Logika intuicjonistyczna

Antoni Koscielski

1 Semantyka Kripke’go

1.1 Wykorzystywany jezyk

Bedziemy zajmowacé sie rachunkiem zdan, w ktérym mamy prawo postugiwac sie
trzema spojnikami: koniunkcjg A, alternatywa V i implikacja — oraz stata L (ro-
zumiang jako ,sprzeczno$¢”, czyli takie stwierdzenie, ktorego nikt nie uzna za
prawdziwe).

Rzecz jasna, mamy prawo, oprocz wymienionych symboli, postugiwania sie
zmiennymi zdaniowymi.

Formutly rachunku zdan definiujemy w zwykty sposéb, uzywajac w razie po-
trzeby nawiasow.

Dodatkowo, bedziemy pisa¢ —p oraz p < ¢. Napisy takiej postaci bedziemy
uwazaé za skroty nastepujacych formut, odpowiednio negacji i rownowazno$ci:

p=p—1L oraz p—=qg = (p—q A(g—p).

1.2 Semantyka Kripke’go

,Prawdziwos¢” formul rozwazanego jezyka bedziemy ustala¢ odwotujac sie do in-
tuicji zwiazanych z praca ekspertow. Eksperci beda pochodzi¢ z wszystkich krajow,
kazdy z nich bedzie dysponowa¢ pewna wiedza. Dalej V' oznacza zbiér zmiennych
zdaniowych.

Przyjmijmy, ze

1) Swiat jest zbiorem krajéw. Formula ¢ jest tautologia (intuicjonistyczna)
(symbolicznie: || ¢), jezeli w kazdym kraju eksperci uznali ja za spelniona.

2) Niech C' oznacza kraj. Kazdy kraj utozsamiamy ze zbiorem ekspertéw tego
kraju, czyli C rozumiemy jako zbiér ekspertéw danego kraju. Formuta ¢
jest uwazana w kraju C' za spelniona (symbolicznie: C' |- ¢), jezeli wszyscy
eksperci tego kraju uznali jg za spetniong. Tak wiec

Fe & VOC |-

3) Kazdy ekspert jest ekspertem okreslonego kraju (nie funkcjonuje poza swoim
krajem) i dysponuje pewna wiedza, ktéra utozsamiamy z zbiorem zmiennych
zdaniowych (pewnych, tych, ktére ekspert uwaza za spetnione lub prawdzi-
we). Formalnie, kraj C' mozemy uwazaé za podzbiér P(P(V)), wtedy ekspert
c € C nalezy do P(V), czyli jest podzbiorem V. Mamy wiec

Clly & Vee Ccll .



4) Ekspert ¢ z kraju C' ustala swoje opinie, czyli stwierdzenia ,uwazam formute
¢ za spelniong” (symbolicznie: ¢ |- ¢), zgodnie z nastepujacymi zasadami:

(a) clFp < p € cw przypadku formuty bedacej zmienna zdaniowa p,
(b) cl-enY & cl-¢ oraz cl-v,
)
)

(©) cl-eVi < cl-¢ Tub cl-v,
(d) ¢ - L (statej L zaden ekspert nie uwaza za spetniona).

5) W przypadku implikacji ekspert swoja opinig uzgadnia z innymi ekspertami
kraju, z ktorego pochodzi. Jezeli bada spetnialnosé¢ implikacji ¢ — 1, to
prosi wszystkich ekspertow z jego kraju, takich ktoérzy dysponujg wiedza
obszerniejsza od niego, i twierdza, ze formuta ¢ jest spetniona o odpowiedz
na pytanie, czy formuta 1 jest spetnione. Prosbe te kieruje takze do siebie,
chyba ze uwaza ¢ za niespetnione. Jezeli uzyska zgodna odpowiedz, ze tak,
to twierdzi, ze implikacja ¢ — 1 jest spelniona. Tak wiec dla ¢ € C' mamy

clhFe—v & Vel (cCIANd o)== . (1)

1.3 Kilka wlasnosci semantyki Kripke’go

Lemat 1.1 Jezeli ¢, € C oraz ¢ C ¢, to warunek c|— ¢ pocigga za sobg, Ze

e
Dowéd. Przez indukcje ze wzgledu na budowe formuty . O

Lemat 1.2 Przypusémy, ze ¢ € C. Wiedy wlasno$é c||— —p jest réwnowaina
stwierdzeniu, Ze ¢ f- ¢ zachodzi dla wszystkich ¢ € C takich, ze ¢ C .

Dowdéd. Wystarczy w réwnowaznosei (1) podstawi¢ L zamiast 1. O

Whniosek 1.3 W kraju C, w ktorym jest jeden ekspert, wiedza tego eksperta wy-
znacza wartosciowanie zmiennych zdaniowych h: to warto$ciowanie przyporzedko-
wuje T tym zmiennym, ktore ekspert tego kraju uvwaza za spelnione, a pozostatym
zmiennym przyporzadkowuje ¥. W tej sytuacyi, dla wszystkich formut ¢ zachodzi
rownowaznosc

Clk¢ & ¢lh]=T. O

Whniosek 1.4 Tautologie intuicjonistycznego rachunku zdan sq tautologiami kla-
sycznego rachunku zdan. O

Przyktad 1.5 Formuta p — =—=p =p — ((p — L) — 1) jest tautologia intuicjo-
nistyczna. Aby si¢ o tym przekona¢, wezmy dowolny kraj C' i dowolnego eksperta ¢
z tego kraju, przekonanego o spetnialnosci p (takiego, ze p € ¢). Chcemy pokazad,
ze ¢l ——p. W tym celu, zgodnie z lematem 1.2, nalezy wykazaé, ze ¢ Jf- —p dla
dowolnego ¢ D c¢. Jest to oczywiste, poniewaz p € ¢, wiec gdyby ¢ stwierdzal
spetnialnos¢ —p = p — L, to musiatby takze twierdzi¢, ze spetniona jest formuta
1.

Przyktad 1.6 Formula =——p — p = ((p — L) — L) — p nie jest tautologia
intuicjonistyczna. Aby sie o tym przekonaé¢, wezmy kraj C', w ktérym jest tylko
dwoch ekspertéw: (), przekonany o niespelnialnosci dowolnego p € V, oraz {p},



przekonany wytacznie o spetnialnosci zmiennej p. Obaj ci eksperci sg przekona-
ni o niespetnialnosci formuty -p = p — L. Drugi dlatego, bo musi uwzglednié¢
swojg opinie o spetnialnosci formuty L, ktora jest oczywiscie negatywna. Pierwszy
dlatego, bo mimo ze sam nie musi sie zastanawiaé¢ (p ¢ () nad spelnialnoscia L,
to jednak musi uwzgledni¢ opinie drugiego eksperta, ktora, rzecz jasna, jest nega-
tywna. W tej sytuacji ekspert () jest przekonany o spetnialnosci ——p = —p — L.
Zastanawiajac si¢ nad spetnialnoscia tej implikacji musi uwzglednié¢ opinie innych
ekspertow, ale tylko przekonanych o spetialnosci formuty —p. W rozwazanym
kraju takich ekspertéw nie ma. Nie ustyszy wigc negatywnych opinii, a wigc prze-
kona si¢ o stusznosci stwierdzenia —=—p. Gdy bedzie wiec rozstrzygaé o stusznosci
implikacji =—p — p, bedzie przekonany o stusznodci jej poprzednika, ale bedzie
tez uwazac, ze nie zachodzi jej nastepnik. Odrzuci wiec prawdziwos¢ implikacji na
podstawie wtasnej opinii.

Przyklad 1.7 Podobnie, jak w poprzednim przyktadzie, mozna wykazac¢, ze w
kraju, w ktorym jest dwoch ekspertéw c i ¢, takich, ze ¢ C ¢, nie uwaza sie
prawdziwe prawa wylaczonego srodka, a w szczegdlnosci formuty p V —p, gdzie
p € '\ c. Wynika to z opinii eksperta c.

2 Algebry Heytinga

2.1 Intuicje

Dos¢ trudno powiedzie¢, jakie zdania uwazamy za prawdziwe. Za to mamy dobrze
opracowane metody uzasadniania relatywnej prawdziwosci: czesto przekonywuje-
my sie na wzajem, ze prawdziwos¢ jakich$ faktéw pocigga za soba prawdziwosé
innych. Majac zbior jaki$ faktow T', lub zbiér powszechnie przyjetych aksjomatéw,
mozemy w zbiorze wszystkich formut wprowadzié relacje ~, w ktorej sa kazde dwie
formuty, o ktorych ze zbioru T' potrafimy wyprowadzi¢, ze sg rownowazne. Formu-
ty ¢ i1 takie, ze ¢ ~ 1 mozemy uwazaé za rownie prawdziwe (w pewnym sensie).
Relacja ~ powinna by¢ relacja réwnowaznosci. Jej klasy abstrakcji mozemy uwa-
za¢ za ,miary prawdziwosci” (co$, co oddaje, jak bardzo formuta jest prawdziwa)
lub za wartosci logiczne. Przyjrzyjmy sie tym klasom abstrakcji.

Wraz z relacja ~ w zbiorze jej klas abstrakcji mozemy wprowadzi¢ wiele innych
dziatan i relacji. W pierwszym rzedzie mozemy wprowadzi¢ porzadek czesciowy
przyjmujac, ze

o]~ < [Y]~ & 2z T potrafimy wyprowadzi¢ ¢ — 1.

Relacje [p]~ < [¢0]~ mozna rozumieé jako stwierdzenie, ze formula v jest  bardziej
prawdziwa” niz formuta p. Wéréd klas abstrakeji relacji ~ mamy klase¢ najwicksza
(klasa [p]~ dla ¢ € T lub formut ¢ takich jak p — p) i najmniejsza (klasa negacji
aksjomatow lub formut takich, jak p A —p).

Dalej, w zbiorze klas abstrakcji relacji ~ mozemy wprowadzi¢ dwa dziatania N
1 U przyjmujac

[l N[Y]e = [pAY]. oraz [ploUY]le = [p V..

Te dziatania sa dobrze okreslone i pozwalaja dla danych stopni ,prawdziwosci”
formut ¢ i ¢, wyliczy¢, jak bardzo ,prawdziwe” sg formuly ¢ A Y i ¢ V 1. Jest
tez widoczny zwiazek miedzy tymi dziatlaniami i porzadkiem. Wiemy, ze zawsze
© A implikuje zaréwno ¢, jak i 9. Dla porzadku < oznacza to, ze klasa [p A 1]~
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ogranicza z dotu obie klasy [p]. 1 [¢]~. Z drugiej strony, z faktéw o — ¢ oraz
o — 1 potrafimy wywnioskowac, ze 0 — ¢ A ). W jezyku porzadku oznacza to,
ze klasa [ A Y] jest najwiekszym ograniczeniem dolnym klas [¢]. 1 [¢]~. Tak
wiec klasa [ A ] jest kresem dolnym zbioru klas {[¢]~, [¢]~}. Podobnie, klasa
[ V1] jest kresem gérnym tego zbioru.

Tak definiowane struktury mozna uwaza¢ za algebry i nazywa sie algebrami
Lindenbauma.

2.2 Kraty, czyli lattices

Kraty mozna definiowa¢ na dwa sposoby: Sa to albo zbiory czesciowo uporzadko-
wane, w ktorych kazde dwa elementy a i b maja kresy dolny a Nb i gorny a U b.
Albo sg to algebry z dwoma dziataniami N i U, dwuargumentowymi, tacznymi i
przemiennymi, speliajacymi dodatkowo prawa absorpcji

(anb)ub = b oraz (aUb)Nb = b.

Obie definicje sa réwnowazne. W szczegdlnosci, w takich algebrach warunki aUb =
b oraz aNb = a sa rownowazne i definiuja porzadek ich uniwerséw o wtasnosciach
wymaganych od krat.

2.3 Relatywne pseudodopelnienie

Przypusémy, ze mamy dang krate z porzadkiem < i operacjami kresu dolnego N i
gornego U. Dla dwdch elementéw a i b tej kraty relatywnym pseudodopetnieniem
a wzgledem b (a do b7) nazywamy — o ile istnieje — najwiekszy element x taki,
ze a Nz < b. Relatywne pseudodopetnienie a wzgledem b bedziemy oznaczac
symbolem a = b. Moze zosta¢ scharakteryzowane przez warunek

aNe<b e rz<a=0> (2)

zachodzacy dla wszystkich elementéw x nalezacych do rozwazanej kraty.
Jezeli zgodzimy sie z tym, ze nastepujace formuty

p A=) =y oraz (¢No =) = (0= (p— 1))

sa prawami logiki, to rozwazania z rozdziatu 2.1 mozna uzupetnié¢ o spostrzezenie,
ze klasa abstrakcji [¢ — 1] jest relatywnym pseudodopetnieniem [¢]. wzgledem

[¥]~.

Przyklad 2.1 Rozwazmy pigcioelementowy zbior uporzadkowany, w ktérym sa
elementy najwickszy max i najmniejszy min, a takze trzy wzajemnie nieporow-
nywalne elementy posrednie a, b i c. Jest to krata. Warunek a Nz < b jest w tej
kracie spetniony przez dwa elementy x = b i x = ¢. Nie ma wsrdd nich elementu
najwickszego. Inaczej: nie mozna w niej wskaza¢ takiego elementu a = b, aby za-
chodzita réownowaznos¢ (1). Tak wiec w tej kracie nie mozna zdefiniowaé operacji
relatywnego pseudodopehienia.

2.4 Algebry Heytinga

Algebrag Heytinga nazywamy dowolna krate, w ktorej kazde dwa elementy a i b
maja relatywne pseudodopelnienie a = b, i w ktorej jest element najmniejszy O.

W algebrach Heytinga mozna wprowadzi¢ operacje dopetniania przyjmujac, ze
dopetnieniem a jest —a = a = 0.



Lemat 2.2 W algebrach Heytinga jest element najwiekszy.

Dowéd. Tym elementem — na mocy réwnowaznosci (2) — jest a = a (bierzemy
dowolne a). O

Element najwickszy w algbrze Heytinga bedziemy oznacza¢ symbolem 1.

Lemat 2.3 W algebrach Heytinga, dla dowolnego a mamy a N —a = aN (a =
0) = 0 i — wobec tego — zachodzi takze nieréwnosé a < — — a.

Dowdd. Jezeli w réwnowaznosci (2) wyrazenie b zastapimy przez 0 i podstawimy
dopelnienie —a za x, to lewa strona réwnowaznosci okaze sie nieréwnoscia aN(a =
0) < 0 réwnowazng tezie, a prawa strona jest oczywiscie prawdziwa. Mozemy
tez spowodowaé, aby lewa strona réwnowaznosci (2) byla nieréwnoscia postaci
(a = 0)Na < 0, prawdziwa na mocy pierwszej czeSci dowodu. Wtedy prawa
strona bedzie nier6wnoscia ¢ < (@ = 0) = 0, czyli @ < — — a, i tez bedzie
prawdziwa. O

W algebrach Heytinga na ogét nie zachodzi prawo a = — — a. Jezeli jednak
zachodzi w pewnej algebrze Heytinga, to ta algebra staje si¢ algebra Boole’a.

W kratach na ogoét nie zachodza prawa rozdzielnosci: mozna wykazaé tylko
jedna nieréwno$¢, na przyktad

(anb)U(anNc)<an(bUc).

Przeciwna nieréwnos¢ nie musi zachodzi¢, podobna sytuacja dotyczy prawa roz-
dzielnosci dziatania U wzgledem M. Przyktadem moze by¢ piecioelementowa krata
z elementami najwiekszym i najmniejszym, i trzema innymi, wzajemnie nieporow-
nywalnymi elementami.

Lemat 2.4 W algebrach Heytinga zachodzg oba prawa rozdzielnosci.

Dowéd. Zauwazmy, ze

1) anb< (anb)U(anc),

\V]

N
b<a= (anb)U(anc), na mocy réwnowaznosci (2),

<a= (anNb)U(anc), z tych samych powodéw,

H~ w
= D O D = —
o

o
C

c<a= (anb)U(anc), z wlasnosci kresu gérnego,

5) an(bUc) < (anb)U (anc), na podstawie (2),

6) anN(bUc) = (aNb)U(aNc) ze stabej antysemtrycznosci < (przeciwna relacja

w dowolnej kracie jest tatwa do wykazania).

Drugie prawo rozdzielnosci dowodzimy analogicznie. O

Przyktadami algebr Heytinga moga by¢ zbiory potegowe P(X) z relacja za-
wierania (wtedy AU B i AN B sa zwyktymi dziataniami mnogosciowymi, suma i
przekrojem, zas A = B = (X \ A) U B), zbiory dzielnikéw ustalonej liczby natu-
ralnej n uporzadkowane relacja podzielnosci (wtedy a Ub = NWW (a,b), aNb =
NW D(a,b)), a takze skonczone zbiory liniowo uporzadkowane (a U b = max(a, b),
aNb = min(a,b), a = b jest elementem najwickszym w przypadku, gdy a < b, i
réwna sie b w przeciwnym razie).



Waznym przyktadem algebry Heytinga jest rodzina otwartych podzbioréw ptasz-
czyzny R? z relacjg zawierania. Zbior X C R? jest otwarty, jezeli wraz z kazdym
elementem p € X sa w nim wszystkie punkty odlegte od p o mniej niz pewne dodat-
nie e. Kwadrat jednostkowy z tzw. brzegiem {(x,y) € R? : 0 < x,y < 1} nie jest
otwarty, w przeciwiefistwie do kwadratu bez brzegu {(z,y) € R? : 0 < z,y < 1}.
Kazdy zbiér na ptaszczyznie ma tzw. wnetrze, czyli najwiekszy zbiér otwarty w
nim zawarty. W tej algebrze AU B i AN B sa réwne odpowiednio sumie mnogo-
Sciowej i przekrojowi A i B, za§ A = B jest wnetrzem zbioru (R? \ A) U B.

2.5 Wartosciowanie formul w algebrach Heytinga

Bedziemy zajmowac sie rachunkiem zdan, a formuty tego rachunku bedziemy zapi-
sywaé uzywajac spojnikow A, V, — oraz stalej L, a takze zmiennych zdaniowych
ze zbioru V.

Niech A = (A,N,U, =, 0, 1) bedzie algebra Heytinga. Wartosciowaniem zmien-
nych zdaniowych w algebrze A bedziemy nazywaé¢ dowolna funkcje v przyporzad-
kowujacg zmiennym ze zbioru V' elementy uniwersum algebry A.

Majac warto$ciowanie zmiennych v definiujemy wartosé (logiczna) [[p]], for-
muty ¢ przy wartoSciowaniu v przyjmujac nastepujace réwnania rekurencyjne:

Formuta ¢ jest spelniona w algebrze A przy wartosciowaniu v, jezeli [[p]], = 1.

Formuta ¢ jest spetniona w algebrze A, jezeli jest spelniona w tej algebrze przy
wszystkich wartosciowaniach. Fakt spetniania formuty ¢ w algebrze A zapisujemy
wzorem A = .

Formuta ¢ jest (intuicjonistyczna) tautologia, jezeli jest spetniona we wszyst-
kich algebrach Heytinga, symbolicznie fakt ten bedziemy wyrazaé¢ wzorem = .

Formuta ¢ jest klasyczng tautologia, jezeli jest spetniona we wszystkich alge-
brach Boole’a.

3 Intuicjonistyczna dedukcja naturalna w rachun-
ku zdan

Bedziemy postugiwaé sie jezykiem opisanym w rozdziale 1.1 i zdefiniujemy relacje
I' F ¢, gdzie ¢ jest formuta wspomnianego jezyka, a I' — zbiorem formut tego jezyka.
Intuicyjnie, zbior I jest albo zbiorem aksjomatéw, albo zbiorem przyjetych zatozen,
a definiowana relacja moze by¢ rozumiana jako stwierdzenia, ze z aksjomatéw (lub
zatozen) I' potrafimy wywnioskowaé (wyprowadzi¢) zdanie .

W systemach dedukcji naturalnej zwykle nie ma istotnej réznicy miedzy aksjo-
matami i zalozeniami, a tzw. twierdzenie o dedukcji jest wlasciwie czescig definicji
systemu. Dowodzenie implikacji ¢ — 1 w takich systemach polega na uznaniu



poprzednika ¢ za dodatkowe zatozenie i wywnioskowanie z tego zalozenia i po-
zostatych, oraz z aksjomatow nastepnika . Z doswiadczenia wynika, ze jest to
bardzo wygodny sposéb uzasadniania twierdzen.

Relacje - definiujemy jako najmniejsza relacja spelniajaca nastepujace reguty:

Lok’

'y, THY ThEHeAY TEHeAY

Ay Fky L+
IokFo, IiYykFo 'V 'Fe =y
TFo " TFove TFovy

oy Tk, 'Fp—9y
'k —1’ | ’

-1
Ik

Wymienione reguty rozumiemy jako stwierdzenia, jezeli zachodzg relacje znaj-
dujace si¢ nad kreska, to zachodzi takze relacja podana pod kreska.

Zauwazmy tez, ze w tak sformutowanym systemie dedukcji naturalnej nie ma
pojecia dowodu. Drzewo wyprowadzenia relacji postaci I' = ¢ jest metadowodem,
czyli dowodem, ze co$ mozna udowodnié¢ (bez powiedzenia, jak). Oczywiscie, po-
jecie dowodu mozna wprowadzi¢, ale w systemie dedukcji naturalnej jest nieco
bardziej skomplikowane ze wzgledu na konieczno$é¢ operowania zatozeniami.

Na koniec zauwazmy, ze mamy mozliwo$¢ przeprowadzania dowodéw nie wprost.
Pierwsza reguta dotyczaca implikacji (reguta wprowadzania implikacji) w szczegdl-
nym przypadku ¢y = L przyjmuje postac

ok L
Fl——lgo'

(Pamietajmy, ze formuta —p to doktadnie ¢ — L). Jest to wtasciwie reguta do-
wodzenia negacji, stwierdza ona, ze negacje —¢ dowodzimy nie wprost, wyprowa-
dzajac sprzecznosé z formuty .

Bardzo wazne jest to, ze w przedstawionym systemie metoda nie wprost moze-
my dowodzi¢ wylgcznie negacje. Zwykle rowniez nieco inaczej tworzymy dowody
nie wprost: Jezeli chcemy dowies¢ ¢, to wyprowadzamy sprzecznos¢ z —p. Postu-
gujemy si¢ wiec nastepujaca reguta:

Ik L

| R ) (3)

Dotaczenie do systemu dedukcji naturalnej powyzszej reguty istotnie rozszerza
zbior mozliwych do udowodnienia formut. Rozwazany system pozwala na dowie-
dzenie wszystkich tez intuicjonistycznego rachunku zdan, a po rozszerzeniu umoz-
liwia takze dowodzenie tez klasycznego rachunku zdan.

Zadanie 3.1 Pokaz, ze - p — ——p. Sprébuj dowies¢ implikacje odwrotna ——p —
p. Pokaz, ze F =—p — p w klasycznym rachunku zdan, gdy mamy prawo korzystaé
takze z reguly (3).



4 Twierdzenia o pelnosci

Lemat 4.1 (o poprawnos$ci) Niech C C P(P(V)) (patrz rozdziat 1.2). Zaldz-
my, ze I' = . Jezeli zgodnie z semantykq Kripke’'go wszystkie formuly v € T' sq
uwazane za spetnione w kraju C' (C'| v dla wszystkich v € T'), to takze formula
@ jest uwazana za spetniong w kraju C (takze C |- ¢ ).

Dowdd. Dosé tatwy, przez indukcje wynikajaca z definicji relacji . O

Lemat 4.2 (o poprawno$ci) WeZmy algebre Heytinga A i wartosciowanie v w
tej algebrze. Zatozmy, ze I' = ¢. Jezeli wszystkie formuty v € I' sq spetnione przy
warto$ciowaniu v w algebrze A ([[¥]], = 1 dla wszystkich v € T'), to takze formula
© jest spetniong w A przy wartoSciowaniu v (takze [[p]], = 1).

Dowéd. Latwy, przez indukcje wynikajaca z definicji relacji . O

Twierdzenie 4.3 (o pelnoéci) Przypusémy, Ze formula ¢ jest uwazana za spel-
niong w kazdym kraju, w ktorym uwazane za spetnione sq wszystkie formuty v € T'.
Wtedy T' = . Albo inaczej, jezeli C' o dla dowolnego C' takiego, Ze wszystkie vy € T’
sqg w C uwazane za sperione (zachodzi C |- v), toT'F ¢. O

Twierdzenie 4.4 (o pelnosci) Przypusémy, ze formula ¢ jest spetniona w kaz-
dej algebrze Heytinga, w ktorej przy wszystkich wartosciowaniach sqg spetnione
wszystkie formuly v € T'. Wtedy T' = . Albo inaczej, jezeli A = ¢ dla dowol-
nej algebry Heytinga A, w ktorej wszystkie v € T' sq speriione (zachodzi A = ),
to ' .

Dowdéd. Konstruujemy i wykorzystujemy w dowodzie tzw. algebre Lindenbauma,
opisana w rozdziale 2.1. Jezeli w algebrze Lindenbauma dla zbioru I' speliona
jest formutla ¢ przy wartosciowaniu v(p) = [p]~, to na mocy definicji tej algebry,
ze zbioru I' mozna wyprowadzi¢ . O

Whniosek 4.5 Dla dowolnej formuty ¢ rownowazne sq nastepujgce warunksi

1) F @ (czyli ¢ daje sie dowiesé w rozwazanym, intuicjonistycznym systemie
dedukcji naturalnej),

2) | ¢ (czyli ¢ jest tautologiq wedlug Kripke’go),

3) = ¢ (czyli tautologiq wedlug Heytinga). O

5 Implikacyjny fragment rachunku zdan

5.1 Dowody w stylu Hilberta

Ciag formul o1, s, ... ¢, jest dowodem (w stylu Hilberta, zgodnie z definicja po-
stulowana i analizowana przez Hilberta) formuty ¢, jezeli ¢,, = ¢ oraz dla wszyst-
kich:=1,2,...,n

1) ¢; jest aksjomatem (logicznym lub pozalogicznym) lub tez

2) i jest wnioskiem z niektérych formut ¢; dla j < i (z przestanek takiej
postaci) otrzymanym za pomoca jednej z przyjetych regut dowodzenia.



Oczywiscie przyjeta definicja pojecia dowodu jest nieprecyzyjna, wymaga jeszcze
wyjasnienia, jakie formuty uwazamy za aksjomaty, i wskazania regul dowodzenia,
ktorymi mamy prawo sie postugiwac.

Aksjomaty logiczne bedziemy uwazaé za cze$¢ definicji dowodu, musza zostac
wskazane (bez nich niczego nie dowiedziemy), ale w zasadzie nie beda ulegaé¢ zmia-
nie. Aksjomaty pozalogiczne bedziemy dobieraé zaleznie od potrzeb. Zapis ' kg o,
gdzie I' jest dowolnym zbiorem formut, bedzie oznaczaé, ze formuta ¢ ma dowod
(czyli istnieje ciag speliajacy wyzej podane warunki) korzystajacy z okreslonych
aksjomatow logicznych i ze zbioru aksjomatoéw pozalogicznych T

5.2 Implikacyjny fragment intuicjonistycznego rachunku

Mozna go zdefiniowa¢ na dwa rownowazne, niewiele réznigce sie sposoby. Albo
jako te formuty rachunku zdan, ktére mozna zapisa¢ uzywajac jedynie implikacji
(i zmiennych zdaniowych), i ktére mozna dowie$¢ w systemie dedukcji natural-
nej, albo jako te formuty, ktére mozna dowie$¢ w systemie dedukcji naturalnej
postugujac sie jedynie trzema regutami:

T,pbd¢ TDhop, Tkp—1
Dok Tho—9 [

Zauwazmy, ze

F(o—T—p) —(c—7)— (0 —p) oraz Fo—T—o0.

5.3 Implikacyjny fragment wedlug Hilberta

Bedziemy rozwazaé tez system hilbertowski, w ktorym formuty zapisujemy uzy-
wajac (poza zmiennymi zdaniowymi) wytacznie znaku implikacji —. Aksjomatami
logicznymi tego systemu beda wszystkie formulty dwoch, nizej wymienionych po-
staci:

(0 =17—p)— (0 —=7T)—> (0 —p) oraz 0 — 7T — 0.

Poshugujemy sie w nim jedna regutyg dowodzenia, a mianowicie regutyg odrywania

0, ¢ =P
—

Przykltad 5.1 Wezmy formute ¢. Pokazemy, ze w opisanym systemie mozna do-
wies¢ formute ¢ — ¢, a wiec pokazemy, ze -y ¢ — ¢. Dowodem tej formuty jest
nastepujacy ciag formut

(= (p—=9) =9 == (9= ) = ¢ — ¢ (est to pierwszy
z aksjomatéw pozalogicznych, wzieliSmy jego wersje, w ktorej uzylismy ¢
zamiast o 1 p oraz ¢ — ¢ zamiast 7),

2) ¢ — (v — ) — @ (jest to drugi z aksjomatéw pozalogicznych, uzylismy ¢
zamiast o oraz ¢ — @ zamiast T),

3) (¢ = (¢ — ¢)) — ¢ — ¢ (jest to wniosek wynikajacy za pomoca reguty
odrywania z dwoch poprzedzajacych stwierdzen),

4) ¢ — (¢ — @) (jest to drugi z aksjomatéw pozalogicznych, uzylismy ¢ za-
miast o oraz 7),



5) ¢ — ¢ (jest to wniosek otrzymany za pomoca reguly odrywania z dwoch
ostatnich stwierdzen).

Twierdzenie 5.2 (o dedukcji) Dla dowolnych formut ¢ i1, i zbioru v, warunek
', o g ¥ zachodzi wtedy i tylko wtedy, gdy I' by ¢ — 1.

Dowéd. Majac dowdd vy, .. ., 1, formuty ¢ korzystajacy z aksjomatu ¢ tworzy-
my ciag @ — q,...,0 — ¥, i pokazujemy, ze dodajac do niego odpowiednie
formuty mozemy uzupetni¢ go do dowodu formuty ¢ — . Implikacja odwrotna
jest oczywista. Zauwazmy jeszcze, ze jako aksjomaty logiczne wzielidmy formuty
niezbedne w dowodzie twierdzenia o dedukcji. O

Twierdzenie 5.3 Dia dowolnej formuty zapisanej tylko z uzyciem implikacji i dla
dowolnego I, warunek I' F ¢ jest rownowazny z I' Fgy .

Dowéd. Implikacje ,z lewej do prawej” dowodzimy przez indukcje wynikajaca
z definicji relacji . W najtrudniejszym momencie korzystamy z twierdzenia o
dedukcji. Implikacje odwrotna dowodzimy przez tatwa indukcja ze wzgledu na
dtugo$¢ dowodu. Musimy tylko sprawdzi¢, ze aksjomaty logiczne mozna dowiesé
w systemie dedukcji naturalnej. O

6 Rachunek zdan drugiego rzedu

6.1 Formuly

Formuty rachunku zdan II rzedu, jak zwykle, definiujemy przez indukcje przyjmu-
jac, ze

1) zmienne zdaniowe sg formutami rachunku zdan II rzedu,
2) stata L jest formutlg rachunku zdan II rzedu,

3) jezeli ¢ i sa formutami rachunku zdan II rzedu, to p Ay, p V) oraz ¢ — ¥
tez sg formutami rachunku zdan II rzedu,

4) jezeli ¢ jest formuta rachunku zdan II rzedu, a p jest zmienna zdaniowa to
Vp p oraz dp ¢ tez sa formutami rachunku zdan II rzedu.

6.2 Intuicje

W klasycznym rachunku zdan, w ktéorym dodatkowo mamy prawo postugiwacé sie
zdaniem sprzecznym 1 i zdaniem ,absolutnie prawdziwym” T, rachunek zdan II
rzedu definiuje sie tak, aby zachodzilty réwnowaznosci

Vpe « plp:=T|Aplp:=1] oraz Ipp <« @p:=T|Velp:=_1].

Albo mniej formalnie: zdanie Vp ¢ jest prawdziwe, jezeli zdanie ¢ jest prawdziwe
bez wzgledu na tres¢ lub wartos¢ logiczna zdania p, a zdanie dp ¢ jest prawdziwe,
jezeli w pewnych sytuacjach, czyli dla odpowiednio dobranych p o odpowiedniej
wartosci logicznej, zdanie ¢ jest prawdziwe.
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6.3 Dedukcja naturalna dla jezyka II rzedu

System dedukcji naturalnej dla jezyka II rzedu dopuszcza korzystanie z wszystkich
regul wnioskowania wymienionych w rozdziale 3 i dodatkowo pozwala stosowac
nastepujace reguty:

Tre
'EVpep

) 'EVpe
oilepg FV(I), — 27~
# FVD) I'F¢lp:= o]
IEoplp:=0 TEIpp, Lok
F'Fdpe '

oilep g FV(T,p).

W powyzszych regutach, wzér F'V (I') oznacza zbiér zmiennych wolnych wystepuja-
cych w I, czyle sume zbioréw zmiennych wolnych wystepujacych w poszczegdlnych
formutach z T'.

6.4 Semantyka oparta o algebry Heytinga

Aby zdefiniowa¢ semantyke dla jezyka II rzedu potrzebne sa zupelne algebry Hey-
tinga. Algebry Heytinga to zbiory uporzadkowane. Zupetne algebry Heytinga to
zupetne zbiory uporzadkowane, a wiec takie, ze kazdy zbior elementéw tego zbioru,
takze nieskonczony, ma kresy: dolny i gorny.

Jest sporo zupelych algebr Heytinga. Takimi sg algebry skonczone, algebra
otwartych podzbioréw plaszczyzny, a takze odcinek [0, 1] ze zwyklym porzadkiem.

Pojecie wartosciowania i wartos$ci logicznej formuty II rzedu definiujemy po-
dobnie jak definiowalismy odpowiedniki tych poje¢ w przypadku rachunku rzedu
I w rozdziale 2.5. Sa jednak pewne roznice. Po pierwsze, wartosciowania przyj-
muja wartosci w zupelnych algebrach Heytinga. Po drugie, podane w rozdziale
2.5 warunki definiujagce wartos$¢ logiczng muszg zostaé¢ uzupetnione o warunki po-
zwalajace oblicza¢ wartosci formut rozpoczynajacych sie kwantyfikatorami, czyli o
warunki:

6) [Vpglly = kres dolny zbioru {[[¢]]. : Vg # p w(q) = v(q)},
7) [[Fpwll, = kres gorny zbioru {[[¢]]. : Vg # p w(q) = v(g)}-

Liczac zgodnie z tymi wzorami np. warto$¢ formuty Vp¢ przy wartosciowaniu
v, znajdujemy najpierw wartosci logiczne [[p]],, dla wszystkich wartosciowan w,
ktore zmiennym réznym od p przypisuja te same wartosci, co wartosciowanie v, a
nastepnie znajdujemy odpowiedni kres.

Jak zwykle, do$¢ tatwo dowodzi si¢ lemat o poprawnosci semantyki:

Lemat 6.1 Niech A bedzie ustalong, zupelng algebrq Heytinga. JezeliI' = {11, 41, . ..

oraz I' = @, to dla wszystkich wartosSciowan v w algebrze A zachodzi nieréwnosc

[[wlﬂv N H¢2Hv n...N Hwn]]v < [[90]]1; o

6.5 {V,—}-fragment rachunku zdan II rzedu

W {V, — }-fragmencie rachunku zdan II rzedu mozna zdefiniowaé wszystkie sp6j-
niki logiczne i kwantyfikator 3. Przyjmijmy, ze

1) L = Vaa,

11

7wn}



2) 9 A = Va((p— ¥ —a) —a)oilead FV () UFV (),
3) oV = Va((p—a) = (¥ —a) —a)oilead FV(p) UFV (1),
4) Jap = VB((Ya (o — B) — B) oile B¢ FV(p).

Zadanie 6.1 Nastepujace fakty wydaja sie prawdziwe, a wiec sprobuj je dowiesé:

1) Jezeli w wyzej podanych réwnosciach symbol = zastapimy przez «, to otrzy-
mamy formuty, ktére mozna dowies¢ w rozwazanym rachunku zdan II rzedu.

2) Przyjmujemy wyzej podane definicje sp6jnikow i kwantyfikatoréw. Dla kazdej
reguly opisujacej naturalna dedukcje w rachunku zdan IT rzedu, w {V, —}-
fragmencie tego rachunku dowiedz, ze przy takich definicjach, z prawdziwosci
przestanek wynika prawdziwosé wnioskow (z prawdziwosci stwierdzen nad
kreska wynika prawdziwos$¢ stwierdzen pod kreska).

7 Prosty system typow

7.1 Podstawowe pojecia i notacja

Zapis M : o bedziemy uwazac¢ za stwierdzenie, ze ,term M jest typu ¢”. W takim
kontekscie M zwykle bedzie termem rachunku A, czasem nieco zmodyfikowanym,
a o — typem. Czasem zapis ten bedzie rozumie¢ jako pare uporzadkowang ztozong
z termu M i typu o.

Typy beda napisami zbudowanymi ze zmiennych typowych, zbiér zmiennych
typowych bedziemy oznacza¢ symbolem V| oraz z symbolu —. Zbiér typéw T
bedzie najmniejszym zbiorem zawierajacym V i spelniajacym warunek

jezeli o,7 € T, to (0 — 7) € T.

Zapisujac typy bedziemy opuszczaé¢ niepotrzebne nawiasy. Przyjmujemy, ze napis
01 — 09 — 03 oznacza typ (o7 — (09 — 03)).

Kontekstem nazywamy skonczony i jednoznaczny zbiér par postaci = : o, gdzie
x jest zmienng rachunku A, a o — typem. Kontekst I' musi wiec spetnia¢ warunek

jezelix 1 01, x: 09 €T, to 01 = 03.

Konteksty sa wiec funkcjami, bedziemy tez w odniesieniu do kontekstéw stosowac
notacje zwiazane z funkcjami. Tak wiec I'(x) = o oznacza, ze x : 0 € I', dom(T") to
dziedzina I', czyli zbiér zmiennych wystepujacych w I', I'[dom(I")] to zbi6r wartosci
przyjmowanych przez I', albo typow wystepujacych w I'. Zapis ',z : ¢ oznacza
ru{z:o}.

7.2 Relacja typowania a la Curry
Zdefiniujemy teraz relacje I' = M : o, gdzie I' jest kontekstem, M — termem

rachunku A, a o — typem. Jest to najmniejsza relacja majaca nastepujace wtasnosci:
e:cFM:1 '-M:0—7, I'EN:o
Dx:oba:0 THEXxM:o— 1’ I'-MN:T '

W powyzszej definicji termy powinny by¢ rozumiane jako klasy abstrakeji re-
lacji a-konwers;ji.
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7.3 Najprostsze wlasnosci

Lemat 7.1 Zatoimy, ze ' M : 0. Wtedy
1) jezelil C IV, to "+ M : o,
2) FV(M) C dom(I),

3) jezeli I jest kontekstem I' ograniczonym do zbioru FV (M), to T+ M : o.
O

Lemat 7.2 1) JezeliT'H M : o, toU'la:= 7| M : ola := 7] (a to zmienna
typowa, chyba wiadomo, jak podstawiamy typ w innym typie za zmienng ty-
powq, podstawianie w I' to podstawianie we wszystkich typach wystepujgcych
wl).

2) Jezelil,z:7TEM:0il'EN:7, toTF M[z:=N]:0.0
Chyba najwazniejszy lemat stwierdza, ze S-redukcja zachowuje typ termu:

Lemat 7.3 JezeliI'-M :0 i M —3g N, toI' N :0. O

7.4 Problem rekonstrukcji typu

Bedziemy bada¢, czy dla danego termu M istnieja I' i o takie, ze ' H M : o.
Prezentuje tutaj jedno z mozliwych rozwigzan, pochodzace od Berengregta, inne,
niz prezentowane na wyktadzie.

Podstawieniem nazywamy funkcje # : T — T taka, ze 0(c — 7) = (o) —
(071). Zwykle bedziemy rozwazaé podstawienia, ktére poza skonczonym zbiorem
zmiennych typowych « spetniaja réwnosé 6(a) = a.

Zdefiniujemy teraz (przez indukcje ze wzgledu na M) zbiér E(T', M,o) dla
kontekstu I', termu M takiego, ze F'V (M) C dom(I'), i typu o. Bedzie to zbiér
rownosci typow, niekoniecznie prawdziwych, jednak takich, ktérych odpowiednie
spelnienie zagwarantuje prawdziwos¢ relacji I' = M : 0. Przyjmujemy, ze

1) E(T,z,0) = {['(z) = o}, gdzie x jest zmienna A-rachunku,

2) E(T, e M,0) = ETU{z:a},M,a — B)U{a — (=0}, gdzie o i [ sa
,Swiezymi” zmiennymi typowymi,

3) E(TMN,o)=E(I,M,a — o)UE(I", N, «a), gdzie « jest ,$wieza” zmienna
typowa.
Podstawienie # unifikuje zbiér rownosci X, jezeli (o) = (1) (jezeli termy (o)
i 0(7) sa identyczne) dla wszystkich réwnosci 0 = 7 € X. Fakt, ze # unifikuje X
bedziemy wyrazaé¢ wzorem postaci 6 = X.
Jezeli I' = {1 : 01,... 2y : 0n}, to (") = {x1 : 0(01),..., 2, : 0(0,)} (0 to
podstawienie).

Lemat 7.4 Jezeli 0 = E(I', M,0), to (I') - M : 0(c). O
Lemat 7.5 Jezeli O(T') = M : 0(0), to 0 = E(I', M,0) dla pewngo podstawienia

0’ takiego, Ze O(a) = ' () dla wszystkich zmiennych typowych o wystepujocych w
I'io. O
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Whniosek 7.6 Niech M bedzie dowolnym A-termem ze zmiennymi wolnymi xy, . .., Ty,
aaq,...,q, 13 bedg zmiennymi typowymsi. Wtedy

1) Jezeli 0 = E({x1 : any ooy s}, M, B), to {zy : O(ay),..., @, : O(an)} F
M :0(3).

2) Warunek I' b M : o zachodzi dla pewnych T i o wtedy i tylko wtedy, gdy
zbior E({zy : aq, ..., 2, 0 an}, M, 3) ma unifikator. O

Lemat 7.7 Problem, czy M ma typ (w pewnym kontekscie, jezeli jest potrzebny),
jest rozstrzygalny. O

Dla termu M najogélniejszym typem (a wlasciwie najgélniejsza para, chyba ze
M nie ma zmiennych wolnych), nazywamy pare I' i o taka, ze

)TFM:o,
2) jezeli I = M : o', to O(T") C I oraz 0(c) = o’ dla pewnego podstawienia 6.

Lemat 7.8 Jezeli term M ma typ (by¢ moze w pewnym kontekscie), to M ma
najogolniejszy typ.

Dowdéd. Konstruujac najogélniejszy typ postepujemy tak, jak we wniosku 7.6: ale
teraz bierzemy najogélniejszy unifikator zbioru E({x; : a1, ...,x, 1 an}, M, 3). O

Do zagadnienia rekonstrukeji typu mozna tez podejs¢ inaczej, dowodzac lematy
takie, jak ponizszy, stanowigce podstawe algorytmu rekurencyjnego.

Lemat 7.9 Przypusémy, ze I'yy & M : oy oraz 'y = N @ on. Przyjmigmy,
ze Iy = {21 1 cam, .-, n @ o}, podobnie I'y, oraz FV (M) N FV(N) =
{z1,...,21}. Wtedy term MN ma typ wtedy i tylko wtedy, gdy mozna zunifikowad
uktad rownosci

Ay m =N, -y QM = O Ny, Opf = ON — B.
Jezeli 0 jest unifikatorem tego uktadu, to

7.5 Relacja typowania a la Church

Zdefiniujemy teraz relacje I' = M : o, gdzie ' jest kontekstem, o — typem, a M
termem rachunku A, ale z pewnymi dopiskami.

Musi wiec najpierw zmodyfikowaé¢ pojecie termu: w zwyktej definicji A-termu
warunek dotyczacy abstrakcji zastepujemy nastepujacym:

jezeli M jest termem, = - zmienna, a 0 € T, to Ax : 0 M tez jest termem.

Jest to najmniejsza relacja majaca nastepujace wtasnosci:

'e:cFM:1 '-M:0—7, I'EN:o
Nx:okax:o ThEXx:oM:0—71 I'MN:T '

W powyzszej definicji termy tez powinny by¢ rozumiane jako klasy abstrakcji
relacji a-konwers;ji.
Oba systemy typéw maja podobne wtasnosci:
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Lemat 7.10 1) Jezeli I Fopuren M 20, to T Foypry | M| 20 (| M| to term M
pozbawiony adnotacji o typach wymaganych w systemie a la Church).

2) Jezeli I' Foypry M 20, to I Fopuren M’ 0 dla pewnego termu M’ z adnota-
cjami, takiego ze | M'| = M. O

Oba systemy typow rozni natepujacy lemat:

Lemat 7.11 Jezeli I' Fepuren M 20 @ U Fepuren M 2 T, to 0 = 7. O

7.6 Izomorfizm Currego-Howarda

Lemat 7.12 1) Jezeli {zy : 1,...,2p - To} E M 0, to {m1,....,7n} F 0 (w
systemie dedukcji naturalnej).

2) Jezeli {1y, ..., ma} F o (w systemie dedukcji naturalnej), to istniejq zmienne
X1, ..., %, 0 term M takie, Ze {x1 :7,...,2p:Th} M 0. O

8 Polimorficzny rachunek lambda'

8.1 Typy

Niech V bedzie zbiorem zmiennych typowych. Jak zwykle, przez indukcje, zdefi-
niujemy zbior typoéw T: jest to najmniejszy ze zbiorow spetiajacych nastepujace
warunki:

1) VCT,
2) jezeli 7,0 € T, to takze 7 — 0 € T,
3) jezelia € Vit e T, to takze Var € T.

Nietrudno zauwazy¢, ze typy polimorficzne mozna uwazaé za formuty rachun-
ku zdan II rzedu zapisane za pomoca spojnika — i kwantyfikatora V. Oczywiscie,
zapisujac typy musimy tez uzywac¢ nawiaséw. Przyjmujemy zasady opuszczania na-
wiasOw analogiczne do stosowanych w rachunku lambda. Przyjmujemy tez zasade,
ze zmienne typowe beda oznaczane poczatkowymi literami alfabetu greckiego.

8.2 Termy polimorficznego rachunku lambda a la Church

Termy polimorficznego rachunku \ sg tworzone ze zmiennych ze zbioru V', zmien-
nych typowych nalezacych do V i dwoch operatoréw lambda: zwyktego A i poli-
morficznego A, ten ostatni czesto jest zapisywany jako A.

Zbiér wszystkich terméw (a la Church) polimorficznego rachunku lambda 7°
jest najmniejszym zbiorem spelniajacym nastepujace warunki:

1) VCT,
2) jezeli M, N € T,to MN € T (zwykta aplikacja),
3)jezei M e T,z € ViTeT, to x:7MeT (zwykla abstrakcja),

4) jezeli M € T i1 €T, to Mt € T (aplikacja typu (7)),

"'Wedtug: Sgrensen, Urzyczyn, Curry-Howard Isomorphism
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5) jezeli M € T i€ V, to A\a M € T (polimorficzna abstrakcja).

Czytanie dtugich termoéw z adnotacjami bywa uciazliwe. Wtedy czytanie moze
utatwic¢ inny zapis, postaci A\z” M, wyrazajacy to samo, co Az : 7 M.

W polimorficznym systemie typow a la Curry warunek 3) przyjmuje zwykla
postac

3) jezeli M € T iz €V, to A\x M € T (zwykla abstrakcja),

8.3 Odrobina intuicji

Bedziemy analizowaé procedure sortowania S. Procedura ta wymaga danych (wha-
Sciwie jednej danej), przyjmijmy, ze danymi sg ciagi, czyli, dla ustalenia uwagi,
elementy typu postaci Nat — X. Taka procedura pozwala na sortowanie danych
typu X. Jezeli zostanie dobrze napisana, to powinna pozwala¢ na sortowanie da-
nych réznych typéw (dla réznych typéw X ). Mozna na przyktad napisa¢ procedure
sortowania, ktéra oprocz zwyktych danych wymaga procedury P poréwnujacej da-
ne, zapewne typu X — X — Bool. Wobec tego procedura S powinna by¢ typu

(X - X — Bool) — (Nat — X) — Nat — X.

Jezeli jest rzeczywiscie dobrze napisana i moze by¢ stosowana dla danych réznych
typow X, to mozemy przypisaé jej typ polimorficzny

Va ((ae — a — Bool) — (Nat — «) — Nat — «),

dodajac jednoczesnie do jej tredci stosowna informacje o polimorfizmie Vo .S. Jezeli
teraz chcemy ja zastosowa¢ w konkretnym przypadku, na przyktad do sortowania
ciagu liczb typu Nat, to powinnismy uzy¢ procedury (Vo S) Nat, czyli wtasciwie
procedury S z dodatkows informacja, ze powinna by¢ wykorzystana do sortowania
danych typu Nat. Tak wiec procedura (Va S) Nat powinna byé typu

(Nat — Nat — Bool) — (Nat — Nat) — Nat — Nat,

wymagac¢ procedury typu Nat — Nat — Bool porownujacej dane i ciggu typu
Nat — Nat.

8.4 Polimorficzny system typow A2, czyli system F

Aby zdefiniowaé polimorficzny system typow, pamietajac, ze postugujemy sie roz-
szerzonym pojeciem termu, reguly prostego systemu typéw (a la Church):
'-M:0—-7,THFN:o Ne:7-M:0o
| R A o I'EMN:T1 "ThHXNe:TM:7—0

uzupetniamy o dwie reguty:

I'-M:o I'=M :Vao
il Fv (I .
T M :Vao a ¢ FV(D), I'EMr:ola:=T7]

W polimorficznym systemie typow a la Curry postugujemy sie zwykltym poje-
ciem A-termu i regutami typowania, wsrod ktorych zamiast wyzej podanych regut
dotyczacych polimorfizmu znajduja sie dwie nastepujace:

'-M:o I'EM:Vao
—— oile ag FV(I), .
I'EM:Vao ¢ FV(T) I'EM:ola:=T]
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8.5 Kilka uwag i f-redukcja

Zadanie 8.1 Pokaz, 7e
1) FAB (A" 2(8 — B) () : VB ((Va(a — a)) — § — )
2) F A Af* A, f(f) : Vo ((a — a) — (@ — a)),

3) F Afrale=i=a) xag Az®. f(B — a)(fax) :
Va(a— f—a)) = Va(la— -0 —a)

Twierdzenie 8.1 (Izomorfizm Curre’go-Howarda)

1) JezeliT'= M : ¢ w polimorficznym systemie typow A2, to T'ldom(T)] F ¢ w
(intuicjonistycznym) rachunku zdan II rzedu.

2) Jezeli w {¥,—}-fragmencie intuicjonistycznego rachunku zdan II rzedu za-
chodzi A+ @, to w polimorficznym systemie typow A2 mamy U'= M : ¢ dla
pewnych I' ¢« M € T. O

Twierdzenie 8.2 Problem dowodliwo$ci w intuicjnistycznym rachunku zdan I1
rzedu jest nierozstrzygalny. O

W zwigzku ze zmiang pojecia A-termu musi ulec zmianie pojecie g-redukcji.
Ogdlna postac¢ definicji tego pojecia pozostaje bez zmian. Mamy jednak dwa rodza-
je aplikacji i tym samym dwa rodzaje redekséw. Oba rodzaje redukujemy podobnie:

1) M@:7TM)N - Mjz:=N]dlaNeTizeV,

2) MaM)r -3 Mla:=7]dlareTiacV.

Mam nadzieje, ze definicje obu rodzajow podstawien wystepujacych w poda-
nych wzorach sg dostatecznie jasne.
8.6 Termy typu p A
Przyjmijmy nastepujace definicje:

1) (M,N) = daXz#~¥~% 2PQ,

2) m (M) = Mo(Az? dy¥. x),

3) mo( M) = Muyp(Ax¥ My¥.y).

Wtedy zachodza nastepujace reguty typowania odpowiadajace regutom natu-
ralnej dedukcji:
'FMe, TNy THEM:pANYy TTEM:@oAY
FE(M,N): oAy ThEm(M):@ Thkm(M):¢
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8.7 Termy typu ¢ Vv
Przyjmijmy nastepujace definicje:
1) in (M?®) = daduf~* \o¥= uM,
2) ing(M¥) = da A u?~ ¥~ v M,
3) case(LVV;x?. MP;y¥.NP) = Lp(Ax®. M)(Az?. N).

Wtedy zachodza nastepujace reguty typowania odpowiadajace regutom natu-
ralnej dedukcji:
Lo M:o, I''yEN:o, T'EL:pVY 'EM:o I'EM:q
't case(L;x.M;y.N):o " Thim(M): VY Thing(M): eV’

8.8 Typy Bool i Nat

W systemie F mozna implementowac¢ typ Bool w nast¢pujacy sposob:
1) Bool = Va(a — a — «),
2) true = la\z® \y*z,
3) false = Aa Az \y“y.
A teraz implementacja typu odpowiadajacego liczbom naturalnym:
1) Nat = Va((a — a) - a — «),
2) ¢, = AaAfe7Y Xz f*(x) (polimorficzne literaty Churcha),

3) succ = AnN2t Ao A fe7 \r® f(nafr).

Lemat 8.3 Dla danego typu o definiujemy term r, typu 0 — (0 — Nat — o) —
Nat — o jako

Ay AN XN (AN at) (AN (i (1) (1 (0)), suace(ma(0))) 3, o).
Ten term spetnia dwie nastepujgce rownosci:

r, M Ncy=5 M oraz v, M N (succn) =g N (r, M Nn)n. O
Zadanie 8.2 Pokaz, ze term Azy.y(2I)(2K)(Az z) nie ma typu w systemie F.

Twierdzenie 8.4 Problem rekonstrukcyi typu w systemie ¥ jest nierozstrzygalny.
O
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9 Silna normalizacja dla prostego systemu typow

9.1 Potrzebne definicje
1) SN ={M € A: M jest silnie normalizowalny}

2) A== B={FeA:VXe€AFX € B}, gdzie A,BCA

3) [[a]] = SN oraz [[c — 7]] = [[o]] = [[7]] dla zmiennych typowych « i typéw
prostych o — 7

4) Zbiér X C SN jest nasycony, jezeli

(a) aMy...M, € X dlan >0, My,..., M, € SN i dowolnej zmiennej x,

(b) JeZGh Ml[x = Mo]MQ . Mn € X, to ()\.CC Mo)MlMQ .. Mn € X, gdzie

5) S={X CA: X jest nasycony}
Lemat 9.1 SN € S.
Lemat 9.2 Jezeli A, B €S, to A= B €S.
Whiosek 9.3 Dla dowolnego typu prostego o mamy [[o]] € S.

6) warto$ciowaniem nazywamy funkcje p: V — A

7)
B N jezeliy=u
p($ = N) (y) = { p(y) w przeciwnym przypadku
8) [[M]], = M[ = p(z1),..., 2, := p(x,)], gdzie p jest wartodciowaniem i
FV(M) =A{x1,...,zn}.

9) p=M:o iff [[M]], €],
10) p T iff p(z) € [[o]] dla wszystkich z: 0 € T,
1) ITEM:0iff VppET=pEM:o,
Lemat 9.4 Jezelil' M :0,toT' =M : 0.
Twierdzenie 9.5 Jezeli ' M : 0, to M € SN.
Dowéd. Zalézmy, ze I' = M : 0. Z poprzedniego lematu I' = M : 0. Wezmy p

takie, ze p(xz) = = przynajmniej dla z takich, ze x : 7 € I'. x € [[7]], poniewaz
[[7]] € S. Wobec tego, p =T i mamy M = [[M]], € [[¢]] C SN. O
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