SN .

Dowód. Są to dwie oczywiste własności zbiorów nasyconych. 2

Wniosek 4.9 (krótka wersja lematu 3.3) Warunek Γ, x : σ |= M : τ pociąga
za sobą, że Γ |= λxM : σ → τ .

Dowód. Wystarczy, że uzupełnimy dowód lematu 3.3 o wyprowadzenie własności
(1) stwierdzającej, że dla wszystkich typów σ i τ , a także dla wszystkich termów
P i A

jeżeli A ∈ [|σ|] oraz P [y := A] ∈ [|τ |], to (λy P )A ∈ [|τ |].

Weźmy więc typy σ i τ , termy P oraz A i załóżmy, że A ∈ [|σ|]. Na mocy wniosku
4.8 term A jest silnie normalizowalny. W tej sytuacji implikacja

jeżeli P [y := A] ∈ [|τ |], to (λy P )A ∈ [|τ |].

jest częścią definicji zbioru nasyconego i wynika z wniosku 4.7. 2

Twierdzenie 4.10 (o poprawności 4.2) Jeżeli Γ `M : σ, to Γ |= M : σ.

Dowód. Twierdzenie to dowodzimy przez indukcję ze względu na budowę ter-
mu M . Kolejne kroki dowodu wynikają z lematów 3.1 i 3.2 oraz z wniosku 4.9. 2

I tak uzupełniliśmy wszystkie szczegóły w dowodzie twierdzenia o silnej nor-
malizowalności.


