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1 Semantyka Kripke’go

1.1 Wykorzystywany język

Będziemy zajmować się rachunkiem zdań, w którym mamy prawo posługiwać się
trzema spójnikami: koniunkcją ∧, alternatywą ∨ i implikacją → oraz stałą ⊥ (ro-
zumianą jako „sprzeczność”, czyli takie stwierdzenie, którego nikt nie uzna za
prawdziwe).

Rzecz jasna, mamy prawo, oprócz wymienionych symboli, posługiwania się
zmiennymi zdaniowymi.

Formuły rachunku zdań definiujemy w zwykły sposób, używając w razie po-
trzeby nawiasów.

Dodatkowo, będziemy pisać ¬p oraz p ↔ q. Napisy takiej postaci będziemy
uważać za skróty następujących formuł, odpowiednio negacji i równoważności:

¬p = p→ ⊥ oraz p↔ q = (p→ q) ∧ (q → p).

1.2 Semantyka Kripke’go

„Prawdziwość” formuł rozważanego języka będziemy ustalać odwołując się do in-
tuicji związanych z pracą ekspertów. Eksperci będą pochodzić z wszystkich krajów,
każdy z nich będzie dysponować pewną wiedzą. Dalej V oznacza zbiór zmiennych
zdaniowych.

Przyjmijmy, że

1) Świat jest zbiorem krajów. Formuła ϕ jest tautologią (intuicjonistyczną)
(symbolicznie: ‖− ϕ), jeżeli w każdym kraju eksperci uznali ją za spełnioną.

2) Niech C oznacza kraj. Każdy kraj utożsamiamy ze zbiorem ekspertów tego
kraju, czyli C rozumiemy jako zbiór ekspertów danego kraju. Formuła ϕ
jest uważana w kraju C za spełnioną (symbolicznie: C ‖− ϕ), jeżeli wszyscy
eksperci tego kraju uznali ją za spełnioną. Tak więc

‖− ϕ ⇔ ∀C C ‖− ϕ.

3) Każdy ekspert jest ekspertem określonego kraju (nie funkcjonuje poza swoim
krajem) i dysponuje pewną wiedzą, którą utożsamiamy z zbiorem zmiennych
zdaniowych (pewnych, tych, które ekspert uważa za spełnione lub prawdzi-
we). Formalnie, kraj C możemy uważać za podzbiór P(P(V )), wtedy ekspert
c ∈ C należy do P(V ), czyli jest podzbiorem V . Mamy więc

C ‖− ϕ ⇔ ∀c ∈ C c ‖− ϕ.
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4) Ekspert c z kraju C ustala swoje opinie, czyli stwierdzenia „uważam formułę
ϕ za spełnioną” (symbolicznie: c ‖− ϕ), zgodnie z następującymi zasadami:

(a) c ‖− p ⇔ p ∈ c w przypadku formuły będącej zmienną zdaniową p,

(b) c ‖− ϕ ∧ ψ ⇔ c ‖− ϕ oraz c ‖− ψ,

(c) c ‖− ϕ ∨ ψ ⇔ c ‖− ϕ lub c ‖− ψ,

(d) c 6 ‖− ⊥ (stałej ⊥ żaden ekspert nie uważa za spełnioną).

5) W przypadku implikacji ekspert swoją opinią uzgadnia z innymi ekspertami
kraju, z którego pochodzi. Jeżeli bada spełnialność implikacji ϕ → ψ, to
prosi wszystkich ekspertów z jego kraju, takich którzy dysponują wiedzą
obszerniejszą od niego, i twierdzą, że formuła ϕ jest spełniona o odpowiedź
na pytanie, czy formuła ψ jest spełnione. Prośbę tę kieruje także do siebie,
chyba że uważa ϕ za niespełnione. Jeżeli uzyska zgodną odpowiedź, że tak,
to twierdzi, że implikacja ϕ→ ψ jest spełniona. Tak więc dla c ∈ C mamy

c ‖− ϕ→ ψ ⇔ ∀c′ ∈ C (c ⊆ c′ ∧ c′ ‖− ϕ)⇒ c′ ‖− ψ. (1)

1.3 Kilka własności semantyki Kripke’go

Lemat 1.1 Jeżeli c, c′ ∈ C oraz c ⊆ c′, to warunek c ‖− ϕ pociąga za sobą, że
c′ ‖− ϕ.

Dowód. Przez indukcję ze względu na budowę formuły ϕ. 2

Lemat 1.2 Przypuśćmy, że c ∈ C. Wtedy własność c ‖− ¬ϕ jest równoważna
stwierdzeniu, że c′ 6 ‖− ϕ zachodzi dla wszystkich c′ ∈ C takich, że c ⊆ c′.

Dowód. Wystarczy w równoważności (1) podstawić ⊥ zamiast ψ. 2

Wniosek 1.3 W kraju C, w którym jest jeden ekspert, wiedza tego eksperta wy-
znacza wartościowanie zmiennych zdaniowych h: to wartościowanie przyporządko-
wuje T tym zmiennym, które ekspert tego kraju uważa za spełnione, a pozostałym
zmiennym przyporządkowuje F. W tej sytuacji, dla wszystkich formuł ϕ zachodzi
równoważność

C ‖− ϕ ⇔ ϕ[h] = T. 2

Wniosek 1.4 Tautologie intuicjonistycznego rachunku zdań są tautologiami kla-
sycznego rachunku zdań. 2

Przykład 1.5 Formuła p→ ¬¬p = p→ ((p→ ⊥)→ ⊥) jest tautologią intuicjo-
nistyczną. Aby się o tym przekonać, weźmy dowolny kraj C i dowolnego eksperta c
z tego kraju, przekonanego o spełnialności p (takiego, że p ∈ c). Chcemy pokazać,
że c ‖− ¬¬p. W tym celu, zgodnie z lematem 1.2, należy wykazać, że c′ 6 ‖− ¬p dla
dowolnego c′ ⊃ c. Jest to oczywiste, ponieważ p ∈ c′, więc gdyby c′ stwierdzał
spełnialność ¬p = p→ ⊥, to musiałby także twierdzić, że spełniona jest formuła
⊥.

Przykład 1.6 Formuła ¬¬p → p = ((p → ⊥) → ⊥) → p nie jest tautologią
intuicjonistyczną. Aby się o tym przekonać, weźmy kraj C, w którym jest tylko
dwóch ekspertów: ∅, przekonany o niespełnialności dowolnego p ∈ V , oraz {p},
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przekonany wyłącznie o spełnialności zmiennej p. Obaj ci eksperci są przekona-
ni o niespełnialności formuły ¬p = p → ⊥. Drugi dlatego, bo musi uwzględnić
swoją opinię o spełnialności formuły ⊥, która jest oczywiście negatywna. Pierwszy
dlatego, bo mimo że sam nie musi się zastanawiać (p 6∈ ∅) nad spełnialnością ⊥,
to jednak musi uwzględnić opinię drugiego eksperta, która, rzecz jasna, jest nega-
tywna. W tej sytuacji ekspert ∅ jest przekonany o spełnialności ¬¬p = ¬p→ ⊥.
Zastanawiając się nad spełnialnością tej implikacji musi uwzględnić opinie innych
ekspertów, ale tylko przekonanych o spełnialności formuły ¬p. W rozważanym
kraju takich ekspertów nie ma. Nie usłyszy więc negatywnych opinii, a więc prze-
kona się o słuszności stwierdzenia ¬¬p. Gdy będzie więc rozstrzygać o słuszności
implikacji ¬¬p → p, będzie przekonany o słuszności jej poprzednika, ale będzie
też uważać, że nie zachodzi jej następnik. Odrzuci więc prawdziwość implikacji na
podstawie własnej opinii.

Przykład 1.7 Podobnie, jak w poprzednim przykładzie, można wykazać, że w
kraju, w którym jest dwóch ekspertów c i c′, takich, że c ⊆ c′, nie uważa się
prawdziwe prawa wyłączonego środka, a w szczególności formuły p ∨ ¬p, gdzie
p ∈ c′ \ c. Wynika to z opinii eksperta c.

2 Algebry Heytinga

2.1 Intuicje

Dość trudno powiedzieć, jakie zdania uważamy za prawdziwe. Za to mamy dobrze
opracowane metody uzasadniania relatywnej prawdziwości: często przekonywuje-
my się na wzajem, że prawdziwość jakichś faktów pociąga za sobą prawdziwość
innych. Mając zbiór jakiś faktów T , lub zbiór powszechnie przyjętych aksjomatów,
możemy w zbiorze wszystkich formuł wprowadzić relację ∼, w której są każde dwie
formuły, o których ze zbioru T potrafimy wyprowadzić, że są równoważne. Formu-
ły ϕ i ψ takie, że ϕ ∼ ψ możemy uważać za równie prawdziwe (w pewnym sensie).
Relacja ∼ powinna być relacją równoważności. Jej klasy abstrakcji możemy uwa-
żać za „miary prawdziwości” (coś, co oddaje, jak bardzo formuła jest prawdziwa)
lub za wartości logiczne. Przyjrzyjmy się tym klasom abstrakcji.

Wraz z relacją ∼ w zbiorze jej klas abstrakcji możemy wprowadzić wiele innych
działań i relacji. W pierwszym rzędzie możemy wprowadzić porządek częściowy
przyjmując, że

[ϕ]∼ ¬ [ψ]∼ ⇔ z T potrafimy wyprowadzić ϕ→ ψ.

Relację [ϕ]∼ ¬ [ψ]∼ można rozumieć jako stwierdzenie, że formuła ψ jest „bardziej
prawdziwa” niż formuła ϕ. Wśród klas abstrakcji relacji ∼ mamy klasę największą
(klasa [ϕ]∼ dla ϕ ∈ T lub formuł ϕ takich jak p→ p) i najmniejszą (klasa negacji
aksjomatów lub formuł takich, jak p ∧ ¬p).

Dalej, w zbiorze klas abstrakcji relacji ∼ możemy wprowadzić dwa działania ∩
i ∪ przyjmując

[ϕ]∼ ∩ [ψ]∼ = [ϕ ∧ ψ]∼ oraz [ϕ]∼ ∪ [ψ]∼ = [ϕ ∨ ψ]∼.

Te działania są dobrze określone i pozwalają dla danych stopni „prawdziwości”
formuł ϕ i ψ, wyliczyć, jak bardzo „prawdziwe” są formuły ϕ ∧ ψ i ϕ ∨ ψ. Jest
też widoczny związek między tymi działaniami i porządkiem. Wiemy, że zawsze
ϕ∧ψ implikuje zarówno ϕ, jak i ψ. Dla porządku ¬ oznacza to, że klasa [ϕ∧ψ]∼

3



ogranicza z dołu obie klasy [ϕ]∼ i [ψ]∼. Z drugiej strony, z faktów σ → ϕ oraz
σ → ψ potrafimy wywnioskować, że σ → ϕ ∧ ψ. W języku porządku oznacza to,
że klasa [ϕ ∧ ψ]∼ jest największym ograniczeniem dolnym klas [ϕ]∼ i [ψ]∼. Tak
więc klasa [ϕ ∧ ψ]∼ jest kresem dolnym zbioru klas {[ϕ]∼, [ψ]∼}. Podobnie, klasa
[ϕ ∨ ψ]∼ jest kresem górnym tego zbioru.

Tak definiowane struktury można uważać za algebry i nazywa się algebrami
Lindenbauma.

2.2 Kraty, czyli lattices

Kraty można definiować na dwa sposoby: Są to albo zbiory częściowo uporządko-
wane, w których każde dwa elementy a i b mają kresy dolny a ∩ b i górny a ∪ b.
Albo są to algebry z dwoma działaniami ∩ i ∪, dwuargumentowymi, łącznymi i
przemiennymi, spełniającymi dodatkowo prawa absorpcji

(a ∩ b) ∪ b = b oraz (a ∪ b) ∩ b = b.

Obie definicje są równoważne. W szczególności, w takich algebrach warunki a∪b =
b oraz a∩ b = a są równoważne i definiują porządek ich uniwersów o własnościach
wymaganych od krat.

2.3 Relatywne pseudodopełnienie

Przypuśćmy, że mamy daną kratę z porządkiem ¬ i operacjami kresu dolnego ∩ i
górnego ∪. Dla dwóch elementów a i b tej kraty relatywnym pseudodopełnieniem
a względem b (a do b?) nazywamy – o ile istnieje – największy element x taki,
że a ∩ x ¬ b. Relatywne pseudodopełnienie a względem b będziemy oznaczać
symbolem a⇒ b. Może zostać scharakteryzowane przez warunek

a ∩ x ¬ b ⇔ x ¬ a⇒ b (2)

zachodzący dla wszystkich elementów x należących do rozważanej kraty.
Jeżeli zgodzimy się z tym, że następujące formuły

ϕ ∧ (ϕ→ ψ)→ ψ oraz (ϕ ∧ σ → ψ)→ (σ → (ϕ→ ψ))

są prawami logiki, to rozważania z rozdziału 2.1 można uzupełnić o spostrzeżenie,
że klasa abstrakcji [ϕ→ ψ]∼ jest relatywnym pseudodopełnieniem [ϕ]∼ względem
[ψ]∼.

Przykład 2.1 Rozważmy pięcioelementowy zbiór uporządkowany, w którym są
elementy największy max i najmniejszy min, a także trzy wzajemnie nieporów-
nywalne elementy pośrednie a, b i c. Jest to krata. Warunek a ∩ x ¬ b jest w tej
kracie spełniony przez dwa elementy x = b i x = c. Nie ma wśród nich elementu
największego. Inaczej: nie można w niej wskazać takiego elementu a⇒ b, aby za-
chodziła równoważność (1). Tak więc w tej kracie nie można zdefiniować operacji
relatywnego pseudodopełnienia.

2.4 Algebry Heytinga

Algebrą Heytinga nazywamy dowolną kratę, w której każde dwa elementy a i b
mają relatywne pseudodopełnienie a⇒ b, i w której jest element najmniejszy 0.

W algebrach Heytinga można wprowadzić operację dopełniania przyjmując, że
dopełnieniem a jest −a = a⇒ 0.
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Lemat 2.2 W algebrach Heytinga jest element największy.

Dowód. Tym elementem – na mocy równoważności (2) – jest a ⇒ a (bierzemy
dowolne a). 2

Element największy w algbrze Heytinga będziemy oznaczać symbolem 1.

Lemat 2.3 W algebrach Heytinga, dla dowolnego a mamy a ∩ −a = a ∩ (a ⇒
0) = 0 i – wobec tego – zachodzi także nierówność a ¬ −− a.

Dowód. Jeżeli w równoważności (2) wyrażenie b zastąpimy przez 0 i podstawimy
dopełnienie −a za x, to lewa strona równoważności okaże się nierównością a∩(a⇒
0) ¬ 0 równoważną tezie, a prawa strona jest oczywiście prawdziwa. Możemy
też spowodować, aby lewa strona równoważności (2) była nierównością postaci
(a ⇒ 0) ∩ a ¬ 0, prawdziwą na mocy pierwszej części dowodu. Wtedy prawa
strona będzie nierównością a ¬ (a ⇒ 0) ⇒ 0, czyli a ¬ − − a, i też będzie
prawdziwa. 2

W algebrach Heytinga na ogół nie zachodzi prawo a = − − a. Jeżeli jednak
zachodzi w pewnej algebrze Heytinga, to ta algebra staje się algebrą Boole’a.

W kratach na ogół nie zachodzą prawa rozdzielności: można wykazać tylko
jedną nierówność, na przykład

(a ∩ b) ∪ (a ∩ c) ¬ a ∩ (b ∪ c).

Przeciwna nierówność nie musi zachodzić, podobna sytuacja dotyczy prawa roz-
dzielności działania ∪ względem ∩. Przykładem może być pięcioelementowa krata
z elementami największym i najmniejszym, i trzema innymi, wzajemnie nieporów-
nywalnymi elementami.

Lemat 2.4 W algebrach Heytinga zachodzą oba prawa rozdzielności.

Dowód. Zauważmy, że

1) a ∩ b ¬ (a ∩ b) ∪ (a ∩ c),

2) b ¬ a⇒ (a ∩ b) ∪ (a ∩ c), na mocy równoważności (2),

3) c ¬ a⇒ (a ∩ b) ∪ (a ∩ c), z tych samych powodów,

4) b ∪ c ¬ a⇒ (a ∩ b) ∪ (a ∩ c), z własności kresu górnego,

5) a ∩ (b ∪ c) ¬ (a ∩ b) ∪ (a ∩ c), na podstawie (2),

6) a∩ (b∪c) = (a∩b)∪ (a∩c) ze słabej antysemtryczności ¬ (przeciwna relacja
w dowolnej kracie jest łatwa do wykazania).

Drugie prawo rozdzielności dowodzimy analogicznie. 2

Przykładami algebr Heytinga mogą być zbiory potęgowe P (X) z relacją za-
wierania (wtedy A ∪ B i A ∩ B są zwykłymi działaniami mnogościowymi, sumą i
przekrojem, zaś A ⇒ B = (X \ A) ∪ B), zbiory dzielników ustalonej liczby natu-
ralnej n uporządkowane relacją podzielności (wtedy a ∪ b = NWW (a, b), a ∩ b =
NWD(a, b)), a także skończone zbiory liniowo uporządkowane (a∪ b = max(a, b),
a ∩ b = min(a, b), a ⇒ b jest elementem największym w przypadku, gdy a ¬ b, i
równa się b w przeciwnym razie).
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Ważnym przykładem algebry Heytinga jest rodzina otwartych podzbiorów płasz-
czyzny R2 z relacją zawierania. Zbiór X ⊆ R2 jest otwarty, jeżeli wraz z każdym
elementem p ∈ X są w nim wszystkie punkty odległe od p o mniej niż pewne dodat-
nie ε. Kwadrat jednostkowy z tzw. brzegiem {(x, y) ∈ R2 : 0 ¬ x, y ¬ 1} nie jest
otwarty, w przeciwieństwie do kwadratu bez brzegu {(x, y) ∈ R2 : 0 < x, y < 1}.
Każdy zbiór na płaszczyźnie ma tzw. wnętrze, czyli największy zbiór otwarty w
nim zawarty. W tej algebrze A ∪ B i A ∩ B są równe odpowiednio sumie mnogo-
ściowej i przekrojowi A i B, zaś A⇒ B jest wnętrzem zbioru (R2 \ A) ∪B.

2.5 Wartościowanie formuł w algebrach Heytinga

Będziemy zajmować się rachunkiem zdań, a formuły tego rachunku będziemy zapi-
sywać używając spójników ∧, ∨, → oraz stałej ⊥, a także zmiennych zdaniowych
ze zbioru V .

Niech A = 〈A,∩,∪,⇒,0,1〉 będzie algebrą Heytinga. Wartościowaniem zmien-
nych zdaniowych w algebrze A będziemy nazywać dowolną funkcję v przyporząd-
kowującą zmiennym ze zbioru V elementy uniwersum algebry A.

Mając wartościowanie zmiennych v definiujemy wartość (logiczną) [[ϕ]]v for-
muły ϕ przy wartościowaniu v przyjmując następujące równania rekurencyjne:

1) [[p]]v = v(p) dla dowolnej zmiennej p ∈ V ,

2) [[ϕ ∧ ψ]]v = [[ϕ]]v ∩ [[ψ]]v,

3) [[ϕ ∨ ψ]]v = [[ϕ]]v ∪ [[ψ]]v,

4) [[ϕ→ ψ]]v = [[ϕ]]v ⇒ [[ψ]]v,

5) [[⊥]]v = 0.

Formuła ϕ jest spełniona w algebrze A przy wartościowaniu v, jeżeli [[ϕ]]v = 1.
Formuła ϕ jest spełniona w algebrze A, jeżeli jest spełniona w tej algebrze przy

wszystkich wartościowaniach. Fakt spełniania formuły ϕ w algebrze A zapisujemy
wzorem A |= ϕ.

Formuła ϕ jest (intuicjonistyczną) tautologią, jeżeli jest spełniona we wszyst-
kich algebrach Heytinga, symbolicznie fakt ten będziemy wyrażać wzorem |= ϕ.

Formuła ϕ jest klasyczną tautologią, jeżeli jest spełniona we wszystkich alge-
brach Boole’a.

3 Intuicjonistyczna dedukcja naturalna w rachun-
ku zdań

Będziemy posługiwać się językiem opisanym w rozdziale 1.1 i zdefiniujemy relację
Γ ` ϕ, gdzie ϕ jest formułą wspomnianego języka, a Γ – zbiorem formuł tego języka.
Intuicyjnie, zbiór Γ jest albo zbiorem aksjomatów, albo zbiorem przyjętych założeń,
a definiowana relacja może być rozumiana jako stwierdzenia, że z aksjomatów (lub
założeń) Γ potrafimy wywnioskować (wyprowadzić) zdanie ϕ.

W systemach dedukcji naturalnej zwykle nie ma istotnej różnicy między aksjo-
matami i założeniami, a tzw. twierdzenie o dedukcji jest właściwie częścią definicji
systemu. Dowodzenie implikacji ϕ → ψ w takich systemach polega na uznaniu
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poprzednika ϕ za dodatkowe założenie i wywnioskowanie z tego założenia i po-
zostałych, oraz z aksjomatów następnika ψ. Z doświadczenia wynika, że jest to
bardzo wygodny sposób uzasadniania twierdzeń.

Relację ` definiujemy jako najmniejszą relacją spełniającą następujące reguły:

Γ, ϕ ` ϕ
,

Γ ` ϕ, Γ ` ψ
Γ ` ϕ ∧ ψ

,
Γ ` ϕ ∧ ψ

Γ ` ϕ
,

Γ ` ϕ ∧ ψ
Γ ` ψ

,

Γ, ϕ ` σ, Γ, ψ ` σ, Γ ` ϕ ∨ ψ
Γ ` σ

,
Γ ` ϕ

Γ ` ϕ ∨ ψ
,

Γ ` ψ
Γ ` ϕ ∨ ψ

,

Γ, ϕ ` ψ
Γ ` ϕ→ ψ

,
Γ ` ϕ, Γ ` ϕ→ ψ

Γ ` ψ
,

Γ ` ⊥
Γ ` ϕ

.

Wymienione reguły rozumiemy jako stwierdzenia, jeżeli zachodzą relacje znaj-
dujące się nad kreską, to zachodzi także relacja podana pod kreską.

Zauważmy też, że w tak sformułowanym systemie dedukcji naturalnej nie ma
pojęcia dowodu. Drzewo wyprowadzenia relacji postaci Γ ` ϕ jest metadowodem,
czyli dowodem, że coś można udowodnić (bez powiedzenia, jak). Oczywiście, po-
jęcie dowodu można wprowadzić, ale w systemie dedukcji naturalnej jest nieco
bardziej skomplikowane ze względu na konieczność operowania założeniami.

Na koniec zauważmy, że mamy możliwość przeprowadzania dowodów nie wprost.
Pierwsza reguła dotycząca implikacji (reguła wprowadzania implikacji) w szczegól-
nym przypadku ψ = ⊥ przyjmuje postać

Γ, ϕ ` ⊥
Γ ` ¬ϕ

.

(Pamiętajmy, że formuła ¬ϕ to dokładnie ϕ → ⊥). Jest to właściwie reguła do-
wodzenia negacji, stwierdza ona, że negację ¬ϕ dowodzimy nie wprost, wyprowa-
dzając sprzeczność z formuły ϕ.

Bardzo ważne jest to, że w przedstawionym systemie metodą nie wprost może-
my dowodzić wyłącznie negacje. Zwykle również nieco inaczej tworzymy dowody
nie wprost: Jeżeli chcemy dowieść ϕ, to wyprowadzamy sprzeczność z ¬ϕ. Posłu-
gujemy się więc następującą regułą:

Γ,¬ϕ ` ⊥
Γ ` ϕ

. (3)

Dołączenie do systemu dedukcji naturalnej powyższej reguły istotnie rozszerza
zbiór możliwych do udowodnienia formuł. Rozważany system pozwala na dowie-
dzenie wszystkich tez intuicjonistycznego rachunku zdań, a po rozszerzeniu umoż-
liwia także dowodzenie tez klasycznego rachunku zdań.

Zadanie 3.1 Pokaż, że ` p→ ¬¬p. Spróbuj dowieść implikację odwrotną ¬¬p→
p. Pokaż, że ` ¬¬p→ p w klasycznym rachunku zdań, gdy mamy prawo korzystać
także z reguły (3).
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4 Twierdzenia o pełności

Lemat 4.1 (o poprawności) Niech C ⊆ P(P(V )) (patrz rozdział 1.2). Załóż-
my, że Γ ` ϕ. Jeżeli zgodnie z semantyką Kripke’go wszystkie formuły γ ∈ Γ są
uważane za spełnione w kraju C (C ‖− γ dla wszystkich γ ∈ Γ), to także formuła
ϕ jest uważana za spełnioną w kraju C (także C ‖− ϕ).

Dowód. Dość łatwy, przez indukcję wynikającą z definicji relacji `. 2

Lemat 4.2 (o poprawności) Weźmy algebrę Heytinga A i wartościowanie v w
tej algebrze. Załóżmy, że Γ ` ϕ. Jeżeli wszystkie formuły γ ∈ Γ są spełnione przy
wartościowaniu v w algebrze A ([[γ]]v = 1 dla wszystkich γ ∈ Γ), to także formuła
ϕ jest spełnioną w A przy wartościowaniu v (także [[ϕ]]v = 1).

Dowód. Łatwy, przez indukcję wynikającą z definicji relacji `. 2

Twierdzenie 4.3 (o pełności) Przypuśćmy, że formuła ϕ jest uważana za speł-
nioną w każdym kraju, w którym uważane za spełnione są wszystkie formuły γ ∈ Γ.
Wtedy Γ ` ϕ. Albo inaczej, jeżeli C ‖−ϕ dla dowolnego C takiego, że wszystkie γ ∈ Γ
są w C uważane za speńione (zachodzi C ‖− γ), to Γ ` ϕ. 2

Twierdzenie 4.4 (o pełności) Przypuśćmy, że formuła ϕ jest spełniona w każ-
dej algebrze Heytinga, w której przy wszystkich wartościowaniach są spełnione
wszystkie formuły γ ∈ Γ. Wtedy Γ ` ϕ. Albo inaczej, jeżeli A |= ϕ dla dowol-
nej algebry Heytinga A, w której wszystkie γ ∈ Γ są speńione (zachodzi A |= γ),
to Γ ` ϕ.

Dowód. Konstruujemy i wykorzystujemy w dowodzie tzw. algebrę Lindenbauma,
opisaną w rozdziale 2.1. Jeżeli w algebrze Lindenbauma dla zbioru Γ spełniona
jest formuła ϕ przy wartościowaniu v(p) = [p]∼, to na mocy definicji tej algebry,
ze zbioru Γ można wyprowadzić ϕ. 2

Wniosek 4.5 Dla dowolnej formuły ϕ równoważne są następujące warunki

1) ` ϕ (czyli ϕ daje się dowieść w rozważanym, intuicjonistycznym systemie
dedukcji naturalnej),

2) ‖− ϕ (czyli ϕ jest tautologią według Kripke’go),

3) |= ϕ (czyli tautologią według Heytinga). 2

5 Implikacyjny fragment rachunku zdań

5.1 Dowody w stylu Hilberta

Ciąg formuł ϕ1, ϕ2, . . . ϕn jest dowodem (w stylu Hilberta, zgodnie z definicją po-
stulowaną i analizowaną przez Hilberta) formuły ϕ, jeżeli ϕn = ϕ oraz dla wszyst-
kich i = 1, 2, . . . , n

1) ϕi jest aksjomatem (logicznym lub pozalogicznym) lub też

2) ϕi jest wnioskiem z niektórych formuł ϕj dla j < i (z przesłanek takiej
postaci) otrzymanym za pomocą jednej z przyjętych reguł dowodzenia.
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Oczywiście przyjęta definicja pojęcia dowodu jest nieprecyzyjna, wymaga jeszcze
wyjaśnienia, jakie formuły uważamy za aksjomaty, i wskazania reguł dowodzenia,
którymi mamy prawo się posługiwać.

Aksjomaty logiczne będziemy uważać za część definicji dowodu, muszą zostać
wskazane (bez nich niczego nie dowiedziemy), ale w zasadzie nie będą ulegać zmia-
nie. Aksjomaty pozalogiczne będziemy dobierać zależnie od potrzeb. Zapis Γ `H ϕ,
gdzie Γ jest dowolnym zbiorem formuł, będzie oznaczać, że formuła ϕ ma dowód
(czyli istnieje ciąg spełniający wyżej podane warunki) korzystający z określonych
aksjomatów logicznych i ze zbioru aksjomatów pozalogicznych Γ.

5.2 Implikacyjny fragment intuicjonistycznego rachunku

Można go zdefiniować na dwa równoważne, niewiele różniące się sposoby. Albo
jako te formuły rachunku zdań, które można zapisać używając jedynie implikacji
(i zmiennych zdaniowych), i które można dowieść w systemie dedukcji natural-
nej, albo jako te formuły, które można dowieść w systemie dedukcji naturalnej
posługując się jedynie trzema regułami:

Γ, ϕ ` ϕ
,

Γ, ϕ ` ψ
Γ ` ϕ→ ψ

,
Γ ` ϕ, Γ ` ϕ→ ψ

Γ ` ψ
.

Zauważmy, że

` (σ → τ → ρ)→ (σ → τ)→ (σ → ρ) oraz ` σ → τ → σ.

5.3 Implikacyjny fragment według Hilberta

Będziemy rozważać też system hilbertowski, w którym formuły zapisujemy uży-
wając (poza zmiennymi zdaniowymi) wyłącznie znaku implikacji→. Aksjomatami
logicznymi tego systemu będą wszystkie formuły dwóch, niżej wymienionych po-
staci:

(σ → τ → ρ)→ (σ → τ)→ (σ → ρ) oraz σ → τ → σ.

Posługujemy się w nim jedną regułą dowodzenia, a mianowicie regułą odrywania

ϕ, ϕ→ ψ

ψ
.

Przykład 5.1 Weźmy formułę ϕ. Pokażemy, że w opisanym systemie można do-
wieść formułę ϕ→ ϕ, a więc pokażemy, że `H ϕ→ ϕ. Dowodem tej formuły jest
następujący ciąg formuł

1) (ϕ → (ϕ → ϕ) → ϕ) → (ϕ → (ϕ → ϕ)) → ϕ → ϕ (jest to pierwszy
z aksjomatów pozalogicznych, wzięliśmy jego wersję, w której użyliśmy ϕ
zamiast σ i ρ oraz ϕ→ ϕ zamiast τ),

2) ϕ → (ϕ → ϕ) → ϕ (jest to drugi z aksjomatów pozalogicznych, użyliśmy ϕ
zamiast σ oraz ϕ→ ϕ zamiast τ),

3) (ϕ → (ϕ → ϕ)) → ϕ → ϕ (jest to wniosek wynikający za pomocą reguły
odrywania z dwóch poprzedzających stwierdzeń),

4) ϕ → (ϕ → ϕ) (jest to drugi z aksjomatów pozalogicznych, użyliśmy ϕ za-
miast σ oraz τ),
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5) ϕ → ϕ (jest to wniosek otrzymany za pomocą reguły odrywania z dwóch
ostatnich stwierdzeń).

Twierdzenie 5.2 (o dedukcji) Dla dowolnych formuł ϕ i ψ, i zbioru γ, warunek
Γ, ϕ `H ψ zachodzi wtedy i tylko wtedy, gdy Γ `H ϕ→ ψ.

Dowód. Mając dowód ψ1, . . . , ψn formuły ψ korzystający z aksjomatu ϕ tworzy-
my ciąg ϕ → ψ1, . . . , ϕ → ψn i pokazujemy, że dodając do niego odpowiednie
formuły możemy uzupełnić go do dowodu formuły ϕ → ψ. Implikacja odwrotna
jest oczywista. Zauważmy jeszcze, że jako aksjomaty logiczne wzięliśmy formuły
niezbędne w dowodzie twierdzenia o dedukcji. 2

Twierdzenie 5.3 Dla dowolnej formuły zapisanej tylko z użyciem implikacji i dla
dowolnego Γ, warunek Γ ` ϕ jest równoważny z Γ `H ϕ.

Dowód. Implikację „z lewej do prawej” dowodzimy przez indukcję wynikającą
z definicji relacji `. W najtrudniejszym momencie korzystamy z twierdzenia o
dedukcji. Implikację odwrotną dowodzimy przez łatwą indukcją ze względu na
długość dowodu. Musimy tylko sprawdzić, że aksjomaty logiczne można dowieść
w systemie dedukcji naturalnej. 2

6 Rachunek zdań drugiego rzędu

6.1 Formuły

Formuły rachunku zdań II rzędu, jak zwykle, definiujemy przez indukcję przyjmu-
jąc, że

1) zmienne zdaniowe są formułami rachunku zdań II rzędu,

2) stała ⊥ jest formułą rachunku zdań II rzędu,

3) jeżeli ϕ i ψ są formułami rachunku zdań II rzędu, to ϕ∧ψ, ϕ∨ψ oraz ϕ→ ψ
też są formułami rachunku zdań II rzędu,

4) jeżeli ϕ jest formułą rachunku zdań II rzędu, a p jest zmienną zdaniową to
∀pϕ oraz ∃pϕ też są formułami rachunku zdań II rzędu.

6.2 Intuicje

W klasycznym rachunku zdań, w którym dodatkowo mamy prawo posługiwać się
zdaniem sprzecznym ⊥ i zdaniem „absolutnie prawdziwym” >, rachunek zdań II
rzędu definiuje się tak, aby zachodziły równoważności

∀pϕ ↔ ϕ[p := >] ∧ ϕ[p := ⊥] oraz ∃pϕ ↔ ϕ[p := >] ∨ ϕ[p := ⊥].

Albo mniej formalnie: zdanie ∀pϕ jest prawdziwe, jeżeli zdanie ϕ jest prawdziwe
bez względu na treść lub wartość logiczną zdania p, a zdanie ∃pϕ jest prawdziwe,
jeżeli w pewnych sytuacjach, czyli dla odpowiednio dobranych p o odpowiedniej
wartości logicznej, zdanie ϕ jest prawdziwe.
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6.3 Dedukcja naturalna dla języka II rzędu

System dedukcji naturalnej dla języka II rzędu dopuszcza korzystanie z wszystkich
reguł wnioskowania wymienionych w rozdziale 3 i dodatkowo pozwala stosować
następujące reguły:

Γ ` ϕ
Γ ` ∀pϕ

o ile p 6∈ FV (Γ),
Γ ` ∀pϕ

Γ ` ϕ[p := σ]
,

Γ ` ϕ[p := σ]
Γ ` ∃pϕ

,
Γ ` ∃pϕ, Γ, ϕ ` ψ

Γ ` ψ
o ile p 6∈ FV (Γ, ϕ).

W powyższych regułach, wzór FV (Γ) oznacza zbiór zmiennych wolnych występują-
cych w Γ, czyle sumę zbiorów zmiennych wolnych występujących w poszczególnych
formułach z Γ.

6.4 Semantyka oparta o algebry Heytinga

Aby zdefiniować semantykę dla języka II rzędu potrzebne są zupełne algebry Hey-
tinga. Algebry Heytinga to zbiory uporządkowane. Zupełne algebry Heytinga to
zupełne zbiory uporządkowane, a więc takie, że każdy zbiór elementów tego zbioru,
także nieskończony, ma kresy: dolny i górny.

Jest sporo zupełnych algebr Heytinga. Takimi są algebry skończone, algebra
otwartych podzbiorów płaszczyzny, a także odcinek [0, 1] ze zwykłym porządkiem.

Pojęcie wartościowania i wartości logicznej formuły II rzędu definiujemy po-
dobnie jak definiowaliśmy odpowiedniki tych pojęć w przypadku rachunku rzędu
I w rozdziale 2.5. Są jednak pewne różnice. Po pierwsze, wartościowania przyj-
mują wartości w zupełnych algebrach Heytinga. Po drugie, podane w rozdziale
2.5 warunki definiujące wartość logiczną muszą zostać uzupełnione o warunki po-
zwalające obliczać wartości formuł rozpoczynających się kwantyfikatorami, czyli o
warunki:

6) [[∀pϕ]]v = kres dolny zbioru {[[ϕ]]w : ∀q 6= p w(q) = v(q)},

7) [[∃pϕ]]v = kres górny zbioru {[[ϕ]]w : ∀q 6= p w(q) = v(q)}.

Licząc zgodnie z tymi wzorami np. wartość formuły ∀pϕ przy wartościowaniu
v, znajdujemy najpierw wartości logiczne [[ϕ]]w dla wszystkich wartościowań w,
które zmiennym różnym od p przypisują te same wartości, co wartościowanie v, a
następnie znajdujemy odpowiedni kres.

Jak zwykle, dość łatwo dowodzi się lemat o poprawności semantyki:

Lemat 6.1 Niech A będzie ustaloną, zupełną algebrą Heytinga. Jeżeli Γ = {ψ1, ψ1, . . . , ψn}
oraz Γ ` ϕ, to dla wszystkich wartościowań v w algebrze A zachodzi nierówność

[[ψ1]]v ∩ [[ψ2]]v ∩ . . . ∩ [[ψn]]v ¬ [[ϕ]]v. 2

6.5 {∀,→}-fragment rachunku zdań II rzędu

W {∀,→}-fragmencie rachunku zdań II rzędu można zdefiniować wszystkie spój-
niki logiczne i kwantyfikator ∃. Przyjmijmy, że

1) ⊥ = ∀αα,
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2) ϕ ∧ ψ = ∀α ((ϕ→ ψ → α)→ α) o ile α 6∈ FV (ϕ) ∪ FV (ψ),

3) ϕ ∨ ψ = ∀α ((ϕ→ α)→ (ψ → α)→ α) o ile α 6∈ FV (ϕ) ∪ FV (ψ),

4) ∃αϕ = ∀β ((∀α (ϕ→ β))→ β) o ile β 6∈ FV (ϕ).

Zadanie 6.1 Następujące fakty wydają się prawdziwe, a więc spróbuj je dowieść:

1) Jeżeli w wyżej podanych równościach symbol = zastąpimy przez↔, to otrzy-
mamy formuły, które można dowieść w rozważanym rachunku zdań II rzędu.

2) Przyjmujemy wyżej podane definicje spójników i kwantyfikatorów. Dla każdej
reguły opisującej naturalną dedukcję w rachunku zdań II rzędu, w {∀,→}-
fragmencie tego rachunku dowiedź, że przy takich definicjach, z prawdziwości
przesłanek wynika prawdziwość wniosków (z prawdziwości stwierdzeń nad
kreską wynika prawdziwość stwierdzeń pod kreską).

7 Prosty system typów

7.1 Podstawowe pojęcia i notacja

Zapis M : σ będziemy uważać za stwierdzenie, że „term M jest typu σ”. W takim
kontekscie M zwykle będzie termem rachunku λ, czasem nieco zmodyfikowanym,
a σ – typem. Czasem zapis ten będzie rozumieć jako parę uporządkowaną złożoną
z termu M i typu σ.

Typy będą napisami zbudowanymi ze zmiennych typowych, zbiór zmiennych
typowych będziemy oznaczać symbolem V, oraz z symbolu →. Zbiór typów T
będzie najmniejszym zbiorem zawierającym V i spełniającym warunek

jeżeli σ, τ ∈ T, to (σ → τ) ∈ T.

Zapisując typy będziemy opuszczać niepotrzebne nawiasy. Przyjmujemy, że napis
σ1 → σ2 → σ3 oznacza typ (σ1 → (σ2 → σ3)).

Kontekstem nazywamy skończony i jednoznaczny zbiór par postaci x : σ, gdzie
x jest zmienną rachunku λ, a σ – typem. Kontekst Γ musi więc spełniać warunek

jeżeli x : σ1, x : σ2 ∈ Γ, to σ1 = σ2.

Konteksty są więc funkcjami, będziemy też w odniesieniu do kontekstów stosować
notacje związane z funkcjami. Tak więc Γ(x) = σ oznacza, że x : σ ∈ Γ, dom(Γ) to
dziedzina Γ, czyli zbiór zmiennych występujących w Γ, Γ[dom(Γ)] to zbiór wartości
przyjmowanych przez Γ, albo typów występujących w Γ. Zapis Γ, x : σ oznacza
Γ ∪ {x : σ}.

7.2 Relacja typowania à la Curry

Zdefiniujemy teraz relację Γ ` M : σ, gdzie Γ jest kontekstem, M – termem
rachunku λ, a σ – typem. Jest to najmniejsza relacja mająca następujące własności:

Γ, x : σ ` x : σ
,

Γ, x : σ `M : τ
Γ ` λxM : σ → τ

,
Γ `M : σ → τ, Γ ` N : σ

Γ `MN : τ
.

W powyższej definicji termy powinny być rozumiane jako klasy abstrakcji re-
lacji α-konwersji.
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7.3 Najprostsze własności

Lemat 7.1 Załóżmy, że Γ `M : σ. Wtedy

1) jeżeli Γ ⊆ Γ′, to Γ′ `M : σ,

2) FV (M) ⊆ dom(Γ),

3) jeżeli Γ′ jest kontekstem Γ ograniczonym do zbioru FV (M), to Γ′ ` M : σ.
2

Lemat 7.2 1) Jeżeli Γ ` M : σ, to Γ[α := τ ] ` M : σ[α := τ ] (α to zmienna
typowa, chyba wiadomo, jak podstawiamy typ w innym typie za zmienną ty-
pową, podstawianie w Γ to podstawianie we wszystkich typach występujących
w Γ).

2) Jeżeli Γ, x : τ `M : σ i Γ ` N : τ , to Γ `M [x := N ] : σ. 2

Chyba najważniejszy lemat stwierdza, że β-redukcja zachowuje typ termu:

Lemat 7.3 Jeżeli Γ `M : σ i M →→β N , to Γ ` N : σ. 2

7.4 Problem rekonstrukcji typu

Będziemy badać, czy dla danego termu M istnieją Γ i σ takie, że Γ ` M : σ.
Prezentuję tutaj jedno z możliwych rozwiązań, pochodzące od Berengregta, inne,
niż prezentowane na wykładzie.

Podstawieniem nazywamy funkcję θ : T → T taką, że θ(σ → τ) = (θσ) →
(θτ). Zwykle będziemy rozważać podstawienia, które poza skończonym zbiorem
zmiennych typowych α spełniają równość θ(α) = α.

Zdefiniujemy teraz (przez indukcję ze względu na M) zbiór E(Γ,M, σ) dla
kontekstu Γ, termu M takiego, że FV (M) ⊆ dom(Γ), i typu σ. Będzie to zbiór
równości typów, niekoniecznie prawdziwych, jednak takich, których odpowiednie
spełnienie zagwarantuje prawdziwość relacji Γ `M : σ. Przyjmujemy, że

1) E(Γ, x, σ) = {Γ(x) = σ}, gdzie x jest zmienną λ-rachunku,

2) E(Γ, λxM, σ) = E(Γ ∪ {x : α},M, α → β) ∪ {α → β = σ}, gdzie α i β są
„świeżymi” zmiennymi typowymi,

3) E(Γ,MN, σ) = E(Γ,M, α→ σ)∪E(Γ, N, α), gdzie α jest „świeżą” zmienną
typową.

Podstawienie θ unifikuje zbiór równości X, jeżeli θ(σ) = θ(τ) (jeżeli termy θ(σ)
i θ(τ) są identyczne) dla wszystkich równości σ = τ ∈ X. Fakt, że θ unifikuje X
będziemy wyrażać wzorem postaci θ |= X.

Jeżeli Γ = {x1 : σ1, . . . , xn : σn}, to θ(Γ) = {x1 : θ(σ1), . . . , xn : θ(σn)} (θ to
podstawienie).

Lemat 7.4 Jeżeli θ |= E(Γ,M, σ), to θ(Γ) `M : θ(σ). 2

Lemat 7.5 Jeżeli θ(Γ) ` M : θ(σ), to θ′ |= E(Γ,M, σ) dla pewngo podstawienia
θ′ takiego, że θ(α) = θ′(α) dla wszystkich zmiennych typowych α występujących w
Γ i σ. 2
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Wniosek 7.6 Niech M będzie dowolnym λ-termem ze zmiennymi wolnymi x1, . . . , xn,
a α1, . . . , αn i β będą zmiennymi typowymi. Wtedy

1) Jeżeli θ |= E({x1 : α1, . . . , xn : αn},M, β), to {x1 : θ(α1), . . . , xn : θ(αn)} `
M : θ(β).

2) Warunek Γ ` M : σ zachodzi dla pewnych Γ i σ wtedy i tylko wtedy, gdy
zbiór E({x1 : α1, . . . , xn : αn},M, β) ma unifikator. 2

Lemat 7.7 Problem, czy M ma typ (w pewnym kontekscie, jeżeli jest potrzebny),
jest rozstrzygalny. 2

Dla termu M najogólniejszym typem (a właściwie najgólniejszą parą, chyba że
M nie ma zmiennych wolnych), nazywamy parę Γ i σ taką, że

1) Γ `M : σ,

2) jeżeli Γ′ `M : σ′, to θ(Γ) ⊆ Γ′ oraz θ(σ) = σ′ dla pewnego podstawienia θ.

Lemat 7.8 Jeżeli term M ma typ (być może w pewnym kontekscie), to M ma
najogólniejszy typ.

Dowód. Konstruując najogólniejszy typ postępujemy tak, jak we wniosku 7.6: ale
teraz bierzemy najogólniejszy unifikator zbioru E({x1 : α1, . . . , xn : αn},M, β). 2

Do zagadnienia rekonstrukcji typu można też podejść inaczej, dowodząc lematy
takie, jak poniższy, stanowiące podstawę algorytmu rekurencyjnego.

Lemat 7.9 Przypuśćmy, że ΓM ` M : σM oraz ΓN ` N : σN . Przyjmijmy,
że ΓM = {x1 : α1,M , . . . , xn : αn,M}, podobnie ΓN , oraz FV (M) ∩ FV (N) =
{x1, . . . , xk}. Wtedy term MN ma typ wtedy i tylko wtedy, gdy można zunifikować
układ równości

α1,M = α1,N , . . . , αk,M = αk,N , σM = σN → β.

Jeżeli θ jest unifikatorem tego układu, to

θ(ΓM) ∪ θ(ΓN) `MN : θ(β). 2

7.5 Relacja typowania à la Church

Zdefiniujemy teraz relację Γ ` M : σ, gdzie Γ jest kontekstem, σ – typem, a M
termem rachunku λ, ale z pewnymi dopiskami.

Musi więc najpierw zmodyfikować pojęcie termu: w zwykłej definicji λ-termu
warunek dotyczący abstrakcji zastępujemy następującym:

jeżeli M jest termem, x - zmienną, a σ ∈ T, to λx : σM też jest termem.

Jest to najmniejsza relacja mająca następujące własności:

Γ, x : σ ` x : σ
,

Γ, x : σ `M : τ
Γ ` λx : σM : σ → τ

,
Γ `M : σ → τ, Γ ` N : σ

Γ `MN : τ
.

W powyższej definicji termy też powinny być rozumiane jako klasy abstrakcji
relacji α-konwersji.

Oba systemy typów mają podobne własności:
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Lemat 7.10 1) Jeżeli Γ `Church M : σ, to Γ `Curry |M | : σ (|M | to term M
pozbawiony adnotacji o typach wymaganych w systemie à la Church).

2) Jeżeli Γ `Curry M : σ, to Γ `Church M ′ : σ dla pewnego termu M ′ z adnota-
cjami, takiego że |M ′ | = M . 2

Oba systemy typów różni natępujący lemat:

Lemat 7.11 Jeżeli Γ `Church M : σ i Γ `Church M : τ , to σ = τ . 2

7.6 Izomorfizm Currego-Howarda

Lemat 7.12 1) Jeżeli {x1 : τ1, . . . , xn : τn} ` M : σ, to {τ1, . . . , τn} ` σ (w
systemie dedukcji naturalnej).

2) Jeżeli {τ1, . . . , τn} ` σ (w systemie dedukcji naturalnej), to istnieją zmienne
x1, . . . , xn i term M takie, że {x1 : τ1, . . . , xn : τn} `M : σ. 2

8 Polimorficzny rachunek lambda1

8.1 Typy

Niech V będzie zbiorem zmiennych typowych. Jak zwykle, przez indukcję, zdefi-
niujemy zbiór typów T: jest to najmniejszy ze zbiorów spełniających następujące
warunki:

1) V ⊆ T,

2) jeżeli τ, σ ∈ T, to także τ → σ ∈ T,

3) jeżeli α ∈ V i τ ∈ T, to także ∀α τ ∈ T.

Nietrudno zauważyć, że typy polimorficzne można uważać za formuły rachun-
ku zdań II rzędu zapisane za pomocą spójnika → i kwantyfikatora ∀. Oczywiście,
zapisując typy musimy też używać nawiasów. Przyjmujemy zasady opuszczania na-
wiasów analogiczne do stosowanych w rachunku lambda. Przyjmujemy też zasadę,
że zmienne typowe będą oznaczane początkowymi literami alfabetu greckiego.

8.2 Termy polimorficznego rachunku lambda à la Church

Termy polimorficznego rachunku λ są tworzone ze zmiennych ze zbioru V , zmien-
nych typowych należących do V i dwóch operatorów lambda: zwykłego λ i poli-
morficznego λ, ten ostatni często jest zapisywany jako Λ.

Zbiór wszystkich termów (à la Church) polimorficznego rachunku lambda T
jest najmniejszym zbiorem spełniającym następujące warunki:

1) V ⊆ T ,

2) jeżeli M,N ∈ T , to MN ∈ T (zwykła aplikacja),

3) jeżeli M ∈ T , x ∈ V i τ ∈ T, to λx : τ M ∈ T (zwykła abstrakcja),

4) jeżeli M ∈ T i τ ∈ T, to Mτ ∈ T (aplikacja typu (?)),

1Według: Sørensen, Urzyczyn, Curry-Howard Isomorphism
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5) jeżeli M ∈ T i α ∈ V, to λαM ∈ T (polimorficzna abstrakcja).

Czytanie długich termów z adnotacjami bywa uciążliwe. Wtedy czytanie może
ułatwić inny zapis, postaci λxτ M , wyrażający to samo, co λx : τ M .

W polimorficznym systemie typów à la Curry warunek 3) przyjmuje zwykłą
postać

3) jeżeli M ∈ T i x ∈ V , to λxM ∈ T (zwykła abstrakcja),

8.3 Odrobina intuicji

Będziemy analizować procedurę sortowania S. Procedura ta wymaga danych (wła-
ściwie jednej danej), przyjmijmy, że danymi są ciągi, czyli, dla ustalenia uwagi,
elementy typu postaci Nat → X. Taka procedura pozwala na sortowanie danych
typu X. Jeżeli zostanie dobrze napisana, to powinna pozwalać na sortowanie da-
nych różnych typów (dla różnych typów X). Można na przykład napisać procedurę
sortowania, która oprócz zwykłych danych wymaga procedury P porównującej da-
ne, zapewne typu X → X → Bool. Wobec tego procedura S powinna być typu

(X → X → Bool)→ (Nat→ X)→ Nat→ X.

Jeżeli jest rzeczywiście dobrze napisana i może być stosowana dla danych różnych
typów X, to możemy przypisać jej typ polimorficzny

∀α ((α→ α→ Bool)→ (Nat→ α)→ Nat→ α),

dodając jednocześnie do jej treści stosowną informację o polimorfizmie ∀αS. Jeżeli
teraz chcemy ją zastosować w konkretnym przypadku, na przykład do sortowania
ciągu liczb typu Nat, to powinniśmy użyć procedury (∀αS) Nat, czyli właściwie
procedury S z dodatkową informacją, że powinna być wykorzystana do sortowania
danych typu Nat. Tak więc procedura (∀αS) Nat powinna być typu

(Nat→ Nat→ Bool)→ (Nat→ Nat)→ Nat→ Nat,

wymagać procedury typu Nat → Nat → Bool porównującej dane i ciągu typu
Nat→ Nat.

8.4 Polimorficzny system typów λ2, czyli system F

Aby zdefiniować polimorficzny system typów, pamiętając, że posługujemy się roz-
szerzonym pojęciem termu, reguły prostego systemu typów (à la Church):

Γ, x : τ ` x : τ
,

Γ `M : σ → τ, Γ ` N : σ
Γ `MN : τ

,
Γ, x : τ `M : σ

Γ ` λx : τ M : τ → σ

uzupełniamy o dwie reguły:

Γ `M : σ
Γ ` λαM : ∀ασ

o ile α 6∈ FV (Γ),
Γ `M : ∀ασ

Γ `Mτ : σ[α := τ ]
.

W polimorficznym systemie typów à la Curry posługujemy się zwykłym poję-
ciem λ-termu i regułami typowania, wśród których zamiast wyżej podanych reguł
dotyczących polimorfizmu znajdują się dwie następujące:

Γ `M : σ
Γ `M : ∀ασ

o ile α 6∈ FV (Γ),
Γ `M : ∀ασ

Γ `M : σ[α := τ ]
.
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8.5 Kilka uwag i β-redukcja

Zadanie 8.1 Pokaż, że

1) ` λβ (λx∀α (α→α). x(β → β)(xβ) : ∀β ((∀α (α→ α))→ β → β)

2) ` λα. λfα→α λxα. f(fx) : ∀α ((α→ α)→ (α→ α)),

3) ` λf∀α (α→β→α) λαλxα. f(β → α)(fαx) :
(∀α (α→ β → α))→ ∀α (α→ β → β → α)

Twierdzenie 8.1 (Izomorfizm Curre’go-Howarda)

1) Jeżeli Γ ` M : ϕ w polimorficznym systemie typów λ2, to Γ[dom(Γ)] ` ϕ w
(intuicjonistycznym) rachunku zdań II rzędu.

2) Jeżeli w {∀,→}-fragmencie intuicjonistycznego rachunku zdań II rzędu za-
chodzi ∆ ` ϕ, to w polimorficznym systemie typów λ2 mamy Γ ` M : ϕ dla
pewnych Γ i M ∈ T . 2

Twierdzenie 8.2 Problem dowodliwości w intuicjnistycznym rachunku zdań II
rzędu jest nierozstrzygalny. 2

W związku ze zmianą pojęcia λ-termu musi ulec zmianie pojęcie β-redukcji.
Ogólna postać definicji tego pojęcia pozostaje bez zmian. Mamy jednak dwa rodza-
je aplikacji i tym samym dwa rodzaje redeksów. Oba rodzaje redukujemy podobnie:

1) (λx : τ M)N →β M [x := N ] dla N ∈ T i x ∈ V ,

2) (λαM)τ →β M [α := τ ] dla τ ∈ T i α ∈ V.

Mam nadzieję, że definicje obu rodzajów podstawień występujących w poda-
nych wzorach są dostatecznie jasne.

8.6 Termy typu ϕ ∧ ψ
Przyjmijmy następujące definicje:

1) 〈M,N〉 = λαλzϕ→ψ→α. zPQ,

2) π1(Mϕ∧ψ) = Mϕ(λxϕ λyψ. x),

3) π2(Mϕ∧ψ) = Mψ(λxϕ λyψ. y).

Wtedy zachodzą następujące reguły typowania odpowiadające regułom natu-
ralnej dedukcji:

Γ `Mϕ, Γ ` Nψ
Γ ` 〈M,N〉 : ϕ ∧ ψ

,
Γ `M : ϕ ∧ ψ
Γ ` π1(M) : ϕ

,
Γ `M : ϕ ∧ ψ
Γ ` π2(M) : ψ

.
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8.7 Termy typu ϕ ∨ ψ
Przyjmijmy następujące definicje:

1) in1(Mϕ) = λαλuϕ→α λvψ→α. uM ,

2) in2(Mψ) = λαλuϕ→α λvψ→α. vM ,

3) case(Lϕ∨ψ;xϕ.Mρ; yψ.Nρ) = Lρ(λxϕ.M)(λxψ. N).

Wtedy zachodzą następujące reguły typowania odpowiadające regułom natu-
ralnej dedukcji:

Γ, ϕ `M : σ, Γ, ψ ` N : σ, Γ ` L : ϕ ∨ ψ
Γ ` case(L;x.M ; y.N) : σ

,
Γ `M : ϕ

Γ ` in1(M) : ϕ ∨ ψ
,

Γ `M : ψ
Γ ` in2(M) : ϕ ∨ ψ

,

8.8 Typy Bool i Nat

W systemie F można implementować typ Bool w następujący sposób:

1) Bool = ∀α(α→ α→ α),

2) true = λαλxα λyα x,

3) false = λαλxα λyα y.

A teraz implementacja typu odpowiadającego liczbom naturalnym:

1) Nat = ∀α((α→ α)→ α→ α),

2) cn = λαλfα→α λxα fn(x) (polimorficzne literały Churcha),

3) succ = λnNat λαλfα→α λxα f(nαfx).

Lemat 8.3 Dla danego typu σ definiujemy term rσ typu σ → (σ → Nat→ σ)→
Nat→ σ jako

λyσ λfσ→Nat→σ λnNat π1(n(σ∧Nat)(λvσ∧Nat 〈f(π1(v))(π2(v)), succ(π2(v)〉)〈y, c0〉).

Ten term spełnia dwie następujące równości:

rσM N c0 =β M oraz rσM N (succn) =β N (rσM N n)n. 2

Zadanie 8.2 Pokaż, że term λzy. y(zI)(zK)(λxx) nie ma typu w systemie F.

Twierdzenie 8.4 Problem rekonstrukcji typu w systemie F jest nierozstrzygalny.
2
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9 Silna normalizacja dla prostego systemu typów

9.1 Potrzebne definicje

1) SN = {M ∈ Λ : M jest silnie normalizowalny}

2) A⇒ B = {F ∈ Λ : ∀X ∈ A FX ∈ B}, gdzie A,B ⊆ Λ

3) [[α]] = SN oraz [[σ → τ ]] = [[σ]]⇒ [[τ ]] dla zmiennych typowych α i typów
prostych σ → τ

4) Zbiór X ⊆ SN jest nasycony, jeżeli

(a) xM1 . . .Mn ∈ X dla n ­ 0, M1, . . . ,Mn ∈ SN i dowolnej zmiennej x,

(b) jeżeli M1[x := M0]M2 . . .Mn ∈ X, to (λxM0)M1M2 . . .Mn ∈ X, gdzie
n ­ 1 i M1, . . . ,Mn ∈ SN

5) S = {X ⊆ Λ : X jest nasycony}

Lemat 9.1 SN ∈ S.

Lemat 9.2 Jeżeli A,B ∈ S, to A⇒ B ∈ S.

Wniosek 9.3 Dla dowolnego typu prostego σ mamy [[σ]] ∈ S.

6) wartościowaniem nazywamy funkcję ρ : V → Λ

7)

ρ(x := N)(y) =
{
N jeżeli y = x
ρ(y) w przeciwnym przypadku

8) [[M ]]ρ = M [x1 := ρ(x1), . . . , xn := ρ(xn)], gdzie ρ jest wartościowaniem i
FV (M) = {x1, . . . , xn}.

9) ρ |= M : σ iff [[M ]]ρ ∈ [[σ]],

10) ρ |= Γ iff ρ(x) ∈ [[σ]] dla wszystkich x : σ ∈ Γ,

11) Γ |= M : σ iff ∀ρ ρ |= Γ⇒ ρ |= M : σ,

Lemat 9.4 Jeżeli Γ `M : σ, to Γ |= M : σ.

Twierdzenie 9.5 Jeżeli Γ `M : σ, to M ∈ SN .

Dowód. Załóżmy, że Γ ` M : σ. Z poprzedniego lematu Γ |= M : σ. Weźmy ρ
takie, że ρ(x) = x przynajmniej dla x takich, że x : τ ∈ Γ. x ∈ [[τ ]], ponieważ
[[τ ]] ∈ S. Wobec tego, ρ |= Γ i mamy M = [[M ]]ρ ∈ [[σ]] ⊆ SN . 2
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