Formalizacja podstawowych pojec¢ rachunku
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1 Zmienne

Zbior zmiennych bedziemy oznaczac litera V. Zaktadamy, ze jest to zbiér nieskon-
czony (przeliczalny). Checemy mieé¢ do dyspozycji kazda skonczona liczbe zmien-
nych. To, czym sg zmienne nie ma wiekszego znaczenia. Wazne jest to, ze odrdz-
niamy zmienne od innych rzeczy. Mozemy myslec¢, ze sa znaki lub identyfikatory.
Dla oznaczenia zmiennych bedziemy zwykle uzywa¢ matych liter, w razie potrzeby
z jakimi$ indeksami.

2 Wyrazenia lambda rachunku

Wyrazenia lambda rachunku czesto nazywa sie termami lambda rachunku lub
krotko, A-termami, a nawet termami. Zbiér wyrazen lambda rachunku bedziemy
oznacza¢ symbolem A. Zbiér ten mozna definiowaé¢ na wiele sposobow. Trudno
zdecydowac sie na konkretng definicje, kazda ma wady i zalety. Oprécz zmiennych
w definicji bedziemy uzywaé

A, oo, (oraz ).

Sa to rozne znaki, ktore nie sg zmiennymi.

2.1 Abstrakcyjna definicja wyrazen

Ta definicja jest najprostsza, ale nie wyjasnia, czym sg wyrazenia. Zgodnie z tg
definicja A jest najmniejszym zbiorem takim, ze

1) zmienne sg wyrazeniami (lambda rachunku),

2) jezeli M i N sa wyrazeniami, to M N jest wyrazeniem,

3) jezeli x jest zmienng i M jest wyrazeniem, to Az M jest wyrazeniem.
Albo inaczej: A jest najmniejszym zbiorem takim, ze

1) eV =xeA,

2) M,N € A= MN € A (ewentualnie M, N e A= M -N € A),

3) reVAMEeN= \xM € A.



Definicja ta powinna gwarantowac, ze sa trzy, rozréznialne (rozltaczne) rodza-
je wyrazen: zmienne, aplikacje (wyrazenia postaci M N) i abstrakcje (wyrazenia
postaci AxM). W szczegdlnosei, zadna aplikacja nie moze by¢ jednoczesnie abs-
trakcja. Co wiecej, majac aplikacje w sposob jednoznaczny powinni$my ustali¢,
co aplikujemy i do czego, czyli zadamy, ze warunek M;N; = My N,y implikuje, ze
My, = My i Ny = N,. Analogiczna wtasnosé¢ powinna przystugiwaé abstrakcji, a
wiec jezeli Axqy My = AxoMs, to x1 = x5 oraz My = M.

Poza tym wtasnosci wyrazen lambda rachunku powinno daé sie dowodzié¢ przez
indukcje, zgodnie z nast¢pujacym twierdzeniem

Twierdzenie 2.1 Przypusémy, ze @ jest wlasnoscig, ktora przystuguje lub nie
poszczegolnym wyrazeniom lambda rachunku. Jezeli jednak

1) witasno$é ¢ przystuguje wszystkim zmiennym z V,

2) fakt, Ze wyrazenia M i N majqg wlasnosé ¢ pocigga za sobg, ze MN tez ma
wlasnosé o oraz

3) z tego, Ze M ma wlasno$é ¢ wynika, ze dla dowolnej zmiennej x wlasnosé p
ma takze wyrazenie AxM ,

to wszystkie wyrazenia lambda rachunku majg wiasnosé p. O

2.2 Wyrazenia lambda rachunku jako drzewa

Wyrazenia lambda rachunku mozna uwaza¢ za drzewa binarne z weztami etykieto-
wanymi zmiennymi i symbolami A oraz -. W tym przypadku A jest najmniejszym
zbiorem drzew binarnych spetniajacym

1) do A naleza jednoelementowe drzewa binarne z weztem z etykieta, ktéra jest
zmienng,

2) jezeli drzewa M i N naleza do A, to do A nalezy takze drzewo z korzeniem
z etykieta -, z lewym poddrzewem M i prawym poddrzewem N,

3) jezeli M € A, to do A nalezy takze dowolne drzewo z korzeniem z etykieta
A, ktorego lewe poddrzewo ma jeden wezet z etykieta bedaca zmienng, a
prawym poddrzewem jest M.

Latwo przekonac sie, ze tak zdefiniowane wyrazenia majg wlasnosci wymienione
w poprzednim rozdziale.

2.3 Wyrazenia lambda rachunku jako stowa

TM = rxM = NxeM = AaM

Wyrazenia lambda rachunku mozna uwazac tez za stowa tworzone z liter alfa-
betu zawierajacego zmienne z V' oraz znaki

A, ( oraz ).

Zbior tak rozumianych wyrazen jest najmniejszym zbiorem stéw A takim, ze

1) V.CA,



2) jezeli M,N € A, to (MN) € A,
3) jezeli M e Aixz eV, to (AzM) € A.

Zaleta tej definicji jest to, ze tak rozumiane wyrazenia rachunku lambda daja sie

tatwo reprezentowaé, takze pisemnie, wada — duza liczba wymaganych nawiaséw.

Zwykle korzysta sie z tej definicji w potaczeniu z zasadami opuszczania nawiasow.
Przyjmuje sie, ze

1) mamy prawo opusci¢ wewnetrzne nawiasy w wyrazeniu ((KM)N), a wiec
przyjmujemy, ze

(KM)N) = (KMN),

2) mamy prawo opusci¢ wewnetrzne nawiasy w wyrazeniu (Ax(M)), a wiec
przyjmujemy, ze
(Az(M)) = (AzM),

3) Mamy prawo pominaé¢ najbardziej zewnetrzne nawiasy wyrazenia, czyli
(M) =M

(ale w tym przypadku dotyczy to szczegdlnych nawiasow, a nie jest to ogdlna
zasada),

4) zamiast \xM mozemy napisa¢ \x.M, a wyrazenie Az ...z, . AzM mozemy
skroci¢ do postaci Az ... x,x. M, to znaczy przyjmujemy, ze

ALy ..oy M= Ay A, M

2.4 Gramatyka definiujgca lambda wyrazenia

Nizej jest przedstawiona proba zdefiniowania gramatyki generujacej wyrazenia ra-
chunku lambda zgodne z zasadami opisanymi w poprzednim rozdziale.

1) (A-wyrazenie) ::= (uogolniona aplikacja) | (abstrakcja)
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) (
2) (wyrazenie proste) ::= (zmienna) | ((aplikacja))) | ({(abstrakcja))
) (uogdlniona aplikacja) ::= (zmienna) | (aplikacja)

) (

4) (aplikacja) ::= (zmienna)(wyrazenie proste) |

((abstrakcja))(wyrazenie proste) | (aplikacja)(wyrazenie proste)

5) (abstrakcja) = A (zmienne) . (uogélniona aplikacja)
6) (zmienne) ::= (zmienna) | (zmienna)(zmienne)
7) (zmienna) ::= (mala litera, ewentualnie z indeksami)



3 Podstawianie i podstawialnosé

3.1 Definicje

Dla dwoch A-wyrazen M i N i zmiennej x rekurencyjnie definiujemy podstawienie
M|z := N] wyrazenia N za zmienna x w wyrazeniu M. Przyjmujemy, ze

1) jezeli M = x, to M[x := N| = z[x := N|] = N,
2) jezeli M jest zmienng y # x, to M|z := N| = y[z := N] =y,
3) jezeli M jest aplikacja My Ms, to

Mz := N] = (M, Ms)[z := N] = (Mj[z := N])(Mz]z := n]),

4) jezeli M jest abstrakcja Az.Mi, to M|z := N| = (Az.M;)[x := N| = \z. My,
5) jezeli M jest abstrakcja Ay.M; iy # x, to

Mz := N] = (A\y.M;)[z := N] = Ax.(M; |y :== NJ).

Term N jest podstawialny za zmienng x w termie M, jezeli w termie M zadne
wolne wystapienie zmiennej x nie znajduje sie w zasiegu operatora abstrakcji A
wigzacego zmienng wolng termu V.

3.2 Najprostsze wlasnosci

Lemat 3.1 Zawsze zachodzi wzér Mz :=x] = M. O

Lemat 3.2 Jezeli zmienna x nie jest wolna w termie M, to M|z := N] = M dla
dowolnego N. O

Wazna wlasnos$¢ podstawiania wyraza
Lemat 3.3 Jezelixz #y ix & FV(L), to

M|z := N]ly := L] = My := L][x := N[y := L]]. O

4 Wyrazenia de Bruijna

4.1 Definicja wyrazen de Bruijna

Znaczenie programistyczne ma sposob przedstawiania wyrazen lambda rachunku
wymyslony przez Nicolasa de Bruijna. Moze zosta¢ opisany poprzez nastepujaca
gramatyke.

1) (w. de Bruijna) ::= (zmienna) | (aplikacja) | (abstrakcja)

2) (wyrazenie proste) ::= (zmienna) | ((aplikacja))) | ({(abstrakcja))

3) (aplikacja) ::= (zmienna)(wyrazenie proste) |
((abstrakcja))(wyrazenie proste) | (aplikacja)(wyrazenie proste)

4) (abstrakcja) = A (w. de Bruijna)

4



5) (zmienna) ::= (liczba naturalna)

W wyrazeniach tego rodzaju po symbolu A nie piszemy zmiennej, a na pozo-
statych pozycjach, w ktorych zwykte s zmienne, umieszczamy liczby naturalne.
Liczb naturalnych jednak nie mozna utozsamia¢ ze zmiennymi: w w wyrazeniach
de Bruijna tylko przekazuja informacje o zmiennych. Co wiecej, w ustalonym wy-
razeniu ta sama liczba przekazuje informacje zalezne od jej umiejscowienia i w
roznych miejscach moze opisywaé rézne zmienne.

Wyrazenia de Bruijna mozna tez uwaza¢ za drzewa. Moga to by¢ drzewa bi-
narne, ktore maja trzy rodzaje weztow: liscie, ktére odpowiadajg zmiennym i maja
etykiety bedace liczbami naturalnymi oraz wskazniki do dwéch pustych drzew, we-
zty odpowiadajace abstrakcjom, ktore zamiast lewego poddrzewa majg wskaznik
pusty, i w koncu wezty odpowiadajace aplikacjom, ktore majg dwa wskazniki do
dwoch niepustych poddrzew.

Aby przeksztatca¢ wyrazenia w wyrazenia de Bruijna i odwrotnie potrzebny
jest tzw. kontekst. Kontekst moze by¢ rozumiany jako cigg wszystkich zmiennych
bez powtoérzen. Przyjmijmy, ze jezeli I' jest kontekstem, to I',, oznacza zmienng
znajdujaca sie w kontekscie I' na n-tym miejscu, a I'(x) oznacza numer zmiennej
x w kontekscie T'.

4.2 Podstawianie w wyrazeniach de Bruijna

Dla wyrazenia de Bruijna M i liczb naturalnych a i b zdefiniujemy teraz wyrazenie
M|a « b]. Operacja ta ma by¢ odpowiednikiem operacji podstawiania M [, := I')
w zwyktym termie M za zmienng I', zmiennej I'y.

Przyjmujemy, ze

1) ala < b] = b oraz cla «+ b] = ¢ dla liczb ¢ # a,
2) (MN)la < b] = M[a < b|Nla < ],
3) (AM)[a «—b]=AM[a+1—b+1].

Definicja tej operacji pozwala czeSciowo odtworzy¢ sposdb tworzenia wyrazen
de Bruijna. Przeksztalcajac zwykly lambda term (rozumiany jako drzewo) w wy-
razenie de Bruijna, konkretne wolne wystapienie zmiennej z zastepujemy numerem
zmiennej x powiekszonym o liczbe operatoréow lambda na Sciezce od tego wysta-
pienia do korzenia.

4.3 Przeksztalcanie wyrazen w wyrazenia de Bruijna

Zdefiniujemy teraz funkcje Usun_nazwy, ktéra dane lambda wyrazenie przeksztat-
ca w odpowiadajgce mu wyrazenie de Bruijna. Algorytm definiujacy te funkcje
bedzie rekurencyjny i bedzie korzysta¢ z pomocniczej zmiennej h o wartosciach
naturalnych. Definicje funkcji Usun_nazwy mozna przedstawi¢ w nastepujacy spo-
sob:

1) Dane: lambda wyrazenie W i kontekst I'.

)

2) Usun_nazwy(W) = Usun_nazwy(W,0).

3) Jezeli x jest zmienna, to Usun_nazwy(z,h) = T'(z) + h.
)

4) Usun_nazwy(M N, h) = Usun_nazwy(M, h)Usun_nazwy(N, h).

bt



5) Usun-nazwy(AzM, h) = AUsun_nazwy(M,h+ 1)[I'(z) + h+ 1 < 0].

Teraz mozna pokusi¢ si¢ o wyjasnienie, co znaczy liczba n w wyrazeniu de
Bruijna. Wystapienie liczby 0 oznacza albo zmienna zwiazana pierwszym (liczac
od wystapienia liczby) operatorem A znajdujacym sie na sciezce od tego wystapie-
nia do korzenia, albo zmienng I'y, jezeli na tej Sciezce nie ma zadnego operatora.
Wystapienie liczby 1 oznacza albo zmienng zwigzang drugim operatorem A znaj-
dujacym sie na $ciezce od tego wystapienia do korzenia, albo zmienng I'y, jezeli na
tej Sciezce jest jeden operator A, albo tez zmienng Iy, jezeli na rozwazanej Sciezce
nie ma zadnego operatora. Dla wiekszych n sytuacja jest analogiczna.

4.4 Przeksztalcanie wyrazen de Bruijna w \-termy

Teraz zdefiniujemy funkcje Dodaj_nazwy, ktéra dane wyrazenie de Bruijna zamie-
nia na wyrazenie rachunku lambda. Funkcja ta bedzie korzysta¢ z pewnego para-
metru ¢ € N, od ktérego beda zaleze¢ wybierane nazwy zmiennych zwigzanych.
W ogélnym przypadku jest potrzebna jakas zasada wyboru nazw tych zmiennych.
Bedziemy zaktadaé, ze liczba c jest wicksza od wszystkich liczb wystepujacych w
danym jako argument wyrazeniu de Bruijna i jako zmiennych zwigzanych bedziemy
uzywacé zmiennych o numerach wiekszych od c.
mozna przedstawi¢ w nastepujacy sposob:

1) Dane: lambda wyrazenie de Bruijna W i kontekst I'.

\V]

Dodaj nazwy(W) = Dodaj_nazwy(W,0).

A~ W

)

)

) Jezeli x jest liczba, to Dodaj_nazwy(x,h) = Ty_p.

) Dodaj nazwy(MN,h) = Dodaj nazwy(M, h)Dodaj nazwy(N,h).
)

5) Dodaj-nazwy(AM,h) = Al.Dodaj-nazwy(M[0 < ¢+ h + 1],h + 1) i do-

datkowo wykorzystanie nazwy (zmiennej) o numerze ¢ powinno spowodowac
zwigkszenie ¢ o 1.

5 Rodzaje relacji

5.1 Relacje zgodne

Relacja R w zbiorze A-terméw jest zgodna (z operacjami A-rachunku) jezeli dla
wszystkich M, N, Z € A

1) warunek M R N pociaga za soba (ZM) R (ZN) oraz (MZ) R (NZ),

2) warunek M R N implikuje, ze (Ax.M) R (Ax.N).

5.2 Kongruencje

Kongruencjami nazywamy zgodne relacje rownowaznosci. Najprostszym przykta-
dem kongruencji jest relacja rownosci.



5.3 Redukcje

Mamy dwa rodzaje redukcji: w jednym i w wielu krokach. Redukcja w jednym
kroku najczesciej jest definiowana jako najmniejsza relacja zgodna rozszerzajace
pewne proste przeksztacenie. Redukcja w jednym kroku wyznacza redukcje w wielu
krokach, ktora jest krotko nazywana redukcja.

Redukcjg zwykle nazywamy zgodna relacje zwrotna i przechodna.

Majac redukcje w jednym kroku — definiujemy relacje — przyjmujac, ze jest
to najmniejsza relacja speliajaca dla wszystkich L, M, N € A warunki

1) jezeli M = N, to M — N,
2) jezeli M — N, to M — N,
3) jezeli M — LiL —» N, to M —» N.

Lemat 5.1 Jezeli relacja redukcyi w jednym kroku — jest zgodna, to relacja —»
jest redukcjg. O

Bywa, ze musimy rozwaza¢ bardziej ogdlne redukcje, rozumiane jako zgodne i
przechodnie rozszerzenia pewnej kongruencji ==.

Wtedy, majac redukcje w jednym kroku —, definiujemy relacje — przyjmujac,
ze jest to najmniejsza relacja spelniajaca dla wszystkich L, M, N € A warunki

1) jezeli M =2 N, to M — N,
2) jezeli M — N, to M — N,
3) jezei M — Li L — N,to M — N.

Lemat 5.2 Jezeli = jest kongruencjg @ relacja redukcji w jednym kroku — jest
zgodna, to relacja — jest redukcjg. O

5.4 Konwersje

Majac relacje redukeji — definiujemy zwiazang z nig relacje konwersji = przyjmu-
jac, ze jest to najmniejsza relacja spetniajaca dla wszystkich L, M, N € A warunki

1) jezeli M — N, to M = N,
2) jezeli M = N,to N =M,
3) jezeli M =LiL=N,toM=N.

Lemat 5.3 Jezeli relacja — jest redukcjq, to relacja = jest kongruencjg. O

6 a-konwersja

Relacje a-redukeji w jednym kroku, czyli relacje —,,, definiujemy jako najmniejsza
relacje zgodng z operacjami rachunku lambda zawierajaca wszystkie pary

Ae. M —, Ay Mz =y,

gdzie y jest zmienng nie bedaca wolna w termie M (y ¢ FV(M)) i podstawialng
w M za zmienng x.



Relacja a-redukeji w jednym kroku wyznacza tak, jak to zostalo wyzej opisane,
relacje a-redukcji —, i relacje a-konwersji =,. Relacje a-konwersji bedziemy naj-
czesciej oznacza¢ symbolem =, a czasem moze by¢ ona oznacza takze symbolem
=,, & nawet =.

Oczywiscie, a-konwersja jest kongruencja.

Lemat 6.1 1) Jezeliy & FV (M), tox & FV(M|x :=y)).

2) Jezeli y & FV(M), to y nie wystepuje w termie M|z = y| jako zmienna
wolna w zasiequ kwantyfikatora wigzqcego x.

3) Jezeliy & FV (M), to zmienna x jest podstawialna za y w termie Mz := y].
4) Jezeliy & FV (M), to \y.M[z :=y] —o Mz :=ylly == 2| = M.
5) Relacja —,, jest symetryczna.

6) Relacja —», jest symetryczna. O

Whniosek 6.2 Relacja a-redukcji —,, jest relacjg a-konwersji =,. O

7 oa-konwersja a wyrazenia de Bruijna

7.1 Zmienne w wyrazeniach de Bruijna

Role zmiennych w termach de Bruijna petnig liczby naturalne. Bedziemy analizo-
waé wystgpienia zmiennych w takich wyrazeniach.

Jezeli wyrazenie de Bruijna uwazamy za drzewo, to wystapieniem zmiennej w
tym wyrazeniu bedziemy nazywaé¢ dowolny lisé¢ tego drzewa. Jezeli lisciem tym (w
tym lisciu) jest liczba x, to bedziemy moéwié, ze jest to wystapienie liczby z, a
nawet to wystapienie — nie do konca poprawnie — bedziemy utozsamiac z liczba x.

Jezeli wyrazenie de Bruijna uwazamy za ciag znakéw i liczb, to wystapienie
zmiennej r to pozycja w tym ciggu, na ktorej znajduje sie liczba x.

Dla kazdego wystapienia zmiennej x w wyrazeniu de Bruijna M definiujemy
indukcyjnie zagniezdzenie zp(x) tego wystapienia. Jezeli M jest zmienna (czyli
zmienna x), to zy(z) = 0. Jezeli M = M;M, i wystapienie x znajduje sie w
termie M;, to zp(x) = zp,(x). W koncu, jezeli M = AM', to zp(x) = zpp(z) + 1.

Wystapienia w termie M zmiennej x nazywamy zwiazanym, jezeli z < zp/(z).
Pozostate wystapienia zmiennych nazywamy wolnymi.

Lemat 7.1 Wykonywanie podstawienia M[a <« b] polega na zamianie wystgpien
liczb x takich, Ze x = a + 2y () liczbami b+ zy(x). O

Lemat 7.2 Jezeli w wyraZeniu de Bruijna M wystepuje liczba x taka, Ze zp(z) <
x < zpy(x) + h, to podczas wykonywania procedury Dodaj nazwy(M, h) wystepuje
blad polegajqacy na probie ustalenia nazwy I'. dla pewnego ¢ < 0. W przeciwnym
razie, jezeli dla wszystkich wystgpien liczb x w termie M mamy albo x < zp(x),
albo zp () +h < x, to procedura Dodaj_nazwy(z, h) jest wykonywana poprawnie.
O

Whniosek 7.3 Procedura Dodaj nazwy(M), czyli Dodaj_nazwy(M,0) jest wyko-
nywana poprawnie dla dowolnego wyrazenia de Bruina M. O



7.2 Wystepowanie zmiennych w termach de Bruijna

Zdefiniujemy teraz pojecie, ktore ma odpowiada¢ w przypadku terméw de Bruijna
warunkowi z € F'V(M). Pojecie to zostanie zdefiniowane przez indukcje ze wzgledu
na budowe termu de Bruijna M. Pamie¢tajmy, ze role zmiennych w termach de
Bruijna petnig liczby naturalne.

Jezeli term de Bruijna M jest liczba naturalna, to liczba = wystepuje w M
wtedy i tylko wtedy, gdy jest rowna M. Jezeli term M jest aplikacjg M;M,, to
liczba x wystepuje w M wtedy i tylko wtedy, gdy x wystepuje w M; lub w M.
Jezeli term M jest abstrakcja AN, to liczba  wystepuje w M wtedy i tylko wtedy,
gdy liczba x + 1 wystepuje w termie N.

Lemat 7.4 Dla dowolnego termu de Bruijna M i dla dowolnych liczb x, y i a # x,
jezeli x nie wystepuje w M, to nie wystepuje tez w termie My «— al.

Dowdd. Lemat ten dowodzimy przez indukcje ze wzgledu na M. Sprawdzimy go
jedynie w przypadku abstrakcji M = AN.

Zatozmy, ze x nie wystepuje w termie AN. Oznacza to, ze x + 1 nie wystepuje
w termie N. Term (AN)[y < a] jest réwny AN[y + 1 < a + 1]. Aby sprawdzi¢,
ze x nie wystepuje w AN[y + 1 «— a + 1], badamy, czy x + 1 nie wystepuje w
N[y + 1 « a + 1]. Tak jest na mocy zalozenia indukcyjnego dla termu N. O

Lemat 7.5 Jezeli x # a, to x nie wystepuje w termie M[x «— a].

Dowéd. Przez indukcje ze wzgledu na M dowodzimy, ze teza lematu zachodzi dla
wszystkich liczb x i a. O

Lemat 7.6 JeZeli liczba x nie wystepuje w termie de Bruijna M, to M|z «— a] =
M.

Dowdd. Lemat ten ma oczywisty dowod przez indukcje ze wgledu na M. O

7.3 Wlasnosci podstawiania

Lemat 7.7 Jeeli liczby a,a’, b, b speniajg warunki a # a', a # b oraz b # d, to
dla wszystkich termow de Bruijna M mamy

Mla « b[a’ « b'] = M[a' < V][a < 1]

Dowédd. Lemat dosé oczywisty, dowodzony przez indukcje ze wzgledu na budowe
termu M, dla wszystkich mozliwych parametréw. Najwazniejsze, ze przechodzi dla
elementarnych terméw, czyli liczb. ,,Drugie” kroki sg tatwe do wykazania. O

Lemat 7.8 Jezeli a # b, to dla wszystkich termow de Bruigna M mamy
Mla « bl[a < V'] = M[a < V).
Dowdd. Taki jak poprzedni lub z lematéw 7.51 7.6. O

Lemat 7.9 Dla wszystkich termoéw de Bruigna M i liczb b nie wystepujgcych w M
zachodzi rownosc
Mla « b][b — ¢] = M|a « ¢].

Dowdd. Taki jak poprzedni. O



7.4 Wtlasno$ci usuwania

Lemat 7.10 Jezeli zmienna x nie jest wolna w (zwyktym) termie M, to I'(x) + h
nie wystepuje w termie Usun_nazwy(M, h).

Dowéd. Réwniez ten lemat tatwo dowodzi si¢ przez indukcje ze wzgledu na bu-
dowe termu M. O

Lemat 7.11 Jezeli M jest A-termem i podstawialna za v w M zmienna y nie
nalezy do FV (M), to dla wszystkich liczb h

Usun_nazwy(M, h)[I'(z) + h < I'(y) + h)| = Usun_nazwy(M [z := y|, h).
Dowéd. Przez indukcje ze wzgledu na M.
Przypadek 1: M = x. Wtedy
Usun_nazwy(xz, h)[['(x) +h —T'(y) + h] =T'(y) + h.
Podobnie przeksztatcamy druga strone wzoru do tego samego rezultatu.
Przypadek 2: zmienna M jest z # x. Wtedy takze z # y oraz
Usun_nazwy(z, h)[I'(x) + h < T'(y) + h] = () + h,

gdyz dla réznych z i z mamy I'(z) # ['(z) (z whasnosci kontekstéow). Tak samo
przeksztatcamy druga strone wzoru.

Przypadek 3: M jest aplikacja. Teza wynika stad, ze wszystkie rozwazane ope-
racje, a wigc oba podstawiania -[- := -] oraz -[- < -], a takze Usun_nazwy, mozna
przestawiaé z operacja aplikacji.

Przypadek 4: M jest abstrakcja AxM'. Wtedy

Usun_nazwy(AzM', h)[T(x) + h — T'(y) + h] =

= (AUsun_nazwy(M',h 4+ 1)[I'(z)] + h+1 < 0])[['(z) + h — T'(y) + h] =

= AUsun_nazwy(M',h+ 1)[I'(x)]+ h+1—0][I'(z) +h+1—T(y) +h+1] =
= AUsun_nazwy(M',h+ 1)[I'(z)] + h+ 1« 0] =

= Usun_nazwy(AzM', h) = Usun_nazwy((AzM")[z := y], h),

na mocy lematu 7.8.

Przypadek 5: M jest abstrakcja AzM' dla z # x oraz x & FV(M’'). Wtedy

Usun_nazwy(AzM', h)[I'(z) + h < I'(y) + h] =

= (AUsun_nazwy(M',h+1)[I'(2)] + h+ 1 < 0))[I'(x) + h «+ I'(y) + h] =

= AUsun_nazwy(M',h+ 1)[I'(2)] + h+ 1 —0][['(z) + h+1 T (y) + h+1] =
= AUsun_nazwy(M',h+ 1)[I'(z)]+ h+1 0] =

= Usun_nazwy(AzM', h) = Usun_nazwy((A\zM')[z :=y], h)

na mocy lematow z rozdziatu 7.2.
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Przypadek 6: M jest abstrakcja AzM' dla z # x oraz z € F'V(M’). Tym razem
podstawialno$¢ y implikuje, ze y # z. Na mocy lematu 7.7

Usun_nazwy(AzM', h)[I'(z) + h «— T'(y) + h] =

= (AUsun_nazwy(M',h+1)[I'(2)] + h+ 1« 0))[['(z) + h T (y) + h] =

= AUsun_nazwy(M',h+ 1)[I'(2)] + h+ 1 0]['(z) + h+1—T(y) + h+1] =
= AUsun_nazwy(M',h+ 1)[I'(x) + h+1 —T'(y) + h+ 1|[I'(z)] + h+1 0] =
= AUsun_nazwy(M'[z = yl,h+ 1)[I'(2) + h+ 1« 0] =

= Usun_nazwy((AzM')[x :=y|, h). O

Whniosek 7.12 Przypusémy, ze mamy dane lambda term M 1 zmienng y. ktora
nie jest wolna w M 1 jest podstawialna w M za zmienng x. Wtedy dla dowolnego
naturalnego h zachodzi rownosé

Usun_nazwy(Ax.M, h) = Usun_nazwy(\y.M [z := y|, h).

Dowdd. Zauwazmy, ze

Usun_nazwy(Ay.M[z :=y|,h) =

= ANUsun_nazwy(M[z :=y],h+ D[I'(y) +h+1—0] =

= AUsun_nazwy(M,h+ 1)[I'(z) +h+1—T(y) +h+1)[I'(y) + h+1 0] =
= AUsun_nazwy(M, h + 1)[I'(z) + h + 1 < 0] = Usun_nazwy(\y.M[z := y|, h).

Poszczegdlne réwnosci otrzymujemy z lematéw 7.11, 7.10 oraz 7.9. O

7.5 Termy h-poprawne

Zaczynamy od pomocniczego pojecia zwigzanego z operacja Dodaj nazwy. Wyko-
nanie tej operacji moze zakonczy¢ sie btedem polegajacym na otrzymaniu ujemne-
go argumentu kontekstu. Gwarancja poprawnosci wykonania operacji Dodaj_nazwy(M, h)
jest h poprawnos¢ termu M.

Term de Bruijna M nazywamy h-poprawnym, jezeli jest on liczba i M > h,
albo jest on aplikacja M; M, i oba jej cztony M; i M, sa h poprawne, albo tez
jest on abstrakcja AM’ i term M’'[0 < ¢] jest h + l-poprawny dla ¢ > h+11i
wiekszego od innych liczb w termie M’ (np. dla najmniejszej liczby ¢ o podanych
wlasnosciach).

Lemat 7.13 Jezeli M jest h-poprawny, to takze h-poprawnym jest dowolny term
Mla < b+ h).

Dowdéd. Dowodzimy to przez indukcje ze wzgledu na M i dowdd jest prosty. O

7 powyzszych lematéow wynika

Whniosek 7.14 Jezeli M jest h-poprawny, to operacja Dodaj nazwy(M,h) jest
wykonywana poprawnie (nie powoduje bledu). O
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7.6 Usuwanie 1 dodawanie razem

Lemat 7.15 Dla dowolnego h i dowolnego termu h-poprawnego termu de Bruijna
M mamy
Usun_nazwy(Dodaj_nazwy(M, h),h) = M.

W szczegolnosci, operacja Usun_nazwy przyjmuje jako wartosci wszystkie termy
de Bruijna.

Dowdd. Przez indukcje ze wzgledu na M.
Jezeli M jest liczbg, to

Usun_nazwy(Dodaj nazwy(M, h), h) = Usun_nazwy(L'py—p, h) = (M—h)+h = M.

Jezeli M jest aplikacja, to teza lematu wynika w oczywisty sposéb z zatozen
indukcyjnych.
Przypusémy, ze M jest abstrakcja AM’'. Wtedy

Usun_nazwy(Dodaj nazwy(M, h), h) =
= Usun_nazwy(A\I'.Dodaj nazwy(M'[0 «— c+h+1],h+1),h) =
= AUsun_nazwy(Dodaj nazwy(M'[0 «— c+h+1],h+1),h + 1)

D) +h+1«0]=
=AM'[0—c+h+1[[(T)+h+1«0]=
=AMM'0—c+h+1lc+h+1—0=AM =M. O

Lemat 7.16 Dla dowolnego h i dowolnego termu h-poprawnego termu de Bruijna

M mamy
Dodaj-nazwy(Usun_nazwy(M, h), h) =, M.

Dowdd. Przez indukcje ze wzgledu na budowe termu M. Jest to oczywiste dla
aplikacji. Dla zmiennej M mamy
Dodaj_nazwy(Usun_nazwy(M, h), h) = Dodaj nazwy(I'(M) + h,h) =
=Troan+h-n =Tran = M =, M.

W koncu, dla abstrakcji Az M mamy

Dodaj nazwy(Usun_nazwy(AxM, h), h) =
= Dodaj_nazwy(AUsun_nazwy(M,h+ 1)[['(x) + h+ 1« 0], h) =
= A'.Dodaj nazwy(
Usun_nazwy(M,h+ 1)[['(x) + h+1«—0][0 —c+h+1],h+ 1)
= Al'.Dodaj_nazwy(Usun_nazwy(M,h+ 1)[I'(z) + h+1—c+h+1],h+1)
= A['.Dodaj -nazwy(Usun_nazwy(M,h + 1),h + 1)[z := T
=N M[z:=T.]=, M. O

Jako wniosek z prowadzonych rozwazan otrzymujemy

Twierdzenie 7.17 Dla kazdej pary wyrazen rachunku lambda M i N, warunek
M =, N jest réwnowazny réwnosci Usun_nazwy(M) = Usun_nazwy(N). O
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8 (-konwersja

8.1 [-redukcja w jednym kroku

Relacje B-redukcji w jednym kroku, czyli relacje — g, definiujemy jako najmniejsza
relacje zgodng z operacjami rachunku lambda zawierajaca pary

(\e.M)N —5 M'[z := N],

dla pewnego termu M’, dla ktérego M —», M’ i term N spelnia warunek podsta-
wialnos$ci w M’ za zmienng x.

Przypomnijmy, ze term N spelnia warunek podstawialno$ci w termie M’ za
zmienng x, jezeli zadne wolne wystapienie zmiennej x w termie M’ nie znajduje
sie w zasiegu operatora \ wigzacego zmienne wolne z termu N.

Lemat 8.1 Jezeli M —g M' i N —3 N’ dla pewnych lambda termow M i N
takich, ze M =, N, to takie M' =, N'.

8.2 [-redukcja

Relacja [-redukeji w jednym kroku wyznacza (podobnie, jak to zostato wyzej opi-
sane) relacje f-redukeji — 4. Przyjmujemy, ze

1) jezeli M = N, to M —3 N,
2) jezeli M —3 N, to M —4 N,
3) jezeli M —5 Li L —»5 N, to M —»5 N.

Relacja [(-redukcji —3 wyznacza relacje [(-konwersji =g tak, jak to zostalo
wyzej opisane. Symbole — 3, —» 3 i =3 bedziemy najczedciej zastepowac symbolami
—, —» 1=,

Oczywiscie, relacja [3-konwersji jest kongruencja.

9 Abstrakcyjne twierdzenie Churcha-Rossera

9.1 Opis sytuacji

Przypusémy ze mamy okreslona w jakims zbiorze relacje — taka, ze dla dowolnych
M, N; i Ny takich, ze M — Ny i M — N, istnieje K speliajacy N; — K oraz
Ny, — K. Sytuacje t¢ mozna przedstawi¢ na rysunku

O takiej relacji méwimy, ze ma wtasnosé <.
Relacje — uwazamy za redukcje w jednym kroku i rozszerzamy do relacji re-
dukcji — przyjmujac, ze jest to najmniejsza relacja spelniajaca warunki
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1) jezeli M = N, to M — N,
2) jezeli M — N, to M — N,
3) jezei M — Li L — N,to M — N.
Relacje — mozna tez definiowaé zgodnie z nastepujacym lematem:
Lemat 9.1 Relacja — jest najmniejszq relacjq spetniajace nastepujgce warunksi:
1) jezeli M = N, to M — N,
2) jezeli M — L i L — N, to M — N.

Dowéd. Przyjmijmy, ze — oznacza zwykla relacje redukcji, zdefiniowana jako
najmniejszg relacje o wlasnosciach podanych przed sformutowaniem lematu, a —’
— analogicznie zdefiniowana relacje o wtasnosciach podanych w tresci lematu.

Oczywiscie, relacja — ma wlasnosci wymagane od relacji —’. Wobec tego,
mamy zawieranie —' C —».

Jest tez oczywiste, ze relacja —' ma dwie pierwsze wlasno$ci wymagane od
relacji —. Pokazemy, ze ma tez trzecia wlasnos¢. Jezeli uda si¢ nam to zrobi¢, to
relacja —, jako najmniejsza o tych trzech wlasnosciach, okaze sie zawarta w —'.
Oba zawierania —' C — i —» C —' z kolei implikuja réwno$é —' = —», ktora
jest teza lematu.

Mamy wiec wykazaé, ze jezeli M —' L i L —' N, to M —' N. W tym celu
rozwazmy relacje

R={(M,L):VN(L—'N=M-—"N)}

Powinnismy dowies¢, ze relacja R ma obie wtasnosci wymagane w sformutowaniu
lematu od relacji —’. Nie jest to trudne do sprawdzenia. Z tego faktu wynika,
ze relacja —' zawiera sie w R, a to oznacza, ze relacja —' ma trzecig wlasnosé
wymagang od relacji —. Wyzej juz zauwazylismy, ze to konczy dowod. O

7 kolei relacja — wyznacza konwersje =, czyli najmniejsza relacje taka, ze
1) jezeli M — N, to M = N,

2) jezeli M = N,to N =M,

3) jezeli M =LiL=N,toM=N.

9.2 Lematy pomocnicze

Lemat 9.2 Jezeli relacja — ma wlasnosé <, to dla dowolnych M, My i My takich,
ze M — My 1 M — M, istnieje N spetniajgcy My — N oraz My — N.

Dowéd. Zamiast korzysta¢ bezposrednio z definicji relacji — postugujemy sie
charakteryzacja tej relacji z lematu 9.1. O

Lemat 9.3 Jezeli relacja — ma wlasnosé <, to dla dowolnych M, My i My takich,
ze M — My + M — M, istnieje N spetniajgcy My — N oraz My — N.

Dowdd. Lemat ten wynika z poprzedniego i z charakteryzacji relacji — z lematu
9.1.0
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9.3 Abstrakcyjne twierdzenie Churcha-Rossera
Twierdzenie 9.4 Jezeli relacja — spetnia warunek <, to dla dowolnych My i My
takich, ze My = M, istnieje N speiniajgcy My — N oraz My — N.

Dowéd. Znowu definiujemy pomocnicze relacje

R:{<M1,M2>E|NM1H'>N/\M2—»N}

10 Wnioski z twierdzenia Churcha-Rossera

10.1 Relacja réwnoleglej G-redukcji

Relacja réwnoleglej B-redukeji (w jednym kroku) —, 5 jest najmniejsza relacja w
zbiorze lambda terméw spetniajacja

1) M—>Tg M,

2) jezeli M —,5 My, My —4 M{, N —,5 N1 1N jest podstawialny za zmienng
x w termie M, to (AzM)N —,3 M{[x := Ny],

3) jezeli M —,3 M, oraz N —,3 Ny, to MN —,.53 My Ny,
4) jezeli M —,5 My, to AeM —,5 AxM;.

Relacja réwnolegtej redukeji odpowiada sytuacji, w ktorej majac dany term
lambada rachunku wybieramy w nim kilka redekséw (takze 0 redekséw), a nastep-
nie redukujemy jednoczesnie wszystkie wybrane redeksy.

Lemat 10.1 Relacja —g jest czeScig rownoleglej B-redukcji —,5, a wiec —z C
_>r,8- O

Lemat 10.2 Relacja réwnolegtej 3-redukcji —, 5 jest czescig relacji 3-redukcji —
—g, @ WigC —,g3 C —»g.

Dowéd. Relacja —3 ma wlasno$ci wymagane od relacji —,3. Na przyktad, ma
wlasnosé 2) relacji —,g, czyli

2) jezeli M —3 My, My —, M, N —5 Ny i Ny jest podstawialny za zmienng
x w termie M, to (AzM)N —»g Mz = Ny].

Dowdd tej wlasnosci nie nastrecza wigkszych trudnosei. Jezeli M —»5 M, to ze
zgodnosci —» 5 takze mamy Az M —»g AxM; oraz (A\eM)N — 5 (AxM;)N. Podob-
nie, (AzM;)N —5 (AxM;)N;. W koncu, (AzM;)Ny —5 M|z := Np|. Korzystajac
z przechodniodci relacji — 4 otrzymujemy, ze (AxM)N —»5 Mi[z := Ny, a to
konczy dowdd rozwazanej wlasnosci.

Pozostale, wymagane wtasnosci relacji — 3 dowodzimy analogicznie. Relacja
— .3, jako najmniejsza relacja o tych wlasnosciach, spetnia zawieranie —,3 C —»3.
O

Z udowodnionych lematéw jako oczywisty wniosek otrzymujemy

Twierdzenie 10.3 Relacje —» 5 oraz —»,3 sq identyczne. O
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10.2 Termy z kolorowymi redeksami

Bedziemy rozwazac termy z kilkoma rodzajami operatoréw lambda. W tym kontek-
scie bedziemy mowi¢ o kolorowych operatorach lambda. Jezeli bedzie to konieczne,
bedziemy je oznacza¢ symbolem A, ale moze by¢ ich kilka rodzajow. Mozna by je
rzeczywiscie zapisywaé uzywajac kolorowego druku. Oprécz kolorowych operato-
row beda tez niepokolorowane, moznaby je okresla¢ jako bezbarwne, albo wrecz
przeciwnie, jako czarne, zapisane w zwykty sposéb. Bedg oznaczane zwyklym sym-
bolem A. Bedziemy dodatkowo zaktadac, ze kolorowe moga by¢ tylko pierwsze
operatory lambda w redeksach.

Pojecie termu z kolorowymi redeksami definiujemy (w zwyklej konwencji) jak
nastepuje:

1) zmienne sa termami (z kolorowymi redeksami),

2) jezeli M i N sa termami, to M N jest termem,

3) jezeli x jest zmienng i M jest termem, to AxM jest termem,

4) jezeli x jest zmienng oraz M i N sa termami, to (AzM)N jest termem.

Pojecia a-konwersji, podstawiania i podstawialnosci dla terméw z kolorowymi
redeksami definiujemy tak, jak dla zwyktych termoéw, nie zwracajac uwagi na ko-
lory operatoréw A. W formalnych definicjach takie podejscie wymaga dopisania
wtasnosci kolorowych operatoréw lambda analogicznych do wtasnosci zwyktych
operatoréw.

Relacje (-redukcji w jednym kroku dla terméw z kolorowymi redeksami, czyli
relacje —s, definiujemy jako najmniejsza relacje zgodna z operacjami rachunku
lambda zawierajaca pary

(Az.M)N —5 M'[x := N],

dla pewnego termu M’, dla ktérego M —», M’ i term N spelnia warunek pod-
stawialnoéci w M’ za zmienna x. Oznacza to, ze nie redukujemy w tym sensie
redekséw z bezbarwnymi operatorami lambda.

Kolorowanie redekséw wprowadza do lambda rachunku istotne ograniczenie. W
zwyklym lambda rachunku redukcja redeksu moze zwigkszac¢ liczbe redeksow na
dwa sposoby: poprzez kopiowania i poprzez tworzenie nowych redekséw. Na przy-
ktad, redukujac term (Azx.zzxx)M do MMM, trzykrotnemu skopiowaniu ulegaja
redeksy wystepujace w termie M. Jednocze$nie moze powsta¢ nowy redeks: wy-
starczy, aby term M byl abstrakcja: powstaje wtedy redeks M M. Jezeli redukcje
ograniczamy do kolorowych redekséw, to zwiekszenie liczby kolorowych redeksow
powodowane jest wytacznie kopiowaniem i nie powstaja nowe kolorowe redeksy.
Nowy redeks co prawda powstaje, ale nie moze by¢ on kolorowy i nie mozna go
zredukowaé stosujac tylko redukcje kolorowych redeksow.

Definiujemy takze réwnolegta redukcje kolorowych redekséw: relacja réwnole-
glej B-redukcji w jednym kroku kolorowych redeksow — 15 jest najmniejsza relacja
w zbiorze lambda termoéw z kolorowymi redeksami spetniajaca warunki

1) M —rkg M,

2) jezeli M — 5 My, My —o M{, N —.3 N1 1 Ny jest podstawialny za
zmienng x w termie M7, to (AzM )N —,k5 M|z := Ny],

3) jezell M —,p My oraz N — 3 Ny, to MN —, 5 M Ny,
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4) jezell M — 5 My, to AeM —, 5 Ax M, oraz AeM —,5 AxM;.

Obie relacje redukcji kolorowych redekséw w jednym kroku rozszerzemy w stan-
dardowy sposob do redukcji —»4g oraz —»,15. Tak samo, jak analogiczny fakt w
poprzednim rozdziale, dowodzimy

Twierdzenie 10.4 Relacje —» 5 oraz —» i3 sq identyczne. O

10.3 Wilasnosé ¢ redukcji rownoleglej

Relacje redukcji réwnolegtych —, i —,13 maja wlasnos¢ <. W obu przypadkach
dowodzimy to w bardzo podobny sposob.

Lemat 10.5 Relacja redukcji réwnolegltej —,3 ma wiasnosé <, a doktadniej.

Dowéd. Niech M oznacza term, ktéry przeksztacamy na dwa sposoby: M —,3 N;
i M —,3 Ny. Lemat dowodzimy przez indukcje ze wzgledu na budowe termu M.
Dla kazdego rodzaju terméw bedziemy rozwazac¢ wiele przypadkoéw odpowiadaja-
cych roznym dopuszczalnym sposobom przeksztatcania.

Przypadek 1: Ny, = M. Zawsze mozemy korzystac ze zwrotnosci —, g, czyli prze-
ksztalca¢ nic nie robiac. Wtedy Nj przeksztatcamy w K = N; oraz Ny = M tez
przeksztatcamy w N; = K. Dalej zaktadamy, ze wykonujemy istotne przeksztal-
cenia M.

Przypadek 2: M jest zmienna. Zmiennej nie mozemy redukowaé¢ w istotny spo-
sOb.

Przypadek 3: M = \zM’. Jedyny sposéb redukowania abstrakcji Ax M’ to prze-
ksztalcanie termu M’. Po przeksztatceniu na dwa sposoby dostajemy termy Ax/NV;
i Ax N, takie, jak na pierwszej czesci ponizszego rysunku.
Ax M’ M’ Ax M’
/ N\ / N\ / N\
)\ZL‘Nl )\I'NQ N1 N2 /\I’Nl )\ZL‘NQ

N e NS N\ /
? K AzK

Termu Ny i Ny sa takie, jak w $rodkowej cze$ci rysunku. Dla nich znajdujemy
term K korzystajac z zatozenia indukcyjnego. Term ten ma wtasnosci pokazane
na ostatniej czesci rysunku.

Przypadek 4: M jest aplikacja, ktora nie jest redeksem, lub w zadnym przypadku
nie jest redukowana jak redeks. Dowdd jest analogiczny do dowodu z poprzedniego
przypadku.
MM? M! M?
/ N\ / N\ / N\
N{N} NyN3  Ni Ny Nt N3
N\ / N\ / N\ /
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My M,
/ \
NiNY Ny N3
\ /
K'K?

Przypadek 5: M jest redeksem redukowanym w mieszany sposob, jako redeks i
jako zwykta aplikacja.

(AxM)N

/ N\
()\$M1)N1 Mé[fﬂ = NQ]

11 Podwyrazenia (podtermy)

11.1 Definicja

Niech M bedzie wyrazeniem lambda rachunku. Wyrazenie N jest podwyrazeniem
M, jezeli

1) N = M, jest to tzw. niewlasciwe podwyrazenie M w przeciwienstwie do
pozostaltych, czyli wtasciwych, podwyrazen,

2) N jest (wlasciwym lub nie) podwyrazeniem M; lub podwyrazeniem My w
przypadku, gdy M = M Mo,

3) N jest (whasciwym lub nie) podwyrazeniem M; w przypadku, gdy M =
)\{L'Ml.

Zauwazmy, ze zgodnie z przytoczong definicja zmiennej x znajdujacej sie w abs-

trakcji Ax M bezposrednio za symbolem A nie uwazamy za podwyrazenie.

11.2 Porzadek podwyrazen

W zbiorze podwyrazen termu M definiujemy porzadek. Méwimy, ze podterm Ny
lezy na lewo od podtermu N, (lub podterm N, lezy na prawo od podtermu Ni),
jezeli zachodzi jedna z nastepujacych mozliwosci:

1) Ny = M i N, jest wladciwym podtermem M,
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2) M = M;M,, N; jest podwyrazeniem M; i Ny jest podwyrazeniem My,

3) M = M;M,, Ny i Ny sa podwyrazeniami M; (dla i = 1 lub i = 2) oraz jako
podwyrazenia M; podwyrazenie Ny lezy na lewo od N,

4) M = AxM,;, N1 i Ny sa podwyrazeniami M; oraz jako podwyrazenia M
podwyrazenie Ny lezy na lewo od Ns.

11.3 Prefiks i sufiks podwyrazenia

Jezeli termy rachunku lambda definiujemy jako stowa i term N jest podtermem
termu M, to stowo N jest podstowem stowa M, a wiec wyznacza pewien prefiks
prefy (N) stowa M i pewien sufiks suff,;(N) tego stowa, takie ze M jest konkate-
nacja prefy(N) N suffy(N).

Za pomocy prefiksow podwyrazen mozemy wyrazi¢ porzadek podwyrazen.

Lemat 11.1 W termie M podwyrazenie Ny lezy na lewo od podwyrazenia Ny wtedy
i tylko wtedy, gdy stowo prefy;(N1) jest wtasSciwym prefiksem stowa prefy;(Na) lub
stowo prefy (N1)Ny jest wltasciwym prefiksem stowa prefy;(Na)Ny. O

Jezeli nie bedzie to prowadzi¢ do nieporozumien, zamiast prefy;(N) bedziemy
pisaé¢ pref(N).

11.4 Dokladniej o podtermach

Aby doktadniej méwi¢ o podtermach wprowadzimy specjalng notacje. Bedziemy
rozwazaé¢ wyrazenia rachunku lambda ze specjalnymi zmiennymi. Wszystkie te
zmienne bedziemy przedstawiaé tym samym symbolem | |. Kazda moze wystapi¢
w termie doktadnie jeden raz, a wiec rézne wystapienia symbolu | | w termie ozna-
czaja rézne zmienne tego rodzaju. Symbol M| | oznacza term, w ktérym wystepuje
jedna (ewentualnie przynajmniej jedna) taka zmienna. Zapis M[N] oznacza wynik
zastepowania zmiennej | | przez N, czyli term M[[ | := N].

Fakt 11.2 Term N jest podtermem wyrazenia M wtedy i tylko wtedy, gdy M =
M'[N] dla pewnego wyrazenia M’ z jednym wystapieniem zmiennej [ ]. O

Umawiamy sie, ze r6zne wystapienia zmiennych [ | w wyrazeniu podajemy w
kolejnosci od najbardziej lewego do prawego. Tak wiec M| |[N] oznacza wyrazenie z
podtermem N. W tym wyrazeniu na lewo od podtermu N znajduje si¢ wystapienie
zmiennej | |.

Lemat 11.3 Jezeli w wyrazeniu M podterm Ny znajduje sie na lewo od podtermu
Ny, to albo M = M'[N1][Ns] dla pewnego M’, albo tez M = M'[N{[Ns]] dla pew-
nych M' i N|. W pierwszym przypadku pref,;(N1) Ny jest prefiksem prefy,(Na), w
drugim — prefy;(No) Ny jest prefiksem prefy,(N1) Ny.

Lemat 11.4 Przypu$émy, ze K jest podtermem wyrazenia Mz := N| = Q[K].
Wtedy istnieje M'[ | takie, Ze albo M = M'[K'], Q[ | = M'|lx := N][ ] i K =
K'lx := N] dla pewnego K' # x, albo M = M'[z], Q] | = M'[x := N][N'[]] i
N = N'[K] dla pewnego N'[|. Co wiecej, takie, jak wyzej, termy M', K' i N’ sq
wyznaczone jednoznacznie. O
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11.5 Przodek podtermu

Teraz interesujg nas podtermy termu otrzymanego w wyniku g-redukcji.
Przypusémy, ze wyrazenie S otrzymaliSmy w wyniku pojedynczej § redukeji z
wyrazenia R, a wiec R —3 S. Wtedy

Fakt 11.5 Istniejg termy R', M i N oraz zmienna x takie, ze
R =R'[(AM)N] —3 R[M[z:=N]|=S5. O
Niech K bedzie podtermem wyrazenia S = R'[M[z := N]] = Q[K]. Z lematu
11.4 wynika, ze sa mozliwe nastepujace przypadki:

1) K jest na lewo od termu podstawianego w R'[ |, a wiec istnieje R” takie, ze
R[] = R'[K][] oraz S = R'[M[z := N]] = R'|K][M[z := N]], i podobnie,
gdy K jest na prawo od termu podstawianego w R'[ |,

2) K istotnie obejmuje redukt Mz := NJ|, a wiec S = Q[K'[M[z := N]|],
R[] =Q[K'[]] oraz K = K'[M[z := N]| dla K’ # [],

3) K jest czeScig termu podstawianego w R'[ ] i powstaje z czesci M, a wiec
istnieja M’ i K’ takie, ze K = K'[x := N|] i M = M'[K'], oraz
S = R'[M[z := N]| = R[(M'[K'])[x := N]|| = R'[M'[x := N][K'[z :== N|] =
= R'[M'[z := N][KT]],

4) K jest czedcia termu podstawianego w R'[ | zawarta w pewnej kopii N, a
wiec istnieja M’ 1 N’ takie, ze M = M'[z := N]|[N] i N = N'[K], oraz

S = R[M[z := N]| = R[M'[z .= N][N]] = R'[M'[z .= N||N'[K]]].

W kazdym z powyzszych przypadkéw dla podtermu K definiujemy podterm pg s(K)
termu R. Tak wiec

1) jezeli S = R'[K|[M][x := N]] oraz R'[ | = R"[K][ ], to prs(K) = K i jest
podtermem takim, ze R = R"[pr s(K)|[(AxM)N], przyjmujemy tez analo-
giczng definicje, gdy K jest po drugiej stronie reduktu,

2) jezeli § = Q[K'[M [ NI, R = QIK'[]]1 K = K'[M[z := N][ dla K" #
[], to prs(K) = [()\:BM)N] i jest podtermem takim, ze R = Q[pr.s(K)],

3) jezeli S = R'[M'[z := N|[K]] dla terméw M’ i K’ takich, ze K = K'[z := N],
M = M'[K'] oraz K' # x, to prs(K) = K’ 1 jest podtermem takim, ze
R = R'[(AxM'[pr,s(K)])N],

4) jezeli S = R'[M'[x := N|[N'[K]]], to prs(K) = K oraz
R = R[(AxM)N'[pr,s(K)].

Zwroémy uwage, ze w przypadku R = z(y((AzM)N)) 1 S = z(y(M[z := NJ]))
mamy pr s(M[z := N|) = M oraz prs(y(M[z := N])) = y(\zM)N).

Lemat 11.6 Przypusémy, ze R —3 S i K jest podtermem S takim, zZe prs(K) w
termie R lezy na lewo od redukowanego redeksu. Wtedy prefs(K) = prefgp(pr.s(K)).
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Dowdd. Dowdd jest tatwy, ale moze by¢ trudno sie przez niego przegrysc. O

Lemat 11.7 Przypusémy, ze R —g S i L jest podtermem R, lezgcym na lewo
od redeksu redukowanego podczas przeksztatcania R w S. Wtedy L = prs(K) dla
pewnego podtermu K.

Lemat 11.8 Przypusémy, ze R —3 S i K jest podtermem S, ktory jest abstrakcjq.
Wtedy prs(K) tez jest abstrakcjq.

Lemat 11.9 Przypusémy, ze R —5 S i K jest podtermem S taki, ze prs(K) jest
redeksem (lub abstrakcjg). Wtedy K tez jest redeksem (odpowiednio: abstrakcjq).

Dowdéd. Wyrazenie prg(K) jest definiowane na jeden z czterech sposobow. W
pierwszym i ostatnim przypadku z definicji prs lemat jest oczywisty. W trze-
cim przypadku takze, poniewaz podstawiajac cokolwiek w redeksie otrzymujemy
redeks. Nieco bardziej skomplikowang sytuacje mamy w przypadku drugim.

W tym przypadku prs(K) = K'[(AxM)N] dla pewnego K’ # [ |. Jezeli K’
jest jaka$ inna zmienna, to prs(K) tez jest zmienna, a nie redeksem. Podobnie
pokazujemy, ze K’ nie moze byé¢ abstrakcja. Musi wiec byé aplikacja. Pierwszy
czton tej aplikacji powinien by¢ abstrakcja. Nie moze by¢ aplikacja, ani zwykty
zmienng. Nie moze by¢ tez zmienna | |, gdyz w tym przypadku, po podstawieniu
otrzymujemy aplikacje. A jezeli K’ jest redeksem, to K = K'[M[z := N]] tez jest
redeksem. O

Lemat 11.10 Przypusémy, ze R —g S i K jest podtermem S, ktory jest redeksem.
Wtedy K jest zielonym redeksem wtedy i tylko wtedy, gdy prs(K) tez jest zielonym
redeksem (i analogicznie dla pozostalych koloréw). O

12 Twierdzenie o normalizacji

12.1 Rodzaje redukcji

Przypuéémy, ze mamy ciag wyrazenr My, My, My, Ms ... lambda rachunku (skon-
czony lub nie), taki ze

M@ —>BM1 —>5M2—>5M3... (1)

Taki ciag nazywamy redukcja normalna, jezeli dla wszystkich ¢ z wyjatkiem
ostatniego, przeksztalcajac M; w M, 1, redukujemy pierwszy redeks w termie M;
(a wiec lezacy najbardziej na lewo).

Ciag (1) nazywamy redukcja standardowa, jezeli dla wszystkich i > 0 z wyjat-
kiem ostatniego, redeks R;_; lezy w termie M;_; na lewo od termu pas, , ar,(R;).
Tutaj R; oznacza redeks redukowany podczas przeksztacania M; w M; ;.

Ciag (1) jest redukcja quasi-normalna, jezeli dowolnie daleko w tym ciagu sa
redukowane pierwsze redeksy.

Lemat 12.1 Jezeli
MO B Ml B M2 B Mg...—>ﬁMm

jest redukcjq standardowq, a wyrazenie M,, jest w postaci normalnej, to ta redukcja
jest normalna.
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Dowéd. Przez indukcje ze wzgledu na m, ze jezeli pierwszy redeks L termu M,
nie zostal zredukowany, to po wykonaniu m krokéw redukeji standardowej otrzy-
mujemy term M,,, ktory nie jest w postaci normalnej.

Zatézmy, ze redeks L nie zostat zredukowany podczas redukcji termu My do M.
Zgodnie z lematem 11.7 istnieje podterm K termu M taki, ze ppyan (K) = L.
Z lematu 11.9 otrzymujemy, ze K jest redeksem. Gdyby K zostal zredukowany
podczas przeksztalcania M; w My, to na mocy lematu 11.6 redukcja nie bytaby
standardowa. Jezeli nie zostal zredukowany, to z zatozenia indukcyjnego otrzymu-
jemy, ze term M, nie ma postaci normalnej. O

12.2 Redukcja normalna

Twierdzenie 12.2 (o normalizacji) Jezeli wyrazenie My ma postaé normalng,
to redukcja normalna

M0—>13M1—>QM2—>QM3...

jest skonczona, a jezeli jest tez dostatecznie diuga, to jej ostatni wyraz jest postacig
normalng M.

Dowdéd. Po pierwsze, redukcja normalna jest jednoznacznie wyznaczona. Po dru-
gie, na mocy twierdzenia o standaryzacji 12.7 i lematu 12.1, stosujac redukcje nor-
malng term M, mozna sprowadzi¢ do postaci normalnej. Jednoznacznosé redukeji
normalnej gwarantuje, ze dana redukcja jest czescig redukcji normalnej prowadza-
cej do postaci normalnej. O

Whniosek 12.3 Jezeli istnieje nieskonczona redukcja normalna, zaczynajgca sie
termem My, to term ten nie ma postaci normalnej. O

Lemat 12.4 Przyjmijmy, ze mamy cztery wyrazenia My, My, Ny, N1, ktore redu-

kujq sie, jak na rysunku

My 5 M,

Ro lﬁ Ry lﬁ
Ny Ny

na ktorym obok symboli redukcyi sq podane przeksztatcane redeksy. Jezeli Ry =
P (R1) @ Ry lezy w wyrazeniu My na lewo od S (a wiec redukcja My —p
M,y —3 Ny nie jest standardowa), to Nog — 5 Ny (a wigc mozna jg zastapic¢ bardziej
standardowq redukcig My —g No —»g Ni). Ponadto w tej sytuacji, jezeli Ry jest
pierwszym redeksem w termie My, to Ry jest pierwszym redeksem w termie M.

Dowdéd. Mozemy pokolorowaé oba przeksztatcane redeksy (Rg i.S) w termie M.
Dla redukcji kolorowych redekséw, redukcja My —g My —3 N; przeksztatca M,
w posta¢ normalna N; (jest to redukcja od konca). Term My mozemy tez prze-
ksztalci¢ do Ny, a nastepnie Ny do postaci normalnej, redukujgc kolorowe redeksy
(S lub jego kopie). Poniewaz jest to zawsze wykonalne, a dla redukeji kolorowych
redekséw posta¢ normalna jest jednoznacznie wyznaczona, term Ny tez mozna
przeksztatci¢ do N;. Dalej korzystamy z lematow 11.7, 11.91 11.6. O

Whniosek 12.5 Przyjmigmy, ze My —3 Ny oraz My —3 Ny @ w kazdej z tych
redukcji (chociaz raz) redukujemy pierwsze redeksy. Wtedy My —»3 Ny. O

Whniosek 12.6 Jezeli istnieje nieskonczona redukcja quasi-normalna, zaczynajgca
sie termem My, to term ten nie ma postaci normalnej. O
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12.3 Standaryzacja

Twierdzenie 12.7 (o standaryzacji) Jezeli M —3 N, to istnieje redukcja stan-
dardowa M do N.

Dowéd. Twierdzenie to dowodzimy przez indukcje korzystajac z lematu 12.10. O

Najpierw pokazemy lematy pomocnicze.

Lemat 12.8 Przypuscémy, ze w kazdym kroku redukcyi
O() —>301 —>502 —p —>/30n

jest redukowany najbardziej lewy pokolorowany redeks. Niech My bedzie podtermem
Co, ktory jest abstrakcjq i lezy na lewo od wszystkich kolorowych redeksow. Wtedy
istnieje podterm N wyrazenia C,,, ktory jest abstrakcjq, taki Ze

p*co,cn(N) = My oraz prefg,(My) = prefg, (V).

Dowdd. 7 lematu 11.7 wynika, ze istnieje podterm M; wyrazenia C taki, ze
Pcoy,ci (M) = My. Z lematu 11.6 otrzymujemy, ze prefg, (Mo) = prefe, (M) a z
lematu 11.9 — ze M; jest abstrakcja. Jezeli pokazemy, ze M; lezy w termie C}
na lewo od wszystkich pokolorowanych redekséw, to teze otrzymamy z zasady
indukcji.

Przypus¢my, ze redukcja Cy —3 C polegata na zastgpieniu redeksu X reduk-
tem Y. Wtedy prefo, (X) = prefo, (Y). Poniewaz X jest pierwszym kolorowym
redeksem, wiec prefiks prefy (X) nie zawiera kolorowych opreratoréw abstrakcji.
Zawiera za to prefiks prefo, (My). Wobec tego takze prefiks pref., (M) nie zawiera
zadnych kolorowych operatorow i lezy na lewo od wszystkich kolorowych redekséw.
O

Lemat 12.9 Przypusémy, ze w kazdym kroku redukcyi
Co —>ﬁ01 —>gCQ —>5...—>gCn

jest redukowany najbardziej lewy pokolorowany redeks. Niech M bedzie podtermem
Ch, ktory jest abstrakejq i p, o, (M) lezy w termie Co na lewo od wszystkich kolo-
rowych redeksow. Wtedy

Prefco (Pa,,cn (M)) = Z”"@fcn (M)
Dowdéd. Podobny do dowodu poprzedniego lematu. O

Lemat 12.10 Przypusémy, ze Ay —g By —»3 B i redukcja By do B jest standar-
dowa. Wtedy Aqg tez mozna standardowo zredukowaé do B.
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Dowdéd. Bedziemy tworzy¢ i stopniowo rozbudowywacé nastepujacy diagram

Ag g By
Ro lg Q lg
Ay —3 —3 B
R |g Qg
Aii —p O =3 G —p ... =5 O, —5 By
Ri1lp Qi1 I
4 Byo 2, o &, Ispo, 2 B
Ri lp Qg
Aiy1 —p —g  Bin

Qiv1 lﬁ

Na tym diagramie obok symboli redukcji sa podane nazwy przeksztatcanych redek-
sow. Jest przedstawiony fragment danej redukcji standardowej przeksztatcajacej
By —3 By —p az do B i redukcja A, do B,.

Bedziemy korzysta¢ z kolorowych redekséw. Na poczatku koloruje np. na zie-
lono redeks S. Przeksztalcenie A; w B; (to uwidocznione na rysunku) bedzie
polega¢ tylko na redukcji zielonych redekséw, wszystkich mozliwych. Konstruk-
cje bedziemy tak prowadzi¢, aby redukcja Ay —5 A1 —p ... —g A; i dalej
A; = Cy —p5 C1 —p B, byla standardowa, a jej ostatni fragment od A; do B;
byt redukcja normalna dla kolorowych (zielonych) redekséw prowadzaca do termu
bez kolorowych redeksow. Pierwszy krok konstrukeji zostanie wykonany zgodnie z
lematem 12.4. Zalézmy, ze fragment konstrukeji zawierajacy definicje redukcji od
A; = Cy do B; jest juz wykonany.

Przypadek 1: ostatnim wyrazem redukcji Ay —3 A; —3 B; jest ostatni wyraz
redukcji By —g B, czyli B; = B. W tym przypadku twierdzenie jest oczywiste i
wynika z zalozonego niezmiennika konstruke;ji.

Przypadek 2: B; # B, czyli nie dotarliémy jeszcze do korica redukcji. Powin-
nismy teraz wskaza¢ redeks R;. Najpierw musimy zbada¢ przodka pc,, 5, (Q:) w
termie C,,.

Przypadek 2.1: p¢,, 5,(Q;) lezy na prawo od Z,,. Oznacza to, ze redukcja od Ay
do A;, dalej od A; do B; i jeszcze od B; do B jest standardowa i twierdzenie zostato
dowiedzione.

Przypadek 2.2: pc,, 5,(Q:) lezy na lewo od Z,,. Znajdujemy najmniejsza licz-
be k taka, ze dla wszystkich [ speniajacych k < | < m term pg, 5 (Q;) lezy na
lewo do Z; (pg, p, odpowiednie zlozenie funkcji p, na przyktad pg, | 5 (Q:) =
PCr1,Con (PCov,B: (@)

Przyjmijmy, ze R; = pg, p,(Qi). W termie C, redeks Zj, jest zielonym redeksem
potozonym sposréd zielonych najbardziej na lewo i sam ma po lewej stronie redeks
R;. Tak wiec redeks R; ma po prawej stronie wszystkie zielone redeksy w termie
Cy. Mozna wiec zredukowaé R;, a nastepnie jakikolwiek zielony redeks zachowujac
standardowo$¢ redukcji.
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Na chwile pomalujmy na czerwono redeks R;. Powoduje to, ze wszystkie termy
z redukcji od C} do B; zawieraja po jednym czerwonym redeksie. W termie B;
czerwonym redeksem jest ();. Redukujac go otrzymujemy B;,;, term bez zielo-
nych oraz bez czerwonych redeksow. Term B, jest wiec postacig normalng termu
C dla redukcji kolorowych redeksow. Do postaci normalnej dochodzimy zawsze,
redukujac kolorowe redeksy w dowolnej kolejnosci. Mozemy wiec najpierw w ter-
mie C} zredukowaé redeks czerwony (otrzymujemy A;,1), a nastepnie redukowaé
redeksy zielone zawsze biorac pierwszy redeks od lewej. Redukujac w ten sposéb
tez otrzymamy posta¢ normalna. W szczegélnosci, istnieje normalna dla zielonych
redekséw redukcja termu A; 1 do B;y; i standardowa od C} do Bj1.

Zmowu sg mozliwe dwa przypadki:

Przypadek 2.2.1: k£ > 0.

W tym przypadku redukcja prowadzaca od Ay do A;, dalej od A; (oznaczanego
tez Cy) do Cf i na koniec do A; ;1 otrzymanego z termu C}y przez redukcje redeksu
R; jest standardowa. Jej standardowos$¢ wynika z definicji k.

Dodajac do niej standardowa redukcje prowadzaca od Cy do B,y otrzymujemy
standardowg redukcje od Ay do Bjy1.

Przypadek 2.2.2: k£ = 0. Teraz mamy dwie redukcje od Ag do A; oraz od A; do
A1 1 dalej do Bj,q, obie standardowe, ale nie jest jasne, czy taczac je otrzymamy
redukcje standardowa. Sytuacja zostata przedstawiona na ponizszym rysunku:

Co  —p O =5 Oy —5 ... =5 O, —g  Big
Rio1 lp Qi1 lp
4 Byo0 L0 2, 2550, 23, B
R; lﬂ Qi lﬁ
A —p —3  Bin

Redeks R;_1 (zgodnie z oznaczeniami z rysunku) jest réwny p*c(,)’ B, (Qi—1), aredeks
R; = pi, p.(Qi). Konstrukcja tych redekséw gwarantuje réwniez, ze leza one na
lewo od zielonych redeksow w odpowiednich termach.

Aby wspomniane redukcje po potgczeniu daly redukcje standardowsa, redeks
R;_ powinien by¢ po lewej stronie redeksu pey 4,(R;). Sa to rézne redeksy. Dla
dowodu nie wprost zal6zmy, ze R;_1 jest po prawej stronie pcy a, (R;), a wiec stowo
prefes (Pey,a;(R;)) samo jest prefiksem prefe, (Ri—1).

Na mocy lematu 12.9 zachodzi réwnosc¢

prefa, (i) = prefa, (P, ,(Qi)) = prefp, (Qi).

Z tego samego powodu zachodzi tez réwnosé

Prefc(g(Rz‘—l) = Prefc(g (pZ‘(’],Bi_l(Qi—l)) = PTGfBi,l(Qz‘—ﬂ.

7. 7 zatozenia dowodu nie wprost i lematu 11.6 otrzymujemy, ze
prefes (Pey,a,(Ri)) = prefy, (Ri).

Teraz do redukcji od Cj do By i pey 4, () zastosujmy lemat 12.8. Wynika z
niego, ze dla pewnego podtermu N wyrazenia B; | mamy

prefey (pega,(R)) = prefs, (V).
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7, dowiedzionych réwnosci prefiksow otrzymujemy, ze

prefp,(Qi) = prefp, ,(N)

i dodatkowo, ze stowo prefp  (N) jest prefiksem prefp  (Qi—1). Przyjrzyjmy sie
wiec redukeji B;—1 —p B;.

Z lematow 11.7 i 11.6 znajdujemy podterm K wyrazenia B; taki, ze N =
pB;_,.B;(K) oraz

prefp,(K) = prefp, (05, ,5:(K)) = prefp,_,(N) = prefp, (Qi).

Z kolei z lematow 11.8 1 11.9 wynika, ze podterm K jest abstrakcja. Dla abstrak-
cji operacja prefiksu jest réznowartosciowa. Wobec tego K = Q; i pg,_, .5, (Q:), czyli
N, lezy na lewo od Q);_;. To jednak przeczy zatozeniu, ze redukcja By, By, B, . ..
jest standardowa. O

13 Lambda definiowalnosé

13.1 Minimum historii

Alonzo Church chyba w pierwszej chwili uwazal rachunek lambda za system for-
malny, ktory mogtby by¢ podstawsg sformalizowanej — a wiec by¢ moze pozbawionej
sprzecznosci — matematyki. Wezedniej proby zbudowania podobnego, formalnego
systemu prowadzit Emil Post, ktory rozwazal bardzo skomplikowane gramatyki.
Jego prace jednak nie odziatywaty istotnie na éwczesne badania naukowe.

Church dosé szybko (ok. 1932 roku) zorientowal sig, ze rachunek lambda po-
zwala na sformalizowanie pojecia obliczalnosci i moze doprowadzi¢ do rozwiazania
problemu znanego jako Entscheidungsproblem, postawionego przez Dawida Hil-
berta, polegajacego na skonstruowaniu procedury pozwalajacej na rozstrzyganie
hipotez matematycznych. W 1936 rozwiazal ten problem negatywnie proponujac
jednoczesnie utozsamianie pojecia obliczalno$ci z lambda definiowalnoscig. Stwier-
dzenie, ze te pojecia sa tozsame, mozna nazwa¢ teza Churcha, a wlasciwie jest
jedna z wersji tej tezy.

Church o stusznosci swojej tezy przekonywat przytaczajac twierdzenia o réw-
nowaznos¢ réznych definicji obliczalnosci, opartych o rézne intuicje. W pierwszym
rzedzie powoltywat sie réwnowaznos¢ lambda definowalnosci i definicji zwigzanych
z pracami Kurta Godla, w tym przytoczonej dalej definicji klasy funkcji rekuren-
cyjnych udoskonalonej przez Stephena Kleene’ego.

Podobne rozwazania prowadzil Alan Turing, a wyniki swoich badan ujawnit
w 1936 roku, prawie rownoczesnie z Churchem. W przeciwienstwie do Churcha,
Turing uzasadnial swoja definicje obliczalnosci argumentami filozoficznym opar-
tymi o analize pracy moézgu i obliczen dokonywanych przez ludzi. Przekonywat,
ze maszyny Turinga dziataja podobnie, jak ludzie wykonujacy obliczenia, i z tego
powodu sg w stanie zrealizowaé¢ wszelkie obliczenia mozliwe do wykonania przez
ludzi.

13.2 Numeraly Churcha

Aby moéwi¢ w lambda rachunku o obliczalnosci nalezy w pierwszym rzedzie w
tym rachunku reprezentowaé liczby naturalne. Pierwszy sposob reprezentowania
zaproponowal Church. Jego termy reprezentujace liczby naturalne nazywamy nu-
meratami Churcha.
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Przyjmijmy, ze M i N sa termami rachunku lambda. Wtedy M*(N) oznacza
term zdefiniowany rekurencyjnie wzorami

M°(N) =N oraz M*(N) = M(MF(N)).

Liczbe naturalna k bedziemy w lambda rachunku reprezentowaé jako tzw. nu-
merat Churcha ¢, dany wzorem

Cn = Nfa. ().

Numeraty Churcha sg oczywiscie termami w postaci normalne;j.

Z twierdzenia Churcha-Rossera wynika, ze rozne numeraty Churcha sa terma-
mi, o ktéorych w lambda rachunku nie mozna dowies¢, ze sa rowne.

Znane sa tez inne sposoby reprezentowania liczb naturalnych.

Przyjrzyjmy sie jeszcze numeratom Churcha. Ich intuicyjna interpretacja jest
nastepujaca:

1) c¢pfz = f"(x) to n-krotne aplikowanie funkcji f do x,

2) ¢, f = Azx.f"(x) to funkcja, ktora jest n-krotnym ztozeniem funkcji f,
3) ¢n = Afz.f"(x) to abstrakcyjna operacja n-krotnego sktadania.
Mamy wzér ¢, f(fx) = cya1fx. Stad term S = Aafz.af(fx) spelnia

Scp = Mr.cof(fr) = M. f"H(2) = cppr.

Tak wiec term S definiuje operacje nastepnika (przyporzadkowujaca liczbie natu-
ralnej n liczbe n + 1). Mamy takze

(Nafzf(afe))en = Mof(enfr) = Mz f(F(2)) = cuon.
Podobnie, z wzoru ¢, f (¢, fx) = f"7™(z) wynika, ze termy
Xabfr.af(bfxr) oraz Aabfz.bf(afz)

definiuja dodawanie liczb naturalnych.
Natomiast z wzoru ¢, (¢, f)xr = f™"(x) otrzymujemy, ze termy

Aabfz.a(bf)x oraz Aabfz.b(af)x

definiuja mnozenie liczb naturalnych. Powyzszy wzér, takze przytoczona wyzej
interpretacja numeralow Churcha sugeruja takze wzor: ¢, (¢, f) = f™". Zauwazmy,
ze takze

(Aabf.a(bf))cmen = Cmn-

13.3 Lambda definiowalno$¢ wg Churcha

Bedziemy rozwazaé czesciowe funkcje wielu zmiennych naturalnych przyjmujace
warto$ci naturalne. Funkcje czeSciowe n zmiennych to takie, ktére niekoniecznie
sg okreslone dla wszystkich mozliwych uktadéw n liczb naturalnych. Funkcje okre-
Slone dla wszystkich mozliwych uktadéw argumentéw nazywamy catkowitymi. Tak
wiec funkcje catkowite sa szczegdlnym przypadkiem funkceji czesciowych.

Funkcja czesciowa dwoch zmiennych f : N? — N jest lambda definiowalna,
jezeli dla pewnego termu F' € A sa spetnione dla dowolnych m,n € N nastepujace
warunki:
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1) jezeli wartos¢ f(m,n) jest okreslona, to w lambda rachunku daje si¢ dowiesé,
7€ Fepcn = Cpampn) (lub réwnowaznie Fe,,cn, —5 Coimm)),

2) jezeli warto$é¢ f(m,n) nie jest okreslona, to wyrazenie F'¢,,c, nie ma postaci
normalnej.

O termie F' spelniajacym powyzsze warunki moéowimy, ze reprezentuje funkcje
f. Bez trudu te definicje uogélniamy na przypadek funkcji czesciowych innej liczby
zmiennych.

Przytoczona definicja zostata podana przez Churcha i jest dos¢ naturalna. Mi-
mo to sprawia troche klopotéw. Swiadczy o tym nastepujacy przyklad. Funkcja
stale rowna zero f moze by¢ reprezentowana przez F' = K¢y, a funkcja nigdzie
nie okreslona g — przez term G = KY(). Zlozenie f i g jest funkcja nigdzie nie
okreslona, a jego naturalna reprezentacja powinien by¢ term \z.F(Gzx). Ten term
reprezentuje jednak funkcjg stale réwna zero.

13.4 Funkcje pierwotnie rekurencyjne

Klasa funkcji pierwotnie rekurencyjnych jest najmniejsza klasg naturalnych funkcji
catkowitych

1) zawierajaca funkcje Z, S i U, spelniajace dla wszystkich mozliwych natu-
ralnych argumentow réwnosci

Z(m)=0, Sim)=m+1 oraz U,i(mi,ma,...,my,)=my

2) i zamknieta ze wzgledu na ztozenie

h(my,ma,...,my) = f(gr1(my,ma,...,my), ..., g(M1,ma, ..., my))

(czyli h jest pierwotnie rekurencyjne dla wszystkich pierwotnie rekurencyj-
nych funkcji figq,...,9x)

3) oraz definiowanie przez rekursje prosta
f(0,my,mg,...,m,) = g(my,ma,...,m,) oraz

f(k+ ].,mth, s 7mn) - h(f(kaml7m27‘ e umn)7k7m17m2)' e 7mn)
(czyli f jest pierwotnie rekurencyjne dla wszystkich pierwotnie rekurencyj-
nych funkcji g i h).
Definiowanie przez rekursje prosta obejmuje takze przypadek n = 0. W tym
przypadku definicja przyjmuje postac

f(0) =g oraz f(k+1)=h(f(k) k)

dla dowolnie ustalonej liczby g¢.

Zdecydowana wiekszos¢ uzywanych funkcji naturalnych to funkcje pierwotnie
rekurencyjne. Wielu matematykow nie poda przyktadu funkcji naturalnej, ktéra
nie jest pierwotnie rekurencyjna.
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13.5 A-definiowalno$¢ funkcji pierwotnie rekurencyjnych

Twierdzenie 13.1 Klasa catkowitych funkcji lambda definiowalnych jest zamknie-
ta ze wzgledu na ztozenie.

Dowé6d. Ten dowdd ma jasng idee i moze zostaé przedstawiony na przyktadzie.
Przypusémy, ze funkcja h jest ztozeniem catkowitych funkcji f, g1 i go takim, ze

h(m7 n) = f(gl(m’n>792(m7 n))

Niech F', G; i G5 beda termami definiujacymi odpowiednio funkcje f, g1 i go.
Wtedy term
Aab.F(Grab)(Gaab)

definiuje funkcje h. Poniewaz zajmujem sie funkcjami caltkowitymi, wiec wystarczy
sprawdzi¢ tylko warunek 1) z definicji funkcji lambda definiowalnej (patrz str. 28).
Sprawdzenie tego warunku nie nastrecza zadnych trudnosci. O

Twierdzenie 13.2 Klasa catkowitych funkcji lambda definiowalnych jest zamknie-
ta ze wzgledu na definiowanie przez rekursje prostq.

Dowdd. Najpierw zajmiemy sie przyktadem, z ktérego powinno wynikaé, ze re-
kursja ma cos wspélnego z iteracja, zwtaszcza w przypadku, gdy kolejna wartos¢
definiujemy bez parametrow.

Pokazemy lambda definiowalno$¢ funkeji takiej, ze f(0) = 11 f(n+1) = 2- f(n).
Oczywiscie, f(n) = 2"). Nietrudno zauwazy¢, ze f(n) = h"™(1), gdzie h(n) =2 - n.
Jezeli znajdziemy term H definiujacy h, to korzystajac z interpretacji numera-
tow Churcha mozemy uznaé¢ za definiujacy f term Aa.aHc;. Term H mozemy
analogicznie zdefiniowaé jako Aa.alLcgy, gdzie L jest termem definiujacy funkcje
powiekszajaca argument o 2. Mozemy przyjaé, ze L = Xafz.af(f(fz)).

Teraz musimy rozbudowaé¢ aparat. Przyjmijmy, ze

[M,N] = Ax.xMN, K =true= \zy.x oraz Kx = false = \zy.y.

Oczywiscie, mamy [M, N]K = M oraz [M, Nl]false = N, o ile zmienna z nie
wystepuje w termach M i N.

Pokazemy (znowu na przyktadzie) lambda definiowalno$¢ funkeji f definiowanej
wzorami

f(0,m) =g(m) oraz f(k+1,m)=h(f(k,m),k,m).

Przyjmijmy, ze G i H sa termami definiujacymi odpowiednio g i h.
Nawiasy kwadratowe oznaczaja rodzaj funkcji pary. Niech ¢ oznacza funkcje
taka, ze
q(m, [a,b]) = [h(a,b,m), b+ 1].

W rachunku lambda taka funkcje reprezentuje term
Q = uwvww(HK)(vK*)u)(S(vK™).

Wezmy
F = Xab.a(Qb)[GD, ¢o| K,

Pokazemy najpierw, ze
Qcm [Cf7 Ck] = [Ch(f,k,m)a Ck+1]-
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Oczywiscie,
Qcmler, cx] = Aww(H ([er, e K)([cf, il KT )em) (S([er, cr] K7)) =
=  w.w(Hcegpepenm)(Scr) = [HepcuCnm, Coy1) = [Chifem), Chti)-
Stad przez indukcje otrzymujemy, ze
(Qcwm)*([egtm)» co]) = [es(hmys il

Zauwazmy, ze k = 0 réownos¢ ta jest oczywista. Ponadto

(Qem) ™ ([egim o)) = Qemlesimys k) = [Cnrm)pm)s Cha1] = [Crietim)s Ch1)-

Stad, jako wniosek, otrzymujemy

Fegem = ci(Qem)[Gem, co] K = (Qem)* ([cqimy: ) K = [C10emys 6] K = ¢1itm)-
Roéwnosé ta swiadezy o tym, ze F' definiuje funkcje f. O

Whniosek 13.3 Funkcja poprzednik p : N — N taka, ze p(0) = 0 oraz p(n+1) =n
jest definiowalna w rachunku lambda.

Dowdd. Jest to wniosek wazny z historycznego punktu widzenia. Znalezienie do-
wodu tego faktu sprawiato troche ktopotow.

Funkcje p mozna zdefiniowaé przez rekursje prosta (,pusta’, nie odwotujaca
sie do wartosci poprzedniej) przyjmujac, ze

p(0) =0 oraz p(n+ 1) = Uss(p(n),n).

Wystarczy wiec powtorzy¢ wyzej przedstawiong konstrukcje w tym przypadku. O

Twierdzenie 13.2 mozna dowies$¢ takze jeszcze inna, wazna metoda, korzystajac
z twierdzenia o punkcie statym.
Dowdd. Dowodzimy raz jeszcze twierdzenie 13.2 korzystajac z twierdzenia o punk-
cie staltym i oznaczen w wprowadzonych w dowodzie poprzednim.

Przyjmijmy, ze

M = Mfax.Zero a(Gz)(H(f(Pa)x)(Pa)x).

W tym wzorze P oznacza term reprezentujacy funkcje poprzednik, a Zero jest
réwne \z.x(Kfalse)true i zaaplikowane do ¢, przyjmuje jako wartos¢ albo K =
true, albo K* = false zaleznie od tego, czy n jest rowne 0, czy nie.

Korzystajac z twierdzenia o punkcie staltym znajdujemy term F' taki, ze M F' =
F. O tym termie dowodzi sie, ze

Feotp = cgmy oraz Feppicm = H(FepCm)crtn,.
Stad juz tatwo, przez indukcje, wyprowadzi¢ teze twierdzenia. O

Whniosek 13.4 Funkcje pierwotnie rekurencyjne sq lambda definiowalne. O
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13.6 Operacja minimum

Operacja minimum nazywamy przyporzadkowanie funkcji naturalnej g : N**1 —
N funkcji f: N* — N oznaczanej wzorem

fky, .o k) = pm(g(ky, ... kn,m) =0)

przyjmujaca jako wartos¢ f(kq,...,k,) najmniejsza liczbe m spelniajaca warunek
g(ki, ... kp,m) =0.

Definicja ta z kilku powodéw moze by¢ niejasna. Mozemy ja stosowaé dla roz-
nych rodzajow funkcji g. W najbardziej ogélnym przypadku, g moze by¢ dowolna
naturalng funkcja czedciowa. Wtedy pojawiaja si¢ niejasnosci zwiazane z defini-
cja wartosci funkcji f. Jest jednak naturalny algorytm pozwalajacy na obliczanie
wartodci f. Algorytm ten przeszukuje kolejno liczby naturalne dopéty, dopdki nie
znajdzie wartosci m spetniajacej warunek g(kq,...,k,,m) = 0. Operacja mini-
mum powinna by¢ tak rozumiana, aby ten algorytm pozwalal na wyliczanie war-
tosci funkcji definiowanych za pomocg tej operacji. Nietrudno zauwazy¢, ze ten
algorytm zawodzi w dwoch sytuacjach: jezeli nie jest w stanie obliczy¢ potrzebnej
wartosci funkeji g, (na przyktad zawsze oblicza g(k, ..., k,,0)), lub gdy funkcja g
dla odpowiednich parametréw nie przyjmuje wartosci 0. W tych dwoch przypad-
kach funkcja definiowana za pomocg operacji minimum nie jest okreslona.

O operacji minimum méwimy, ze jest efektywna, jezeli stosujemy ja wylacznie
do catkowitych funkcji g takich, ze

Vi, ..., k,3m g(ky, ... kn,m)=0.

Bedziemy tez rozwazaé operacje minimum ograniczong do catkowitych funk-
cji g.

13.7 Funkcje rekurencyjne

Klasa catkowitych funkcji rekurencyjnych jest najmniejsza klasa funkcji zawieraja-
ca Z, S oraz U, i zamknieta ze na ztozenie, rekursje prosta i efektywna operacje
minimum.

Klasa (czesciowych) funkeji rekurencyjnych jest najmniejsza klasa funkcji za-
wierajaca Z, S oraz U, i zamknieta ze na zlozenie, rekursje prosta i operacje
minimum.

Definicja klasy funkcji rekurencyjnych wymaga wyjasnienia, co to jest ztozenie
funkcji czesciowych i jak definiujemy przez rekursje prosta w przypadku takich
funkcji. Te pojecia mozna wyjasni¢ podobnie, jak operacje minimum, wskazujac
naturalne algorytmy, ktére powinny oblicza¢ odpowiednie funkcje i zadajac zgod-
nosci definicji i obliczen za pomocg odpowiedniego algorytmu.

Zgodnie z teza Churcha, klasa cze$ciowych funkcji rekurencyjnych jest klasa
funkcji naturalnych, ktore sg obliczalne w jakimkolwiek, intuicyjnym sensie.

Klase funkcji rekurencyjnych mozna definiowa¢ na wiele sposobéw. Na przy-
ktad, mozna w definicji tej klasy nie wspominaé o rekursji prostej. Rekursja prosta
jest potrzebna do zdefiniowania trzech funkcji: dodawania, mnozenia i funkcji cha-
rakterystycznej relacji nieréwnosci. Majac te trzy funkcje, mozemy kodowadé ciagi
liczb naturalnych za pomoca liczb naturalnych, a to z kolei pozwala rekursje prosta
zastapi¢ operacja minimum.

Mozna tez ograniczac role operacji minimum. Mozna stosowaé ja wytacznie do
funkcji catkowitych. Bardzo silny rezultat tego typu wyraza twierdzenie o postaci
normalnej.
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Twierdzenie 13.5 (o postaci normalnej Kleene’ego) Jezeli f jest czesciowq
funkcjq rekurencyjng, to istniejq dwie pierwotnie rekurencyjne (a wiec catkowite)
funkcje g i h takie, Ze . B

f(k) = h(pm(g(k,m) = 0)).

Dowdéd. O h mozna nawet zatozy¢, ze jest okreslong, bardzo prostg funkcja. Szkic
dowodu twierdzenia jest nastepujacy: zmieniamy troche i rozbudowujemy algorytm
obliczajacy wartosci funkcji f, dodajemy licznik krokéw algorytmu i dodatkowo o
1 zwiekszamy ewentualny wynik obliczen. Niech g oznacza funkcje

£ i P = 0 jezeli obliczenie wartosci f (E) wymaga > t krokéw,
’ f(kE)+ 1 jezeli obliczenie wartosci f(k) wymaga < t krokéw.
Mozna przekonac sie, ze funkcja f’ jest pierwotnie rekurencyjna.
W teorii rekursji przyjmuje sie, ze 0 koduje prawde. Funkcje g definiujemy jako
funkcje boolowska, taka ze

g(k,w) = 0= f'(k, (w)) = (w) A (w)y > 0,

gdzie w jest liczba, o ktrérej myslimy, ze koduje ciag (ewentualnie pare) liczb o
pierwszej wspotrzednej (w)o 1 drugiej (w);. Niech h(x) = (z)o — 1 bedzie zdefinio-
wana jako zmniejszona o 1 pierwsza wspolrzedna pary kodowanej przez x. Dla tak
zdefiniowanej funkcji h zachodzi wzér z tezy twierdzenia. O

Whiosek 13.6 Klasa cze$ciowych funkcyi rekurencyjnych jest najmniejszq klasg
funkcji zawierajgcq funkcje pierwotnie rekurencyjne i zamknietq ze wzgledu na zto-
zenie 1 operacje minimum stosowang do funkcji catkowitych. O

13.8 Operacja minimum i A-definiowalnos¢

Twierdzenie 13.7 Niech g : N> — N bedzie catkowitq funkcjq definiowang w
lambda rachunku za pomocg termu G. Wtedy funkcja f: N — N taka, Ze f(m) =
un(g(m,n) = 0) jest lambda definiowalna.

Dowdd. Zdefiniujmy pomocnicza funkcje h : N2 — N przyjmujac, ze

k jezeli g(m, k) =0
h(k 4+ 1,m) w przeciwnym przypadku

h(k,m) = {

Funkcja h jest definiowana przez specyficzng indukcje. Powinna by¢ definiowana
za pomocy termu H takiego, ze

H = \vy.Zero(Gyx)x(H (Sz)y),

gdzie Zero jest termem zdefiniowanym na stronie 30.
Zauwazmy, ze term H o wyzej podanej wtasnosci spetnia tez warunki

1) jezeli g(m, k) =0, to Hegem —p ck,

2) jezeli g(m,k) # 0, to Hegen, —5 Hegq1Cm, Przy czym wykonujac podang
redukcje przynajmniej raz redukujemy pierwszy o lewej strony redeks.

32



Pokazemy, ze term F' = Hcy definiuje funkcje f. Nietrudno zauwazy¢, ze jezeli
warto$¢ f(m) jest okreslona, to dla pewnego k& mamy

g(m,l) #0 dla [ <k oraz g(m,k)=0.
Wobec tego mamy nastepujaca redukcje
Fcy = Hegen —g HeiCpy —pg .o Heg— 16 —5 HerCrn —p Cr = Cpim)-

Natomiast jezeli f(m) nie jest okreslona i g(m, k) # 0 dla wszystkich k, to
mamy nieskonczong redukcje

Fep, = Heogep, —5 Heiep, —5 HeaCr —p ..

ktora jest quasi-normalna. Z wniosku 12.6 otrzymujemy, ze term F'c,, nie ma po-
staci normalne;j.

Pozostaje poda¢ konstrukcje termu H. Wymaga to postuzenia si¢ operatorem
punktu statego. Musi to by¢ szczegdlny operator, gwarantujacy wymagane wita-
snosci H. Takim moze by¢ tzw. operator Turinga. Niech wiec

1) A= \zy.y(zzxy),
2) © = AA,
3) M = Mhay.Zero(Gyx)z(h(Sz)y).
Wtedy
H=0M = AAM —3 M(AAM) = MH —3 \xy.Zero(Gyx)z(H(Sz)y)

i zachodza wymienione wczesniej wlasnosci H. O

13.9 Nowsze rozumienie definiowalnosci

Funkcje definiowalne wedtug Churcha maja moze nawet bardzo intuicyjng defi-
nicje, ale jest ona zbyt restrykcyjna i trudno sie nia posugiwaé. Czesto inaczej
formutuje sie warunek nieokreslonosci funkc;ji.
Term M nazywamy rozwiazalnym (ang. solvable), jezeli istnieja termy Ny, ..., N
takie, ze
(Axy...xy. M)Ny... Ny =1,

gdzie zmienne z1, ..., x, sg wszystkimi zmiennymi wolnymi w termie M.
Nietrudno zauwazy¢, ze numeraly Churcha sa rozwigzalne. Mamy bowiem
cpdll = I. Takze term zy(ww) (gdzie w = Az.zz) jest rozwiazalny, poniewaz
(Ary.zy(ww))K 1 = I, jednak nie ma on postaci normalne;j.
Mowimy, ze term jest w gtowowej postaci normalnej, jezeli jest on postaci

ATy ... TNy ... Ny,
gdzie m i n sa dowolnymi liczbami naturalnymi, takze moga by¢ rowne 0, x oraz
x1,...,T, sg dowolnymi zmiennymi, a Ny ... N,, sa dowolnymi termami.
Term ww nie jest w glowowej postaci normalnej i nie ma gtowowej postaci

normalnej.

Lemat 13.8 Zachodzg nastepujgce fakty:
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1) Term w postaci normalnej jest w glowowej postaci normalne;.
2) Jezeli term ma postaé normalng, to ma tez glowowq postaé normalng.
3) Jezeli term ma glowowq postaé normalng, to jest rozwigzalny. O

Podany lemat jest tatwy do wykazania, ale prawdziwa jest tez trudniejsza do
udowodnienia implikacja odwrotna do ostatniej z wymienionych, a wiec mamy

Twierdzenie 13.9 Term ma glowowq postac¢ normalng wtedy 1+ tylko wtedy, gdy
jest rozwigzalny. O

Mozemy teraz zmodyfikowaé definicje definiowalnosci (znang ze strony 28).
Funkcja cze$ciowa dwdch zmiennych f : N2 — N jest lambda definiowalna, jezeli
dla pewnego termu F' € A sa spetnione dla dowolnych m,n € N nastepujace
warunki:

1) jezeli wartosé¢ f(m,n) jest okreslona, to w lambda rachunku daje sie dowies¢,
7€ Fepcn = Crampn) (lub réwnowaznie Fecn, —g Crimm)),

2) jezeli wartosé f(m,n) nie jest okre§lona, to wyrazenie F'¢,,c, nie ma glowowej
postaci normalnej a wiec nie jest rozwiazalne.

Twierdzenie 13.10 Zlozenie czesciowych funkcyi lambda definiowalnych jest lamb-
da definiowalne (w sensie powyziszej definicji).

Dowdéd. Dowdd znowu przedstawimy na przyktadzie. Przypusémy, ze funkcja h
jest ztozeniem catkowitych funkcji f, g1 i go takim, ze

h(m,n) = f(gl(m7n)792(mv n))

Niech F', G; i G5 beda termami definiujacymi odpowiednio funkcje f, g1 i go.
Wtedy term
H = Xab.G1ablI GeablI F(G1ab)(Gaab)

definiuje zlozenie h. Sprawdzenie warunku 1) z definicji funkcji lambda definio-
walnej nie nastrecza zadnych trudnosci. Wystarczy zauwazy¢, ze jezeli wartosé
gi(m,n) jest okreslona, to Gicpmcnll =3 Coymm Il —p5 1.

Aby sprawdzi¢, ze spelniony jest warunek 2), rozwazamy kilka przypadkéw.
Jezeli warto$é g;(m,n) nie jest okreslona, a mimo to term Hec,,c, jest rozwiazalny,

to
HCanNl e Nk -3 I

dla pewnych terméw Ny, ..., Ni. Ale takze
HepenNy ... N =5 Giepen ] Gaacpen Il F(Giemcn)(Gacmen) Ny ... Ny,
wiec z twierdzenia Churcha-Rossera mamy
Giemen Il Goacpcn Il F(Greme,)(Gacmen)Ny ... Ny —5 1.

To przeczy jedna stwierdzeniom, ze wartos¢ gi(m,n) nie jest okreslona i term
G1cmep nie jest rozwigzalny.

Analogiczne rozumowanie jest stuszne w pozostatych przypadkach: gdy wartosc¢
g1(m,n) jest, a go(m,n) nie jest okreslona, oraz gdy wartosci gi(m,n) i ga(m,n)
sa okreslone, a wartosé¢ f(gi1(m,n), go(m,n)) nie jest okreslona. O

Dowod twierdzenia 13.7 mozna uzupetnic¢ tak, aby pozostat prawdziwy po zmia-
nie pojecia definiowalnosci.
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Twierdzenie 13.11 Niech g : N?> — N bedzie catkowitq funkcjq definiowang
w lambda rachunku za pomocg termu G. Wtedy funkcja f : N — N taka, Ze
f(m) = un(g(m,n) = 0) jest lambda definiowalna.

Dowdéd. Zostanie tylko uzupetiony przy zachowaniu oznaczen.

Zmianie ulega jedynie fragment, w ktorym sprawdzamy wtasnosci F' w przy-
padku, gdy f(m) nie jest okreslona. Zal6zmy wiec, ze tak jest i dodatkowo, ze
term F'c,, = Hcocy, jest jednak rozwigzalny. Wtedy znajdujemy termy Ny, ..., Ni
takie, ze

HCOCmN1 .. Nk -3 1.

Jednak w dalszym ciagu powyzszy term mozna redukowaé¢ w nastepujacy sposob:
HCOCle .. Nk g Hclcle .. Nk —p HCQCle .. Nk B .-

i jest to redukcja quasi-normalna. Z wniosku 12.6 wynika, ze term Hcoc,,, [N ... Ny
nie ma postaci normalnej i nie moze zosta¢ zredukowany do termu I, ktory jest w
postaci normalnej. O
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