
Formalizacja podstawowych pojęć rachunku
lambda

Antoni Kościelski

1 Zmienne

Zbiór zmiennych będziemy oznaczać literą V . Zakładamy, że jest to zbiór nieskoń-
czony (przeliczalny). Chcemy mieć do dyspozycji każdą skończoną liczbę zmien-
nych. To, czym są zmienne nie ma większego znaczenia. Ważne jest to, że odróż-
niamy zmienne od innych rzeczy. Możemy myśleć, że są znaki lub identyfikatory.
Dla oznaczenia zmiennych będziemy zwykle używać małych liter, w razie potrzeby
z jakimiś indeksami.

2 Wyrażenia lambda rachunku

Wyrażenia lambda rachunku często nazywa się termami lambda rachunku lub
krótko, λ-termami, a nawet termami. Zbiór wyrażeń lambda rachunku będziemy
oznaczać symbolem Λ. Zbiór ten można definiować na wiele sposobów. Trudno
zdecydować się na konkretną definicję, każda ma wady i zalety. Oprócz zmiennych
w definicji będziemy używać

λ, ·, ., ( oraz ).

Są to różne znaki, które nie są zmiennymi.

2.1 Abstrakcyjna definicja wyrażeń

Ta definicja jest najprostsza, ale nie wyjaśnia, czym są wyrażenia. Zgodnie z tą
definicją Λ jest najmniejszym zbiorem takim, że

1) zmienne są wyrażeniami (lambda rachunku),

2) jeżeli M i N są wyrażeniami, to MN jest wyrażeniem,

3) jeżeli x jest zmienną i M jest wyrażeniem, to λxM jest wyrażeniem.

Albo inaczej: Λ jest najmniejszym zbiorem takim, że

1) x ∈ V ⇒ x ∈ Λ,

2) M,N ∈ Λ⇒MN ∈ Λ (ewentualnie M,N ∈ Λ⇒M ·N ∈ Λ),

3) x ∈ V ∧M ∈ Λ⇒ λxM ∈ Λ.
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Definicja ta powinna gwarantować, że są trzy, rozróżnialne (rozłączne) rodza-
je wyrażeń: zmienne, aplikacje (wyrażenia postaci MN) i abstrakcje (wyrażenia
postaci λxM). W szczególności, żadna aplikacja nie może być jednocześnie abs-
trakcją. Co więcej, mając aplikację w sposób jednoznaczny powinniśmy ustalić,
co aplikujemy i do czego, czyli żądamy, że warunek M1N1 = M2N2 implikuje, że
M1 = M2 i N1 = N2. Analogiczna własność powinna przysługiwać abstrakcji, a
więc jeżeli λx1M1 = λx2M2, to x1 = x2 oraz M1 = M2.

Poza tym własności wyrażeń lambda rachunku powinno dać się dowodzić przez
indukcję, zgodnie z następującym twierdzeniem

Twierdzenie 2.1 Przypuśćmy, że ϕ jest własnością, która przysługuje lub nie
poszczególnym wyrażeniom lambda rachunku. Jeżeli jednak

1) własność ϕ przysługuje wszystkim zmiennym z V ,

2) fakt, że wyrażenia M i N mają własność ϕ pociąga za sobą, że MN też ma
własność ϕ oraz

3) z tego, że M ma własność ϕ wynika, że dla dowolnej zmiennej x własność ϕ
ma także wyrażenie λxM ,

to wszystkie wyrażenia lambda rachunku mają własność ϕ. 2

2.2 Wyrażenia lambda rachunku jako drzewa

Wyrażenia lambda rachunku można uważać za drzewa binarne z węzłami etykieto-
wanymi zmiennymi i symbolami λ oraz ·. W tym przypadku Λ jest najmniejszym
zbiorem drzew binarnych spełniającym

1) do Λ należą jednoelementowe drzewa binarne z węzłem z etykietą, która jest
zmienną,

2) jeżeli drzewa M i N należą do Λ, to do Λ należy także drzewo z korzeniem
z etykietą ·, z lewym poddrzewem M i prawym poddrzewem N ,

3) jeżeli M ∈ Λ, to do Λ należy także dowolne drzewo z korzeniem z etykietą
λ, którego lewe poddrzewo ma jeden węzeł z etykietą będącą zmienną, a
prawym poddrzewem jest M .

Łatwo przekonać się, że tak zdefiniowane wyrażenia mają własności wymienione
w poprzednim rozdziale.

2.3 Wyrażenia lambda rachunku jako słowa

x̂M = ∧xM = ∧\xM = λxM

Wyrażenia lambda rachunku można uważać też za słowa tworzone z liter alfa-
betu zawierającego zmienne z V oraz znaki

λ, ( oraz ).

Zbiór tak rozumianych wyrażeń jest najmniejszym zbiorem słów Λ takim, że

1) V ⊆ Λ,
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2) jeżeli M,N ∈ Λ, to (MN) ∈ Λ,

3) jeżeli M ∈ Λ i x ∈ V , to (λxM) ∈ Λ.

Zaletą tej definicji jest to, że tak rozumiane wyrażenia rachunku lambda dają się
łatwo reprezentować, także pisemnie, wadą – duża liczba wymaganych nawiasów.
Zwykle korzysta się z tej definicji w połączeniu z zasadami opuszczania nawiasów.

Przyjmuje się, że

1) mamy prawo opuścić wewnętrzne nawiasy w wyrażeniu ((KM)N), a więc
przyjmujemy, że

((KM)N) = (KMN),

2) mamy prawo opuścić wewnętrzne nawiasy w wyrażeniu (λx(M)), a więc
przyjmujemy, że

(λx(M)) = (λxM),

3) Mamy prawo pominąć najbardziej zewnętrzne nawiasy wyrażenia, czyli

(M) = M

(ale w tym przypadku dotyczy to szczególnych nawiasów, a nie jest to ogólna
zasada),

4) zamiast λxM możemy napisać λx.M , a wyrażenie λx1 . . . xn.λxM możemy
skrócić do postaci λx1 . . . xnx.M , to znaczy przyjmujemy, że

λx1 . . . xn.M = λx1 . . . λxnM

2.4 Gramatyka definiująca lambda wyrażenia

Niżej jest przedstawiona próba zdefiniowania gramatyki generującej wyrażenia ra-
chunku lambda zgodne z zasadami opisanymi w poprzednim rozdziale.

1) 〈λ-wyrażenie〉 ::= 〈uogólniona aplikacja〉 | 〈abstrakcja〉

2) 〈wyrażenie proste〉 ::= 〈zmienna〉 | (〈aplikacja)〉) | (〈abstrakcja〉)

3) 〈uogólniona aplikacja〉 ::= 〈zmienna〉 | 〈aplikacja〉

4) 〈aplikacja〉 ::= 〈zmienna〉〈wyrażenie proste〉 |

(〈abstrakcja〉)〈wyrażenie proste〉 | 〈aplikacja〉〈wyrażenie proste〉

5) 〈abstrakcja〉 ::= λ 〈zmienne〉 . 〈uogólniona aplikacja〉

6) 〈zmienne〉 ::= 〈zmienna〉 | 〈zmienna〉〈zmienne〉

7) 〈zmienna〉 ::= 〈mała litera, ewentualnie z indeksami〉
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3 Podstawianie i podstawialność

3.1 Definicje

Dla dwóch λ-wyrażeń M i N i zmiennej x rekurencyjnie definiujemy podstawienie
M [x := N ] wyrażenia N za zmienną x w wyrażeniu M . Przyjmujemy, że

1) jeżeli M = x, to M [x := N ] = x[x := N ] = N ,

2) jeżeli M jest zmienną y 6= x, to M [x := N ] = y[x := N ] = y,

3) jeżeli M jest aplikacją M1M2, to

M [x := N ] = (M1M2)[x := N ] = (M1[x := N ])(M2[x := n]),

4) jeżeli M jest abstrakcją λx.M1, to M [x := N ] = (λx.M1)[x := N ] = λx.M1,

5) jeżeli M jest abstrakcją λy.M1 i y 6= x, to

M [x := N ] = (λy.M1)[x := N ] = λx.(M1[y := N ]).

Term N jest podstawialny za zmienną x w termie M , jeżeli w termie M żadne
wolne wystąpienie zmiennej x nie znajduje się w zasięgu operatora abstrakcji λ
wiązącego zmienną wolną termu N .

3.2 Najprostsze własności

Lemat 3.1 Zawsze zachodzi wzór M [x := x] = M . 2

Lemat 3.2 Jeżeli zmienna x nie jest wolna w termie M , to M [x := N ] = M dla
dowolnego N . 2

Ważną własność podstawiania wyraża

Lemat 3.3 Jeżeli x 6= y i x 6∈ FV (L), to

M [x := N ][y := L] = M [y := L][x := N [y := L]]. 2

4 Wyrażenia de Bruijna

4.1 Definicja wyrażeń de Bruijna

Znaczenie programistyczne ma sposób przedstawiania wyrażeń lambda rachunku
wymyślony przez Nicolasa de Bruijna. Może zostać opisany poprzez następującą
gramatykę.

1) 〈w. de Bruijna〉 ::= 〈zmienna〉 | 〈aplikacja〉 | 〈abstrakcja〉

2) 〈wyrażenie proste〉 ::= 〈zmienna〉 | (〈aplikacja)〉) | (〈abstrakcja〉)

3) 〈aplikacja〉 ::= 〈zmienna〉〈wyrażenie proste〉 |

(〈abstrakcja〉)〈wyrażenie proste〉 | 〈aplikacja〉〈wyrażenie proste〉

4) 〈abstrakcja〉 ::= λ 〈w. de Bruijna〉
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5) 〈zmienna〉 ::= 〈liczba naturalna〉

W wyrażeniach tego rodzaju po symbolu λ nie piszemy zmiennej, a na pozo-
stałych pozycjach, w których zwykłe są zmienne, umieszczamy liczby naturalne.
Liczb naturalnych jednak nie można utożsamiać ze zmiennymi: w w wyrażeniach
de Bruijna tylko przekazują informacje o zmiennych. Co więcej, w ustalonym wy-
rażeniu ta sama liczba przekazuje informacje zależne od jej umiejscowienia i w
różnych miejscach może opisywać różne zmienne.

Wyrażenia de Bruijna można też uważać za drzewa. Mogą to być drzewa bi-
narne, które mają trzy rodzaje węzłów: liście, które odpowiadają zmiennym i mają
etykiety będące liczbami naturalnymi oraz wskaźniki do dwóch pustych drzew, wę-
zły odpowiadające abstrakcjom, które zamiast lewego poddrzewa mają wskaźnik
pusty, i w końcu węzły odpowiadające aplikacjom, które mają dwa wskaźniki do
dwóch niepustych poddrzew.

Aby przekształcać wyrażenia w wyrażenia de Bruijna i odwrotnie potrzebny
jest tzw. kontekst. Kontekst może być rozumiany jako ciąg wszystkich zmiennych
bez powtórzeń. Przyjmijmy, że jeżeli Γ jest kontekstem, to Γn oznacza zmienną
znajdującą się w kontekście Γ na n-tym miejscu, a Γ(x) oznacza numer zmiennej
x w kontekście Γ.

4.2 Podstawianie w wyrażeniach de Bruijna

Dla wyrażenia de Bruijna M i liczb naturalnych a i b zdefiniujemy teraz wyrażenie
M [a← b]. Operacja ta ma być odpowiednikiem operacji podstawiania M [Γa := Γb]
w zwykłym termie M za zmienną Γa zmiennej Γb.

Przyjmujemy, że

1) a[a← b] = b oraz c[a← b] = c dla liczb c 6= a,

2) (MN)[a← b] = M [a← b]N [a← b],

3) (λM)[a← b] = λM [a+ 1← b+ 1].

Definicja tej operacji pozwala częściowo odtworzyć sposób tworzenia wyrażeń
de Bruijna. Przekształcając zwykły lambda term (rozumiany jako drzewo) w wy-
rażenie de Bruijna, konkretne wolne wystąpienie zmiennej x zastępujemy numerem
zmiennej x powiększonym o liczbę operatorów lambda na ścieżce od tego wystą-
pienia do korzenia.

4.3 Przekształcanie wyrażeń w wyrażenia de Bruijna

Zdefiniujemy teraz funkcję Usun nazwy, która dane lambda wyrażenie przekształ-
ca w odpowiadające mu wyrażenie de Bruijna. Algorytm definiujący tę funkcję
będzie rekurencyjny i będzie korzystać z pomocniczej zmiennej h o wartościach
naturalnych. Definicję funkcji Usun nazwy można przedstawić w następujący spo-
sób:

1) Dane: lambda wyrażenie W i kontekst Γ.

2) Usun nazwy(W ) = Usun nazwy(W, 0).

3) Jeżeli x jest zmienną, to Usun nazwy(x, h) = Γ(x) + h.

4) Usun nazwy(MN,h) = Usun nazwy(M,h)Usun nazwy(N, h).
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5) Usun nazwy(λxM, h) = λUsun nazwy(M,h+ 1)[Γ(x) + h+ 1← 0].

Teraz można pokusić się o wyjaśnienie, co znaczy liczba n w wyrażeniu de
Bruijna. Wystąpienie liczby 0 oznacza albo zmienną związaną pierwszym (licząc
od wystąpienia liczby) operatorem λ znajdującym się na ścieżce od tego wystąpie-
nia do korzenia, albo zmienną Γ0, jeżeli na tej ścieżce nie ma żadnego operatora.
Wystąpienie liczby 1 oznacza albo zmienną związaną drugim operatorem λ znaj-
dującym się na ścieżce od tego wystąpienia do korzenia, albo zmienną Γ0, jeżeli na
tej ścieżce jest jeden operator λ, albo też zmienną Γ1, jeżeli na rozważanej ścieżce
nie ma żadnego operatora. Dla większych n sytuacja jest analogiczna.

4.4 Przekształcanie wyrażeń de Bruijna w λ-termy

Teraz zdefiniujemy funkcję Dodaj nazwy, która dane wyrażenie de Bruijna zamie-
nia na wyrażenie rachunku lambda. Funkcja ta będzie korzystać z pewnego para-
metru c ∈ N , od którego będą zależeć wybierane nazwy zmiennych związanych.
W ogólnym przypadku jest potrzebna jakaś zasada wyboru nazw tych zmiennych.
Będziemy zakładać, że liczba c jest większa od wszystkich liczb występujących w
danym jako argument wyrażeniu de Bruijna i jako zmiennych związanych będziemy
używać zmiennych o numerach większych od c.

można przedstawić w następujący sposób:

1) Dane: lambda wyrażenie de Bruijna W i kontekst Γ.

2) Dodaj nazwy(W ) = Dodaj nazwy(W, 0).

3) Jeżeli x jest liczbą, to Dodaj nazwy(x, h) = Γx−h.

4) Dodaj nazwy(MN,h) = Dodaj nazwy(M,h)Dodaj nazwy(N, h).

5) Dodaj nazwy(λM, h) = λΓcDodaj nazwy(M [0 ← c + h + 1], h + 1) i do-
datkowo wykorzystanie nazwy (zmiennej) o numerze c powinno spowodować
zwiększenie c o 1.

5 Rodzaje relacji

5.1 Relacje zgodne

Relacja R w zbiorze λ-termów jest zgodna (z operacjami λ-rachunku) jeżeli dla
wszystkich M,N,Z ∈ Λ

1) warunek M R N pociąga za sobą (ZM) R (ZN) oraz (MZ) R (NZ),

2) warunek M R N implikuje, że (λx.M) R (λx.N).

5.2 Kongruencje

Kongruencjami nazywamy zgodne relacje równoważności. Najprostszym przykła-
dem kongruencji jest relacja równości.
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5.3 Redukcje

Mamy dwa rodzaje redukcji: w jednym i w wielu krokach. Redukcja w jednym
kroku najczęściej jest definiowana jako najmniejsza relacja zgodna rozszerzające
pewne proste przeksztacenie. Redukcja w jednym kroku wyznacza redukcję w wielu
krokach, która jest krótko nazywana redukcją.

Redukcją zwykle nazywamy zgodną relację zwrotną i przechodną.
Mając redukcję w jednym kroku → definiujemy relację →→ przyjmując, że jest

to najmniejsza relacja spełniająca dla wszystkich L,M,N ∈ Λ warunki

1) jeżeli M = N , to M →→ N ,

2) jeżeli M → N , to M →→ N ,

3) jeżeli M →→ L i L→→ N , to M →→ N .

Lemat 5.1 Jeżeli relacja redukcji w jednym kroku → jest zgodna, to relacja →→
jest redukcją. 2

Bywa, że musimy rozważać bardziej ogólne redukcje, rozumiane jako zgodne i
przechodnie rozszerzenia pewnej kongruencji ∼=.

Wtedy, mając redukcję w jednym kroku→, definiujemy relację→→ przyjmując,
że jest to najmniejsza relacja spełniająca dla wszystkich L,M,N ∈ Λ warunki

1) jeżeli M ∼= N , to M →→ N ,

2) jeżeli M → N , to M →→ N ,

3) jeżeli M →→ L i L→→ N , to M →→ N .

Lemat 5.2 Jeżeli ∼= jest kongruencją i relacja redukcji w jednym kroku → jest
zgodna, to relacja →→ jest redukcją. 2

5.4 Konwersje

Mając relację redukcji→→ definiujemy związaną z nią relację konwersji ≡ przyjmu-
jąc, że jest to najmniejsza relacja spełniająca dla wszystkich L,M,N ∈ Λ warunki

1) jeżeli M →→ N , to M ≡ N ,

2) jeżeli M ≡ N , to N ≡M ,

3) jeżeli M ≡ L i L ≡ N , to M ≡ N .

Lemat 5.3 Jeżeli relacja →→ jest redukcją, to relacja ∼= jest kongruencją. 2

6 α-konwersja

Relację α-redukcji w jednym kroku, czyli relację→α, definiujemy jako najmniejszą
relację zgodną z operacjami rachunku lambda zawierającą wszystkie pary

λx.M →α λy.M [x := y],

gdzie y jest zmienną nie będącą wolną w termie M (y 6∈ FV (M)) i podstawialną
w M za zmienną x.
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Relacja α-redukcji w jednym kroku wyznacza tak, jak to zostało wyżej opisane,
relację α-redukcji→→α i relację α-konwersji ≡α. Relację α-konwersji będziemy naj-
częściej oznaczać symbolem ≡, a czasem może być ona oznacza także symbolem
=α, a nawet =.

Oczywiście, α-konwersja jest kongruencją.

Lemat 6.1 1) Jeżeli y 6∈ FV (M), to x 6∈ FV (M [x := y]).

2) Jeżeli y 6∈ FV (M), to y nie występuje w termie M [x := y] jako zmienna
wolna w zasięgu kwantyfikatora wiązącego x.

3) Jeżeli y 6∈ FV (M), to zmienna x jest podstawialna za y w termie M [x := y].

4) Jeżeli y 6∈ FV (M), to λy.M [x := y]→α M [x := y][y := x] = M .

5) Relacja →α jest symetryczna.

6) Relacja →→α jest symetryczna. 2

Wniosek 6.2 Relacja α-redukcji →→α jest relacją α-konwersji ≡α. 2

7 α-konwersja a wyrażenia de Bruijna

7.1 Zmienne w wyrażeniach de Bruijna

Rolę zmiennych w termach de Bruijna pełnią liczby naturalne. Będziemy analizo-
wać wystąpienia zmiennych w takich wyrażeniach.

Jeżeli wyrażenie de Bruijna uważamy za drzewo, to wystąpieniem zmiennej w
tym wyrażeniu będziemy nazywać dowolny liść tego drzewa. Jeżeli liściem tym (w
tym liściu) jest liczba x, to będziemy mówić, że jest to wystąpienie liczby x, a
nawet to wystąpienie – nie do końca poprawnie – będziemy utożsamiać z liczbą x.

Jeżeli wyrażenie de Bruijna uważamy za ciąg znaków i liczb, to wystąpienie
zmiennej x to pozycja w tym ciągu, na której znajduje się liczba x.

Dla każdego wystąpienia zmiennej x w wyrażeniu de Bruijna M definiujemy
indukcyjnie zagnieżdżenie zM(x) tego wystąpienia. Jeżeli M jest zmienną (czyli
zmienną x), to zM(x) = 0. Jeżeli M = M1M2 i wystąpienie x znajduje się w
termie Mi, to zM(x) = zMi(x). W końcu, jeżeli M = λM ′, to zM(x) = zM ′(x) + 1.

Wystąpienia w termie M zmiennej x nazywamy związanym, jeżeli x < zM(x).
Pozostałe wystąpienia zmiennych nazywamy wolnymi.

Lemat 7.1 Wykonywanie podstawienia M [a ← b] polega na zamianie wystąpień
liczb x takich, że x = a+ zM(x) liczbami b+ zM(x). 2

Lemat 7.2 Jeżeli w wyrażeniu de Bruijna M występuje liczba x taka, że zM(x) ¬
x < zM(x) + h, to podczas wykonywania procedury Dodaj nazwy(M,h) występuje
błąd polegający na próbie ustalenia nazwy Γc dla pewnego c < 0. W przeciwnym
razie, jeżeli dla wszystkich wystąpień liczb x w termie M mamy albo x < zM(x),
albo zM(x) + h ¬ x, to procedura Dodaj nazwy(x, h) jest wykonywana poprawnie.
2

Wniosek 7.3 Procedura Dodaj nazwy(M), czyli Dodaj nazwy(M, 0) jest wyko-
nywana poprawnie dla dowolnego wyrażenia de Bruijna M . 2
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7.2 Występowanie zmiennych w termach de Bruijna

Zdefiniujemy teraz pojęcie, które ma odpowiadać w przypadku termów de Bruijna
warunkowi x ∈ FV (M). Pojęcie to zostanie zdefiniowane przez indukcję ze względu
na budowę termu de Bruijna M . Pamiętajmy, że rolę zmiennych w termach de
Bruijna pełnią liczby naturalne.

Jeżeli term de Bruijna M jest liczbą naturalną, to liczba x występuje w M
wtedy i tylko wtedy, gdy jest równa M . Jeżeli term M jest aplikacją M1M2, to
liczba x występuje w M wtedy i tylko wtedy, gdy x występuje w M1 lub w M2.
Jeżeli term M jest abstrakcją λN , to liczba x występuje w M wtedy i tylko wtedy,
gdy liczba x+ 1 występuje w termie N .

Lemat 7.4 Dla dowolnego termu de Bruijna M i dla dowolnych liczb x, y i a 6= x,
jeżeli x nie występuje w M , to nie występuje też w termie M [y ← a].

Dowód. Lemat ten dowodzimy przez indukcję ze względu na M . Sprawdzimy go
jedynie w przypadku abstrakcji M = λN .

Załóżmy, że x nie występuje w termie λN . Oznacza to, że x+ 1 nie występuje
w termie N . Term (λN)[y ← a] jest równy λN [y + 1 ← a + 1]. Aby sprawdzić,
że x nie występuje w λN [y + 1 ← a + 1], badamy, czy x + 1 nie występuje w
N [y + 1← a+ 1]. Tak jest na mocy założenia indukcyjnego dla termu N . 2

Lemat 7.5 Jeżeli x 6= a, to x nie występuje w termie M [x← a].

Dowód. Przez indukcję ze względu na M dowodzimy, że teza lematu zachodzi dla
wszystkich liczb x i a. 2

Lemat 7.6 Jeżeli liczba x nie występuje w termie de Bruijna M , to M [x← a] =
M .

Dowód. Lemat ten ma oczywisty dowód przez indukcję ze wględu na M . 2

7.3 Własności podstawiania

Lemat 7.7 Jeeli liczby a, a′, b, b′ speniają warunki a 6= a′, a 6= b′ oraz b 6= a′, to
dla wszystkich termów de Bruijna M mamy

M [a← b][a′ ← b′] = M [a′ ← b′][a← b].

Dowód. Lemat dość oczywisty, dowodzony przez indukcję ze względu na budowę
termu M , dla wszystkich możliwych parametrów. Najważniejsze, że przechodzi dla
elementarnych termów, czyli liczb. „Drugie” kroki są łatwe do wykazania. 2

Lemat 7.8 Jeżeli a 6= b, to dla wszystkich termów de Bruijna M mamy

M [a← b][a← b′] = M [a← b].

Dowód. Taki jak poprzedni lub z lematów 7.5 i 7.6. 2

Lemat 7.9 Dla wszystkich termów de Bruijna M i liczb b nie występujących w M
zachodzi równość

M [a← b][b← c] = M [a← c].

Dowód. Taki jak poprzedni. 2
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7.4 Własności usuwania

Lemat 7.10 Jeżeli zmienna x nie jest wolna w (zwykłym) termie M , to Γ(x) + h
nie występuje w termie Usun nazwy(M,h).

Dowód. Również ten lemat łatwo dowodzi się przez indukcję ze względu na bu-
dowę termu M . 2

Lemat 7.11 Jeżeli M jest λ-termem i podstawialna za x w M zmienna y nie
należy do FV (M), to dla wszystkich liczb h

Usun nazwy(M,h)[Γ(x) + h← Γ(y) + h)] = Usun nazwy(M [x := y], h).

Dowód. Przez indukcję ze względu na M .

Przypadek 1: M = x. Wtedy

Usun nazwy(x, h)[Γ(x) + h← Γ(y) + h] = Γ(y) + h.

Podobnie przekształcamy drugą stronę wzoru do tego samego rezultatu.

Przypadek 2: zmienną M jest z 6= x. Wtedy także z 6= y oraz

Usun nazwy(z, h)[Γ(x) + h← Γ(y) + h] = Γ(z) + h,

gdyż dla różnych x i z mamy Γ(x) 6= Γ(z) (z własności kontekstów). Tak samo
przekształcamy drugą stronę wzoru.

Przypadek 3: M jest aplikacją. Teza wynika stąd, że wszystkie rozważane ope-
racje, a więc oba podstawiania ·[· := ·] oraz ·[· ← ·], a także Usun nazwy, można
przestawiać z operacją aplikacji.

Przypadek 4: M jest abstrakcją λxM ′. Wtedy

Usun nazwy(λxM ′, h)[Γ(x) + h← Γ(y) + h] =

= (λUsun nazwy(M ′, h+ 1)[Γ(x)] + h+ 1← 0])[Γ(x) + h← Γ(y) + h] =

= λUsun nazwy(M ′, h+ 1)[Γ(x)] + h+ 1← 0][Γ(x) + h+ 1← Γ(y) + h+ 1] =

= λUsun nazwy(M ′, h+ 1)[Γ(x)] + h+ 1← 0] =

= Usun nazwy(λxM ′, h) = Usun nazwy((λxM ′)[x := y], h),

na mocy lematu 7.8.

Przypadek 5: M jest abstrakcją λzM ′ dla z 6= x oraz x 6∈ FV (M ′). Wtedy

Usun nazwy(λzM ′, h)[Γ(x) + h← Γ(y) + h] =

= (λUsun nazwy(M ′, h+ 1)[Γ(z)] + h+ 1← 0])[Γ(x) + h← Γ(y) + h] =

= λUsun nazwy(M ′, h+ 1)[Γ(z)] + h+ 1← 0][Γ(x) + h+ 1← Γ(y) + h+ 1] =

= λUsun nazwy(M ′, h+ 1)[Γ(x)] + h+ 1← 0] =

= Usun nazwy(λzM ′, h) = Usun nazwy((λzM ′)[x := y], h)

na mocy lematów z rozdziału 7.2.
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Przypadek 6: M jest abstrakcją λzM ′ dla z 6= x oraz x ∈ FV (M ′). Tym razem
podstawialność y implikuje, że y 6= z. Na mocy lematu 7.7

Usun nazwy(λzM ′, h)[Γ(x) + h← Γ(y) + h] =

= (λUsun nazwy(M ′, h+ 1)[Γ(z)] + h+ 1← 0])[Γ(x) + h← Γ(y) + h] =

= λUsun nazwy(M ′, h+ 1)[Γ(z)] + h+ 1← 0][Γ(x) + h+ 1← Γ(y) + h+ 1] =

= λUsun nazwy(M ′, h+ 1)[Γ(x) + h+ 1← Γ(y) + h+ 1][Γ(z)] + h+ 1← 0] =

= λUsun nazwy(M ′[x := y], h+ 1)[Γ(z) + h+ 1← 0] =

= Usun nazwy((λzM ′)[x := y], h). 2

Wniosek 7.12 Przypuśćmy, że mamy dane lambda term M i zmienną y. która
nie jest wolna w M i jest podstawialna w M za zmienną x. Wtedy dla dowolnego
naturalnego h zachodzi równość

Usun nazwy(λx.M, h) = Usun nazwy(λy.M [x := y], h).

Dowód. Zauważmy, że

Usun nazwy(λy.M [x := y], h) =

= λUsun nazwy(M [x := y], h+ 1)[Γ(y) + h+ 1← 0] =

= λUsun nazwy(M,h+ 1)[Γ(x) + h+ 1← Γ(y) + h+ 1][Γ(y) + h+ 1← 0] =

= λUsun nazwy(M,h+ 1)[Γ(x) + h+ 1← 0] = Usun nazwy(λy.M [x := y], h).

Poszczególne równości otrzymujemy z lematów 7.11, 7.10 oraz 7.9. 2

7.5 Termy h-poprawne

Zaczynamy od pomocniczego pojęcia związanego z operacją Dodaj nazwy. Wyko-
nanie tej operacji może zakończyć się błędem polegającym na otrzymaniu ujemne-
go argumentu kontekstu. Gwarancją poprawności wykonania operacjiDodaj nazwy(M,h)
jest h poprawność termu M .

Term de Bruijna M nazywamy h-poprawnym, jeżeli jest on liczbą i M ­ h,
albo jest on aplikacją M1M2 i oba jej człony M1 i M2 są h poprawne, albo też
jest on abstrakcją λM ′ i term M ′[0 ← c] jest h + 1-poprawny dla c ­ h + 1 i
większego od innych liczb w termie M ′ (np. dla najmniejszej liczby c o podanych
własnościach).

Lemat 7.13 Jeżeli M jest h-poprawny, to także h-poprawnym jest dowolny term
M [a← b+ h].

Dowód. Dowodzimy to przez indukcję ze względu na M i dowód jest prosty. 2

Z powyższych lematów wynika

Wniosek 7.14 Jeżeli M jest h-poprawny, to operacja Dodaj nazwy(M,h) jest
wykonywana poprawnie (nie powoduje błędu). 2
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7.6 Usuwanie i dodawanie razem

Lemat 7.15 Dla dowolnego h i dowolnego termu h-poprawnego termu de Bruijna
M mamy

Usun nazwy(Dodaj nazwy(M,h), h) = M.

W szczególności, operacja Usun nazwy przyjmuje jako wartości wszystkie termy
de Bruijna.

Dowód. Przez indukcję ze względu na M .
Jeżeli M jest liczbą, to

Usun nazwy(Dodaj nazwy(M,h), h) = Usun nazwy(ΓM−h, h) = (M−h)+h = M.

Jeżeli M jest aplikacją, to teza lematu wynika w oczywisty sposób z założeń
indukcyjnych.

Przypuśćmy, że M jest abstrakcją λM ′. Wtedy

Usun nazwy(Dodaj nazwy(M,h), h) =

= Usun nazwy(λΓcDodaj nazwy(M ′[0← c+ h+ 1], h+ 1), h) =

= λUsun nazwy(Dodaj nazwy(M ′[0← c+ h+ 1], h+ 1), h+ 1)

[Γ(Γc) + h+ 1← 0] =

= λM ′[0← c+ h+ 1][Γ(Γc) + h+ 1← 0] =

= λM ′[0← c+ h+ 1][c+ h+ 1← 0] = λM ′ = M. 2

Lemat 7.16 Dla dowolnego h i dowolnego termu h-poprawnego termu de Bruijna
M mamy

Dodaj nazwy(Usun nazwy(M,h), h) ≡α M.

Dowód. Przez indukcję ze względu na budowę termu M . Jest to oczywiste dla
aplikacji. Dla zmiennej M mamy

Dodaj nazwy(Usun nazwy(M,h), h) = Dodaj nazwy(Γ(M) + h, h) =

= ΓΓ(M)+h−h = ΓΓ(M) = M ≡α M.

W końcu, dla abstrakcji λxM mamy

Dodaj nazwy(Usun nazwy(λxM, h), h) =

= Dodaj nazwy(λUsun nazwy(M,h+ 1)[Γ(x) + h+ 1← 0], h) =

= λΓcDodaj nazwy(

Usun nazwy(M,h+ 1)[Γ(x) + h+ 1← 0][0← c+ h+ 1], h+ 1)

= λΓcDodaj nazwy(Usun nazwy(M,h+ 1)[Γ(x) + h+ 1← c+ h+ 1], h+ 1)

= λΓcDodaj nazwy(Usun nazwy(M,h+ 1), h+ 1)[x := Γc]

= λΓcM [x := Γc] ≡α M. 2

Jako wniosek z prowadzonych rozważań otrzymujemy

Twierdzenie 7.17 Dla każdej pary wyrażeń rachunku lambda M i N , warunek
M ≡α N jest równoważny równości Usun nazwy(M) = Usun nazwy(N). 2
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8 β-konwersja

8.1 β-redukcja w jednym kroku

Relację β-redukcji w jednym kroku, czyli relację→β, definiujemy jako najmniejszą
relację zgodną z operacjami rachunku lambda zawierającą pary

(λx.M)N →β M
′[x := N ],

dla pewnego termu M ′, dla którego M →→α M
′ i term N spełnia warunek podsta-

wialności w M ′ za zmienną x.
Przypomnijmy, że term N spełnia warunek podstawialności w termie M ′ za

zmienną x, jeżeli żadne wolne wystąpienie zmiennej x w termie M ′ nie znajduje
się w zasięgu operatora λ wiążącego zmienne wolne z termu N .

Lemat 8.1 Jeżeli M →β M ′ i N →β N ′ dla pewnych lambda termów M i N
takich, że M ≡α N , to także M ′ ≡α N ′.

8.2 β-redukcja

Relacja β-redukcji w jednym kroku wyznacza (podobnie, jak to zostało wyżej opi-
sane) relację β-redukcji →→β. Przyjmujemy, że

1) jeżeli M ≡ N , to M →→β N ,

2) jeżeli M →β N , to M →→β N ,

3) jeżeli M →→β L i L→→β N , to M →→β N .

Relacja β-redukcji →→β wyznacza relację β-konwersji =β tak, jak to zostało
wyżej opisane. Symbole→β,→→β i =β będziemy najczęściej zastępować symbolami
→, →→ i =.

Oczywiście, relacja β-konwersji jest kongruencją.

9 Abstrakcyjne twierdzenie Churcha-Rossera

9.1 Opis sytuacji

Przypuśćmy że mamy określoną w jakimś zbiorze relację→ taką, że dla dowolnych
M , N1 i N2 takich, że M → N1 i M → N2 istnieje K spełniający N1 → K oraz
N2 → K. Sytuację tę można przedstawić na rysunku

M

↙ ↘
N1 N2

↘ ↙
K

O takiej relacji mówimy, że ma własność 3.
Relację → uważamy za redukcję w jednym kroku i rozszerzamy do relacji re-

dukcji →→ przyjmując, że jest to najmniejsza relacja spełniająca warunki

13



1) jeżeli M = N , to M →→ N ,

2) jeżeli M → N , to M →→ N ,

3) jeżeli M →→ L i L→→ N , to M →→ N .

Relację →→ można też definiować zgodnie z następującym lematem:

Lemat 9.1 Relacja →→ jest najmniejszą relacją spełniającą następujące warunki:

1) jeżeli M = N , to M →→ N ,

2) jeżeli M → L i L→→ N , to M →→ N .

Dowód. Przyjmijmy, że →→ oznacza zwykła relację redukcji, zdefiniowaną jako
najmniejszą relację o własnościach podanych przed sformułowaniem lematu, a→→′
– analogicznie zdefiniowaną relację o własnościach podanych w treści lematu.

Oczywiście, relacja →→ ma własności wymagane od relacji →→′. Wobec tego,
mamy zawieranie →→′ ⊆ →→.

Jest też oczywiste, że relacja →→′ ma dwie pierwsze własności wymagane od
relacji →→. Pokażemy, że ma też trzecią własność. Jeżeli uda się nam to zrobić, to
relacja →→, jako najmniejsza o tych trzech własnościach, okaże się zawarta w →→′.
Oba zawierania →→′ ⊆ →→ i →→ ⊆ →→′ z kolei implikują równość →→′ = →→, która
jest tezą lematu.

Mamy więc wykazać, że jeżeli M →→′ L i L →→′ N , to M →→′ N . W tym celu
rozważmy relację

R = {〈M,L〉 : ∀ N (L→→′ N ⇒M →→′ N)}.

Powinniśmy dowieść, że relacja R ma obie własności wymagane w sformułowaniu
lematu od relacji →→′. Nie jest to trudne do sprawdzenia. Z tego faktu wynika,
że relacja →→′ zawiera się w R, a to oznacza, że relacja →→′ ma trzecią własność
wymaganą od relacji →→. Wyżej już zauważyliśmy, że to kończy dowód. 2

Z kolei relacja →→ wyznacza konwersję ≡, czyli najmniejszą relację taką, że

1) jeżeli M →→ N , to M ≡ N ,

2) jeżeli M ≡ N , to N ≡M ,

3) jeżeli M ≡ L i L ≡ N , to M ≡ N .

9.2 Lematy pomocnicze

Lemat 9.2 Jeżeli relacja→ ma własność 3, to dla dowolnych M , M1 i M2 takich,
że M →M1 i M →→M2 istnieje N spełniający M1 →→ N oraz M2 → N .

Dowód. Zamiast korzystać bezpośrednio z definicji relacji →→ posługujemy się
charakteryzacją tej relacji z lematu 9.1. 2

Lemat 9.3 Jeżeli relacja→ ma własność 3, to dla dowolnych M , M1 i M2 takich,
że M →→M1 i M →→M2 istnieje N spełniający M1 →→ N oraz M2 →→ N .

Dowód. Lemat ten wynika z poprzedniego i z charakteryzacji relacji →→ z lematu
9.1. 2
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9.3 Abstrakcyjne twierdzenie Churcha-Rossera

Twierdzenie 9.4 Jeżeli relacja → spełnia warunek 3, to dla dowolnych M1 i M2

takich, że M1 ≡M2 istnieje N spełniający M1 →→ N oraz M2 →→ N .

Dowód. Znowu definiujemy pomocnicze relacje

R = {〈M1,M2〉 : ∃ N M1 →→ N ∧M2 →→ N}.

2

10 Wnioski z twierdzenia Churcha-Rossera

10.1 Relacja równoległej β-redukcji

Relacja równoległej β-redukcji (w jednym kroku) →rβ jest najmniejszą relacją w
zbiorze lambda termów spełniającją

1) M →rβ M ,

2) jeżeli M →rβ M1, M1 →α M
′
1, N →rβ N1 i N1 jest podstawialny za zmienną

x w termie M ′
1, to (λxM)N →rβ M

′
1[x := N1],

3) jeżeli M →rβ M1 oraz N →rβ N1, to MN →rβ M1N1,

4) jeżeli M →rβ M1, to λxM →rβ λxM1.

Relacja równoległej redukcji odpowiada sytuacji, w której mając dany term
lambada rachunku wybieramy w nim kilka redeksów (także 0 redeksów), a następ-
nie redukujemy jednocześnie wszystkie wybrane redeksy.

Lemat 10.1 Relacja →β jest częścią równoległej β-redukcji →rβ, a więc →β ⊆
→rβ. 2

Lemat 10.2 Relacja równoległej β-redukcji →rβ jest częścią relacji β-redukcji →
→β, a więc →rβ ⊆ →→β.

Dowód. Relacja →→β ma własności wymagane od relacji →rβ. Na przykład, ma
własność 2) relacji →rβ, czyli

2) jeżeli M →→β M1, M1 →α M
′
1, N →→β N1 i N1 jest podstawialny za zmienną

x w termie M ′
1, to (λxM)N →→β M

′
1[x := N1].

Dowód tej własności nie nastręcza większych trudności. Jeżeli M →→β M1, to ze
zgodności →→β także mamy λxM →→β λxM1 oraz (λxM)N →→β (λxM1)N . Podob-
nie, (λxM1)N →→β (λxM1)N1. W końcu, (λxM1)N1 →β M

′
1[x := N1]. Korzystając

z przechodniości relacji →→β otrzymujemy, że (λxM)N →→β M ′
1[x := N1], a to

kończy dowód rozważanej własności.
Pozostałe, wymagane własności relacji →→β dowodzimy analogicznie. Relacja

→rβ, jako najmniejsza relacja o tych własnościach, spełnia zawieranie→rβ ⊆ →→β.
2

Z udowodnionych lematów jako oczywisty wniosek otrzymujemy

Twierdzenie 10.3 Relacje →→β oraz →→rβ są identyczne. 2
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10.2 Termy z kolorowymi redeksami

Będziemy rozważać termy z kilkoma rodzajami operatorów lambda. W tym kontek-
scie będziemy mówić o kolorowych operatorach lambda. Jeżeli będzie to konieczne,
będziemy je oznaczać symbolem λ, ale może być ich kilka rodzajów. Można by je
rzeczywiście zapisywać używając kolorowego druku. Oprócz kolorowych operato-
rów będą też niepokolorowane, możnaby je określać jako bezbarwne, albo wręcz
przeciwnie, jako czarne, zapisane w zwykły sposób. Będą oznaczane zwykłym sym-
bolem λ. Będziemy dodatkowo zakładać, że kolorowe mogą być tylko pierwsze
operatory lambda w redeksach.

Pojęcie termu z kolorowymi redeksami definiujemy (w zwykłej konwencji) jak
następuje:

1) zmienne są termami (z kolorowymi redeksami),

2) jeżeli M i N są termami, to MN jest termem,

3) jeżeli x jest zmienną i M jest termem, to λxM jest termem,

4) jeżeli x jest zmienną oraz M i N są termami, to (λxM)N jest termem.

Pojęcia α-konwersji, podstawiania i podstawialności dla termów z kolorowymi
redeksami definiujemy tak, jak dla zwykłych termów, nie zwracając uwagi na ko-
lory operatorów λ. W formalnych definicjach takie podejście wymaga dopisania
własności kolorowych operatorów lambda analogicznych do własności zwykłych
operatorów.

Relację β-redukcji w jednym kroku dla termów z kolorowymi redeksami, czyli
relację →kβ, definiujemy jako najmniejszą relację zgodną z operacjami rachunku
lambda zawierającą pary

(λx.M)N →kβ M
′[x := N ],

dla pewnego termu M ′, dla którego M →→α M
′ i term N spełnia warunek pod-

stawialności w M ′ za zmienną x. Oznacza to, że nie redukujemy w tym sensie
redeksów z bezbarwnymi operatorami lambda.

Kolorowanie redeksów wprowadza do lambda rachunku istotne ograniczenie. W
zwykłym lambda rachunku redukcja redeksu może zwiększać liczbę redeksów na
dwa sposoby: poprzez kopiowania i poprzez tworzenie nowych redeksów. Na przy-
kład, redukując term (λx.xxx)M do MMM , trzykrotnemu skopiowaniu ulegają
redeksy występujące w termie M . Jednocześnie może powstać nowy redeks: wy-
starczy, aby term M był abstrakcją: powstaje wtedy redeks MM . Jeżeli redukcję
ograniczamy do kolorowych redeksów, to zwiększenie liczby kolorowych redeksów
powodowane jest wyłącznie kopiowaniem i nie powstają nowe kolorowe redeksy.
Nowy redeks co prawda powstaje, ale nie może być on kolorowy i nie można go
zredukować stosując tylko redukcje kolorowych redeksów.

Definiujemy także równoległą redukcję kolorowych redeksów: relacja równole-
głej β-redukcji w jednym kroku kolorowych redeksów→rkβ jest najmniejszą relacją
w zbiorze lambda termów z kolorowymi redeksami spełniającą warunki

1) M →rkβ M ,

2) jeżeli M →rkβ M1, M1 →α M ′
1, N →rkβ N1 i N1 jest podstawialny za

zmienną x w termie M ′
1, to (λxM)N →rkβ M

′
1[x := N1],

3) jeżeli M →rkβ M1 oraz N →rkβ N1, to MN →rkβ M1N1,

16



4) jeżeli M →rkβ M1, to λxM →rkβ λxM1 oraz λxM →rkβ λxM1.

Obie relacje redukcji kolorowych redeksów w jednym kroku rozszerzemy w stan-
dardowy sposób do redukcji →→kβ oraz →→rkβ. Tak samo, jak analogiczny fakt w
poprzednim rozdziale, dowodzimy

Twierdzenie 10.4 Relacje →→kβ oraz →→rkβ są identyczne. 2

10.3 Własność 3 redukcji równoległej

Relacje redukcji równoległych →rβ i →rkβ mają własność 3. W obu przypadkach
dowodzimy to w bardzo podobny sposób.

Lemat 10.5 Relacja redukcji równoległej →rβ ma własność 3, a dokładniej.

Dowód. Niech M oznacza term, który przeksztacamy na dwa sposoby: M →rβ N1

i M →rβ N2. Lemat dowodzimy przez indukcję ze względu na budowę termu M .
Dla każdego rodzaju termów będziemy rozważać wiele przypadków odpowiadają-
cych różnym dopuszczalnym sposobom przekształcania.

Przypadek 1: N2 = M . Zawsze możemy korzystać ze zwrotności→rβ, czyli prze-
kształcać nic nie robiąc. Wtedy N1 przekształcamy w K = N1 oraz N2 = M też
przekształcamy w N1 = K. Dalej zakładamy, że wykonujemy istotne przekształ-
cenia M .

Przypadek 2: M jest zmienną. Zmiennej nie możemy redukować w istotny spo-
sób.

Przypadek 3: M = λxM ′. Jedyny sposób redukowania abstrakcji λxM ′ to prze-
kształcanie termu M ′. Po przekształceniu na dwa sposoby dostajemy termy λxN1

i λxN2 takie, jak na pierwszej części poniższego rysunku.

λxM ′

↙ ↘
λxN1 λxN2

↘ ↙
?

M ′

↙ ↘
N1 N2

↘ ↙
K

λxM ′

↙ ↘
λxN1 λxN2

↘ ↙
λxK

Termu N1 i N2 są takie, jak w środkowej części rysunku. Dla nich znajdujemy
term K korzystając z założenia indukcyjnego. Term ten ma własności pokazane
na ostatniej części rysunku.

Przypadek 4: M jest aplikacją, która nie jest redeksem, lub w żadnym przypadku
nie jest redukowana jak redeks. Dowód jest analogiczny do dowodu z poprzedniego
przypadku.

M1M2

↙ ↘
N1

1N
2
1 N1

2N
2
2

↘ ↙
?

M1

↙ ↘
N1

1 N1
2

↘ ↙
K1

M2

↙ ↘
N2

1 N2
2

↘ ↙
K2
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M1M2

↙ ↘
N1

1N
2
1 N1

2N
2
2

↘ ↙
K1K2

Przypadek 5: M jest redeksem redukowanym w mieszany sposób, jako redeks i
jako zwykła aplikacja.

(λxM)N

↙ ↘
(λxM1)N1 M ′

2[x := N2]

↘ ↙
?

M

↙ ↘
M1 M2 ≡ M ′

2

↘ ↙ ↙
M∗ ≡ M ′

∗

N

↙ ↘
N1 N2

↘ ↙
K

11 Podwyrażenia (podtermy)

11.1 Definicja

Niech M będzie wyrażeniem lambda rachunku. Wyrażenie N jest podwyrażeniem
M , jeżeli

1) N = M , jest to tzw. niewłaściwe podwyrażenie M w przeciwieństwie do
pozostałych, czyli właściwych, podwyrażeń,

2) N jest (właściwym lub nie) podwyrażeniem M1 lub podwyrażeniem M2 w
przypadku, gdy M = M1M2,

3) N jest (właściwym lub nie) podwyrażeniem M1 w przypadku, gdy M =
λxM1.

Zauważmy, że zgodnie z przytoczoną definicją zmiennej x znajdującej się w abs-
trakcji λxM bezpośrednio za symbolem λ nie uważamy za podwyrażenie.

11.2 Porządek podwyrażeń

W zbiorze podwyrażeń termu M definiujemy porządek. Mówimy, że podterm N1

leży na lewo od podtermu N2 (lub podterm N2 leży na prawo od podtermu N1),
jeżeli zachodzi jedna z następujących możliwości:

1) N1 = M i N2 jest właściwym podtermem M ,
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2) M = M1M2, N1 jest podwyrażeniem M1 i N2 jest podwyrażeniem M2,

3) M = M1M2, N1 i N2 są podwyrażeniami Mi (dla i = 1 lub i = 2) oraz jako
podwyrażenia Mi podwyrażenie N1 leży na lewo od N2,

4) M = λxM1, N1 i N2 są podwyrażeniami M1 oraz jako podwyrażenia M1

podwyrażenie N1 leży na lewo od N2.

11.3 Prefiks i sufiks podwyrażenia

Jeżeli termy rachunku lambda definiujemy jako słowa i term N jest podtermem
termu M , to słowo N jest podsłowem słowa M , a więc wyznacza pewien prefiks
prefM(N) słowa M i pewien sufiks suffM(N) tego słowa, takie że M jest konkate-
nacją prefM(N) N suffM(N).

Za pomocą prefiksów podwyrażeń możemy wyrazić porządek podwyrażeń.

Lemat 11.1 W termie M podwyrażenie N1 leży na lewo od podwyrażenia N2 wtedy
i tylko wtedy, gdy słowo prefM(N1) jest właściwym prefiksem słowa prefM(N2) lub
słowo prefM(N1)N1 jest właściwym prefiksem słowa prefM(N2)N2. 2

Jeżeli nie będzie to prowadzić do nieporozumień, zamiast prefM(N) będziemy
pisać pref(N).

11.4 Dokładniej o podtermach

Aby dokładniej mówić o podtermach wprowadzimy specjalną notację. Będziemy
rozważać wyrażenia rachunku lambda ze specjalnymi zmiennymi. Wszystkie te
zmienne będziemy przedstawiać tym samym symbolem [ ]. Każda może wystąpić
w termie dokładnie jeden raz, a więc różne wystąpienia symbolu [ ] w termie ozna-
czają różne zmienne tego rodzaju. Symbol M [ ] oznacza term, w którym występuje
jedna (ewentualnie przynajmniej jedna) taka zmienna. Zapis M [N ] oznacza wynik
zastępowania zmiennej [ ] przez N , czyli term M [[ ] := N ].

Fakt 11.2 Term N jest podtermem wyrażenia M wtedy i tylko wtedy, gdy M =
M ′[N ] dla pewnego wyrażenia M ′ z jednym wystąpieniem zmiennej [ ]. 2

Umawiamy się, że różne wystąpienia zmiennych [ ] w wyrażeniu podajemy w
kolejności od najbardziej lewego do prawego. Tak więc M [ ][N ] oznacza wyrażenie z
podtermem N . W tym wyrażeniu na lewo od podtermu N znajduje się wystąpienie
zmiennej [ ].

Lemat 11.3 Jeżeli w wyrażeniu M podterm N1 znajduje się na lewo od podtermu
N2, to albo M = M ′[N1][N2] dla pewnego M ′, albo też M = M ′[N ′1[N2]] dla pew-
nych M ′ i N ′1. W pierwszym przypadku prefM(N1) N1 jest prefiksem prefM(N2), w
drugim – prefM(N2) N2 jest prefiksem prefM(N1) N1.

Lemat 11.4 Przypuśćmy, że K jest podtermem wyrażenia M [x := N ] = Q[K].
Wtedy istnieje M ′[ ] takie, że albo M = M ′[K ′], Q[ ] = M ′[x := N ][ ] i K =
K ′[x := N ] dla pewnego K ′ 6= x, albo M = M ′[x], Q[ ] = M ′[x := N ][N ′[ ]] i
N = N ′[K] dla pewnego N ′[ ]. Co więcej, takie, jak wyżej, termy M ′, K ′ i N ′ są
wyznaczone jednoznacznie. 2
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11.5 Przodek podtermu

Teraz interesują nas podtermy termu otrzymanego w wyniku β-redukcji.
Przypuśćmy, że wyrażenie S otrzymaliśmy w wyniku pojedyńczej β redukcji z

wyrażenia R, a więc R→β S. Wtedy

Fakt 11.5 Istnieją termy R′, M i N oraz zmienna x takie, że

R = R′[(λxM)N ]→β R
′[M [x := N ]] = S. 2

Niech K będzie podtermem wyrażenia S = R′[M [x := N ]] = Q[K]. Z lematu
11.4 wynika, że są możliwe następujące przypadki:

1) K jest na lewo od termu podstawianego w R′[ ], a więc istnieje R′′ takie, że
R′[ ] = R′′[K][ ] oraz S = R′[M [x := N ]] = R′′[K][M [x := N ]], i podobnie,
gdy K jest na prawo od termu podstawianego w R′[ ],

2) K istotnie obejmuje redukt M [x := N ], a więc S = Q[K ′[M [x := N ]]],
R′[ ] = Q[K ′[ ]] oraz K = K ′[M [x := N ]] dla K ′ 6= [ ],

3) K jest częścią termu podstawianego w R′[ ] i powstaje z części M , a więc
istnieją M ′ i K ′ takie, że K = K ′[x := N ] i M = M ′[K ′], oraz

S = R′[M [x := N ]] = R′[(M ′[K ′])[x := N ]] = R′[M ′[x := N ][K ′[x := N ]] =

= R′[M ′[x := N ][K]],

4) K jest częścią termu podstawianego w R′[ ] zawartą w pewnej kopii N , a
więc istnieją M ′ i N ′ takie, że M = M ′[x := N ][N ] i N = N ′[K], oraz

S = R′[M [x := N ]] = R′[M ′[x := N ][N ]] = R′[M ′[x := N ][N ′[K]]].

W każdym z powyższych przypadków dla podtermuK definiujemy podterm pR,S(K)
termu R. Tak więc

1) jeżeli S = R′′[K][M [x := N ]] oraz R′[ ] = R′′[K][ ], to pR,S(K) = K i jest
podtermem takim, że R = R′′[pR,S(K)][(λxM)N ], przyjmujemy też analo-
giczną definicję, gdy K jest po drugiej stronie reduktu,

2) jeżeli S = Q[K ′[M [x := N ]]], R′[ ] = Q[K ′[ ]] i K = K ′[M [x := N ]] dla K ′ 6=
[ ], to pR,S(K) = K ′[(λxM)N ] i jest podtermem takim, że R = Q[pR,S(K)],

3) jeżeli S = R′[M ′[x := N ][K]] dla termów M ′ i K ′ takich, że K = K ′[x := N ],
M = M ′[K ′] oraz K ′ 6= x, to pR,S(K) = K ′ i jest podtermem takim, że
R = R′[(λxM ′[pR,S(K)])N ],

4) jeżeli S = R′[M ′[x := N ][N ′[K]]], to pR,S(K) = K oraz
R = R′[(λxM)N ′[pR,S(K)]].

Zwróćmy uwagę, że w przypadku R = x(y((λzM)N)) i S = x(y(M [z := N ]))
mamy pR,S(M [z := N ]) = M oraz pR,S(y(M [z := N ])) = y((λzM)N).

Lemat 11.6 Przypuśćmy, że R→β S i K jest podtermem S takim, że pR,S(K) w
termie R leży na lewo od redukowanego redeksu. Wtedy prefS(K) = prefR(pR,S(K)).
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Dowód. Dowód jest łatwy, ale może być trudno się przez niego przegryść. 2

Lemat 11.7 Przypuśćmy, że R →β S i L jest podtermem R, leżącym na lewo
od redeksu redukowanego podczas przekształcania R w S. Wtedy L = pR,S(K) dla
pewnego podtermu K.

Lemat 11.8 Przypuśćmy, że R→β S i K jest podtermem S, który jest abstrakcją.
Wtedy pR,S(K) też jest abstrakcją.

Lemat 11.9 Przypuśćmy, że R→β S i K jest podtermem S taki, że pR,S(K) jest
redeksem (lub abstrakcją). Wtedy K też jest redeksem (odpowiednio: abstrakcją).

Dowód. Wyrażenie pR,S(K) jest definiowane na jeden z czterech sposobów. W
pierwszym i ostatnim przypadku z definicji pR,S lemat jest oczywisty. W trze-
cim przypadku także, ponieważ podstawiając cokolwiek w redeksie otrzymujemy
redeks. Nieco bardziej skomplikowaną sytuację mamy w przypadku drugim.

W tym przypadku pR,S(K) = K ′[(λxM)N ] dla pewnego K ′ 6= [ ]. Jeżeli K ′

jest jakąś inną zmienną, to pR,S(K) też jest zmienną, a nie redeksem. Podobnie
pokazujemy, że K ′ nie może być abstrakcją. Musi więc być aplikacją. Pierwszy
człon tej aplikacji powinien być abstrakcją. Nie może być aplikacją, ani zwykłą
zmienną. Nie może być też zmienną [ ], gdyż w tym przypadku, po podstawieniu
otrzymujemy aplikację. A jeżeli K ′ jest redeksem, to K = K ′[M [x := N ]] też jest
redeksem. 2

Lemat 11.10 Przypuśćmy, że R→β S i K jest podtermem S, który jest redeksem.
Wtedy K jest zielonym redeksem wtedy i tylko wtedy, gdy pR,S(K) też jest zielonym
redeksem (i analogicznie dla pozostałych kolorów). 2

12 Twierdzenie o normalizacji

12.1 Rodzaje redukcji

Przypuśćmy, że mamy ciąg wyrażeń M0, M1, M2, M3 . . . lambda rachunku (skoń-
czony lub nie), taki że

M0 →β M1 →β M2 →β M3 . . . (1)

Taki ciąg nazywamy redukcją normalną, jeżeli dla wszystkich i z wyjątkiem
ostatniego, przekształcając Mi w Mi+1, redukujemy pierwszy redeks w termie Mi

(a więc leżący najbardziej na lewo).
Ciąg (1) nazywamy redukcją standardową, jeżeli dla wszystkich i > 0 z wyjąt-

kiem ostatniego, redeks Ri−1 leży w termie Mi−1 na lewo od termu pMi−1,Mi(Ri).
Tutaj Rj oznacza redeks redukowany podczas przeksztacania Mj w Mj+1.

Ciąg (1) jest redukcją quasi-normalną, jeżeli dowolnie daleko w tym ciągu są
redukowane pierwsze redeksy.

Lemat 12.1 Jeżeli

M0 →β M1 →β M2 →β M3 . . .→β Mm

jest redukcją standardową, a wyrażenie Mm jest w postaci normalnej, to ta redukcja
jest normalna.
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Dowód. Przez indukcję ze względu na m, że jeżeli pierwszy redeks L termu M0

nie został zredukowany, to po wykonaniu m kroków redukcji standardowej otrzy-
mujemy term Mm, który nie jest w postaci normalnej.

Załóżmy, że redeks L nie został zredukowany podczas redukcji termu M0 do M1.
Zgodnie z lematem 11.7 istnieje podterm K termu M1 taki, że pM0,M1(K) = L.
Z lematu 11.9 otrzymujemy, że K jest redeksem. Gdyby K został zredukowany
podczas przekształcania M1 w M2, to na mocy lematu 11.6 redukcja nie byłaby
standardowa. Jeżeli nie został zredukowany, to z założenia indukcyjnego otrzymu-
jemy, że term Mm nie ma postaci normalnej. 2

12.2 Redukcja normalna

Twierdzenie 12.2 (o normalizacji) Jeżeli wyrażenie M0 ma postać normalną,
to redukcja normalna

M0 →β M1 →β M2 →β M3 . . .

jest skończona, a jeżeli jest też dostatecznie długa, to jej ostatni wyraz jest postacią
normalną M0.

Dowód. Po pierwsze, redukcja normalna jest jednoznacznie wyznaczona. Po dru-
gie, na mocy twierdzenia o standaryzacji 12.7 i lematu 12.1, stosując redukcję nor-
malną term M0 można sprowadzić do postaci normalnej. Jednoznaczność redukcji
normalnej gwarantuje, że dana redukcja jest częścią redukcji normalnej prowadzą-
cej do postaci normalnej. 2

Wniosek 12.3 Jeżeli istnieje nieskończona redukcja normalna, zaczynająca się
termem M0, to term ten nie ma postaci normalnej. 2

Lemat 12.4 Przyjmijmy, że mamy cztery wyrażenia M0,M1, N0, N1, które redu-
kują się, jak na rysunku

M0
S−→β M1

R0 ↓β R1 ↓β
N0 N1

na którym obok symboli redukcji są podane przekształcane redeksy. Jeżeli R0 =
pM0,M1(R1) i R0 leży w wyrażeniu M0 na lewo od S (a więc redukcja M0 →β

M1 →β N1 nie jest standardowa), to N0 →→β N1 (a więc można ją zastąpić bardziej
standardową redukcją M0 →β N0 →→β N1). Ponadto w tej sytuacji, jeżeli R1 jest
pierwszym redeksem w termie M1, to R0 jest pierwszym redeksem w termie M0.

Dowód. Możemy pokolorować oba przekształcane redeksy (R0 i S) w termie M0.
Dla redukcji kolorowych redeksów, redukcja M0 →β M1 →β N1 przekształca M0

w postać normalną N1 (jest to redukcja od końca). Term M0 możemy też prze-
kształcić do N0, a następnie N0 do postaci normalnej, redukując kolorowe redeksy
(S lub jego kopie). Ponieważ jest to zawsze wykonalne, a dla redukcji kolorowych
redeksów postać normalna jest jednoznacznie wyznaczona, term N0 też można
przekształcić do N1. Dalej korzystamy z lematów 11.7, 11.9 i 11.6. 2

Wniosek 12.5 Przyjmijmy, że M0 →→β N1 oraz M0 →β N0 i w każdej z tych
redukcji (chociaż raz) redukujemy pierwsze redeksy. Wtedy M0 →→β N1. 2

Wniosek 12.6 Jeżeli istnieje nieskończona redukcja quasi-normalna, zaczynająca
się termem M0, to term ten nie ma postaci normalnej. 2
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12.3 Standaryzacja

Twierdzenie 12.7 (o standaryzacji) Jeżeli M →→β N , to istnieje redukcja stan-
dardowa M do N .

Dowód. Twierdzenie to dowodzimy przez indukcję korzystając z lematu 12.10. 2

Najpierw pokażemy lematy pomocnicze.

Lemat 12.8 Przypuśćmy, że w każdym kroku redukcji

C0 →β C1 →β C2 →β . . .→β Cn

jest redukowany najbardziej lewy pokolorowany redeks. Niech M0 będzie podtermem
C0, który jest abstrakcją i leży na lewo od wszystkich kolorowych redeksów. Wtedy
istnieje podterm N wyrażenia Cn, który jest abstrakcją, taki że

p∗C0,Cn(N) = M0 oraz prefC0(M0) = prefCn(N).

Dowód. Z lematu 11.7 wynika, że istnieje podterm M1 wyrażenia C1 taki, że
pC0,C1(M1) = M0. Z lematu 11.6 otrzymujemy, że prefC0(M0) = prefC1(M1) a z
lematu 11.9 – że M1 jest abstrakcją. Jeżeli pokażemy, że M1 leży w termie C1

na lewo od wszystkich pokolorowanych redeksów, to tezę otrzymamy z zasady
indukcji.

Przypuśćmy, że redukcja C0 →β C1 polegała na zastąpieniu redeksu X reduk-
tem Y . Wtedy prefC0(X) = prefC1(Y ). Ponieważ X jest pierwszym kolorowym
redeksem, więc prefiks prefC0(X) nie zawiera kolorowych opreratorów abstrakcji.
Zawiera za to prefiks prefC0(M0). Wobec tego także prefiks prefC1(M1) nie zawiera
żadnych kolorowych operatorów i leży na lewo od wszystkich kolorowych redeksów.
2

Lemat 12.9 Przypuśćmy, że w każdym kroku redukcji

C0 →β C1 →β C2 →β . . .→β Cn

jest redukowany najbardziej lewy pokolorowany redeks. Niech M będzie podtermem
Cn, który jest abstrakcją i p∗C0,Cn(M) leży w termie C0 na lewo od wszystkich kolo-
rowych redeksów. Wtedy

prefC0(p
∗
C0,Cn

(M)) = prefCn(M).

Dowód. Podobny do dowodu poprzedniego lematu. 2

Lemat 12.10 Przypuśćmy, że A0 →β B0 →→β B i redukcja B0 do B jest standar-
dowa. Wtedy A0 też można standardowo zredukować do B.
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Dowód. Będziemy tworzyć i stopniowo rozbudowywać następujący diagram

A0
S−→β B0

R0 ↓β Q0 ↓β
A1 →→β . . . →→β B1

R1 ↓β Q1 ↓β
...

...

Ai−1 →β C ′1 →β C ′2 →β . . . →β C ′n →β Bi−1

Ri−1 ↓β Qi−1 ↓β
Ai

Z0−→β C1
Z1−→β C2

Z2−→β . . .
Zm−1−→β Cm

Zm−→β Bi

Ri ↓β Qi ↓β
Ai+1 →→β →→β Bi+1

Qi+1 ↓β

Na tym diagramie obok symboli redukcji są podane nazwy przekształcanych redek-
sów. Jest przedstawiony fragment danej redukcji standardowej przekształcającej
B0 →β B1 →β aż do B i redukcja A0 do B0.

Będziemy korzystać z kolorowych redeksów. Na początku koloruje np. na zie-
lono redeks S. Przekształcenie Ai w Bi (to uwidocznione na rysunku) będzie
polegać tylko na redukcji zielonych redeksów, wszystkich możliwych. Konstruk-
cję będziemy tak prowadzić, aby redukcja A0 →β A1 →β . . . →β Ai i dalej
Ai = C0 →β C1 →→β Bi była standardowa, a jej ostatni fragment od Ai do Bi

był redukcją normalną dla kolorowych (zielonych) redeksów prowadzącą do termu
bez kolorowych redeksów. Pierwszy krok konstrukcji zostanie wykonany zgodnie z
lematem 12.4. Załóżmy, że fragment konstrukcji zawierający definicję redukcji od
Ai = C0 do Bi jest już wykonany.

Przypadek 1: ostatnim wyrazem redukcji A0 →→β Ai →→β Bi jest ostatni wyraz
redukcji B0 →→β B, czyli Bi = B. W tym przypadku twierdzenie jest oczywiste i
wynika z założonego niezmiennika konstrukcji.

Przypadek 2: Bi 6= B, czyli nie dotarliśmy jeszcze do końca redukcji. Powin-
niśmy teraz wskazać redeks Ri. Najpierw musimy zbadać przodka pCm,Bi(Qi) w
termie Cm.

Przypadek 2.1: pCm,Bi(Qi) leży na prawo od Zm. Oznacza to, że redukcja od A0

do Ai, dalej od Ai do Bi i jeszcze od Bi do B jest standardowa i twierdzenie zostało
dowiedzione.

Przypadek 2.2: pCm,Bi(Qi) leży na lewo od Zm. Znajdujemy najmniejszą licz-
bę k taką, że dla wszystkich l speniających k ¬ l ¬ m term p∗Cl,Bi(Qi) leży na
lewo do Zl (p∗Cl,Bi odpowiednie złożenie funkcji p, na przykład p∗Cm−1,Bi(Qi) =
pCm−1,Cm(pCm,Bi(Qi))).

Przyjmijmy, że Ri = p∗Ck,Bi(Qi). W termie Ck redeks Zk jest zielonym redeksem
położonym spośród zielonych najbardziej na lewo i sam ma po lewej stronie redeks
Ri. Tak więc redeks Ri ma po prawej stronie wszystkie zielone redeksy w termie
Ck. Można więc zredukować Ri, a następnie jakikolwiek zielony redeks zachowując
standardowość redukcji.
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Na chwilę pomalujmy na czerwono redeks Ri. Powoduje to, że wszystkie termy
z redukcji od Ck do Bi zawierają po jednym czerwonym redeksie. W termie Bi

czerwonym redeksem jest Qi. Redukując go otrzymujemy Bi+1, term bez zielo-
nych oraz bez czerwonych redeksów. Term Bi+1 jest więc postacią normalną termu
Ck dla redukcji kolorowych redeksów. Do postaci normalnej dochodzimy zawsze,
redukując kolorowe redeksy w dowolnej kolejności. Możemy więc najpierw w ter-
mie Ck zredukować redeks czerwony (otrzymujemy Ai+1), a następnie redukować
redeksy zielone zawsze biorąc pierwszy redeks od lewej. Redukując w ten sposób
też otrzymamy postać normalną. W szczególności, istnieje normalna dla zielonych
redeksów redukcja termu Ai+1 do Bi+1 i standardowa od Ck do Bi+1.

Znowu są możliwe dwa przypadki:

Przypadek 2.2.1: k > 0.
W tym przypadku redukcja prowadząca od A0 do Ai, dalej od Ai (oznaczanego

też C0) do Ck i na koniec do Ai+1 otrzymanego z termu Ck przez redukcję redeksu
Ri jest standardowa. Jej standardowość wynika z definicji k.

Dodając do niej standardową redukcję prowadzącą od Ck do Bi+1 otrzymujemy
standardową redukcję od A0 do Bi+1.

Przypadek 2.2.2: k = 0. Teraz mamy dwie redukcje od A0 do Ai oraz od Ai do
Ai+1 i dalej do Bi+1, obie standardowe, ale nie jest jasne, czy łącząc je otrzymamy
redukcję standardową. Sytuacja została przedstawiona na poniższym rysunku:

C ′0 →β C ′1 →β C ′2 →β . . . →β C ′n →β Bi−1

Ri−1 ↓β Qi−1 ↓β
Ai

Z0−→β C1
Z1−→β C2

Z2−→β . . .
Zm−1−→β Cm

Zm−→β Bi

Ri ↓β Qi ↓β
Ai+1 →→β . . . →→β Bi+1

Redeks Ri−1 (zgodnie z oznaczeniami z rysunku) jest równy p∗C′0,Bi−1(Qi−1), a redeks
Ri = p∗Ai,Bi(Qi). Konstrukcja tych redeksów gwarantuje również, że leżą one na
lewo od zielonych redeksów w odpowiednich termach.

Aby wspomniane redukcje po połączeniu dały redukcję standardową, redeks
Ri−1 powinien być po lewej stronie redeksu pC′0,Ai(Ri). Są to różne redeksy. Dla
dowodu nie wprost załóżmy, że Ri−1 jest po prawej stronie pC′0,Ai(Ri), a więc słowo
prefC′0(pC′0,Ai(Ri)) samo jest prefiksem prefC′0(Ri−1).

Na mocy lematu 12.9 zachodzi równość

prefAi(Ri) = prefAi(p
∗
Ai,Bi

(Qi)) = prefBi(Qi).

Z tego samego powodu zachodzi też równość

prefC′0(Ri−1) = prefC′0(p
∗
C′0,Bi−1

(Qi−1)) = prefBi−1(Qi−1).

Z z założenia dowodu nie wprost i lematu 11.6 otrzymujemy, że

prefC′0(pC′0,Ai(Ri)) = prefAi(Ri).

Teraz do redukcji od C ′0 do Bi−1 i pC′0,Ai(Ri) zastosujmy lemat 12.8. Wynika z
niego, że dla pewnego podtermu N wyrażenia Bi−1 mamy

prefC′0(pC′0,Ai(Ri)) = prefBi−1(N).

25



Z dowiedzionych równości prefiksów otrzymujemy, że

prefBi(Qi) = prefBi−1(N)

i dodatkowo, że słowo prefBi−1(N) jest prefiksem prefBi−1(Qi−1). Przyjrzyjmy się
więc redukcji Bi−1 →β Bi.

Z lematów 11.7 i 11.6 znajdujemy podterm K wyrażenia Bi taki, że N =
pBi−1,Bi(K) oraz

prefBi(K) = prefBi−1(pBi−1,Bi(K)) = prefBi−1(N) = prefBi(Qi).

Z kolei z lematów 11.8 i 11.9 wynika, że podterm K jest abstrakcją. Dla abstrak-
cji operacja prefiksu jest różnowartościowa. Wobec tego K = Qi i pBi−1,Bi(Qi), czyli
N , leży na lewo od Qi−1. To jednak przeczy założeniu, że redukcja B0, B1, B2, . . .
jest standardowa. 2

13 Lambda definiowalność

13.1 Minimum historii

Alonzo Church chyba w pierwszej chwili uważał rachunek lambda za system for-
malny, który mógłby być podstawą sformalizowanej – a więc być może pozbawionej
sprzeczności – matematyki. Wcześniej próby zbudowania podobnego, formalnego
systemu prowadził Emil Post, który rozważał bardzo skomplikowane gramatyki.
Jego prace jednak nie odziaływały istotnie na ówczesne badania naukowe.

Church dość szybko (ok. 1932 roku) zorientował się, że rachunek lambda po-
zwala na sformalizowanie pojęcia obliczalności i może doprowadzić do rozwiązania
problemu znanego jako Entscheidungsproblem, postawionego przez Dawida Hil-
berta, polegającego na skonstruowaniu procedury pozwalającej na rozstrzyganie
hipotez matematycznych. W 1936 rozwiązał ten problem negatywnie proponując
jednocześnie utożsamianie pojęcia obliczalności z lambda definiowalnością. Stwier-
dzenie, że te pojęcia są tożsame, można nazwać tezą Churcha, a właściwie jest
jedną z wersji tej tezy.

Church o słuszności swojej tezy przekonywał przytaczając twierdzenia o rów-
noważność różnych definicji obliczalności, opartych o różne intuicje. W pierwszym
rzędzie powoływał się równoważność lambda definowalności i definicji związanych
z pracami Kurta Gödla, w tym przytoczonej dalej definicji klasy funkcji rekuren-
cyjnych udoskonalonej przez Stephena Kleene’ego.

Podobne rozważania prowadził Alan Turing, a wyniki swoich badań ujawnił
w 1936 roku, prawie równocześnie z Churchem. W przeciwieństwie do Churcha,
Turing uzasadniał swoją definicję obliczalności argumentami filozoficznym opar-
tymi o analizę pracy mózgu i obliczeń dokonywanych przez ludzi. Przekonywał,
że maszyny Turinga działają podobnie, jak ludzie wykonujący obliczenia, i z tego
powodu są w stanie zrealizować wszelkie obliczenia możliwe do wykonania przez
ludzi.

13.2 Numerały Churcha

Aby mówić w lambda rachunku o obliczalności należy w pierwszym rzędzie w
tym rachunku reprezentować liczby naturalne. Pierwszy sposób reprezentowania
zaproponował Church. Jego termy reprezentujące liczby naturalne nazywamy nu-
merałami Churcha.
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Przyjmijmy, że M i N są termami rachunku lambda. Wtedy Mk(N) oznacza
term zdefiniowany rekurencyjnie wzorami

M0(N) = N oraz Mk+1(N) = M(Mk(N)).

Liczbę naturalną k będziemy w lambda rachunku reprezentować jako tzw. nu-
merał Churcha cn dany wzorem

cn = λfx.fn(x).

Numerały Churcha są oczywiście termami w postaci normalnej.
Z twierdzenia Churcha-Rossera wynika, że różne numerały Churcha są terma-

mi, o których w lambda rachunku nie można dowieść, że są równe.
Znane są też inne sposoby reprezentowania liczb naturalnych.
Przyjrzyjmy się jeszcze numerałom Churcha. Ich intuicyjna interpretacja jest

następująca:

1) cnfx = fn(x) to n-krotne aplikowanie funkcji f do x,

2) cnf = λx.fn(x) to funkcja, która jest n-krotnym złożeniem funkcji f ,

3) cn = λfx.fn(x) to abstrakcyjna operacja n-krotnego składania.

Mamy wzór cnf(fx) = cn+1fx. Stąd term S = λafx.af(fx) spełnia

Scn = λfx.cnf(fx) = λfx.fn+1(x) = cn+1.

Tak więc term S definiuje operację następnika (przyporządkowującą liczbie natu-
ralnej n liczbę n+ 1). Mamy także

(λafx.f(afx))cn = λfx.f(cnfx) = λfx.f(fn(x)) = cn+1.

Podobnie, z wzoru cnf(cmfx) = fn+m(x) wynika, że termy

λabfx.af(bfx) oraz λabfx.bf(afx)

definiują dodawanie liczb naturalnych.
Natomiast z wzoru cm(cnf)x = fmn(x) otrzymujemy, że termy

λabfx.a(bf)x oraz λabfx.b(af)x

definiują mnożenie liczb naturalnych. Powyższy wzór, także przytoczona wyżej
interpretacja numerałow Churcha sugerują także wzór: cm(cnf) = fmn. Zauważmy,
że także

(λabf.a(bf))cmcn = cmn.

13.3 Lambda definiowalność wg Churcha

Będziemy rozważać częściowe funkcje wielu zmiennych naturalnych przyjmujące
wartości naturalne. Funkcje częściowe n zmiennych to takie, które niekoniecznie
są określone dla wszystkich możliwych układów n liczb naturalnych. Funkcje okre-
ślone dla wszystkich możliwych układów argumentów nazywamy całkowitymi. Tak
więc funkcje całkowite są szczególnym przypadkiem funkcji częściowych.

Funkcja częściowa dwóch zmiennych f : N2 → N jest lambda definiowalna,
jeżeli dla pewnego termu F ∈ Λ są spełnione dla dowolnych m,n ∈ N następujące
warunki:

27



1) jeżeli wartość f(m,n) jest określona, to w lambda rachunku daje się dowieść,
że Fcmcn = cf(m,n) (lub równoważnie Fcmcn →→β cf(m,n)),

2) jeżeli wartość f(m,n) nie jest określona, to wyrażenie Fcmcn nie ma postaci
normalnej.

O termie F spełniającym powyższe warunki mówimy, że reprezentuje funkcję
f . Bez trudu tę definicję uogólniamy na przypadek funkcji częściowych innej liczby
zmiennych.

Przytoczona definicja została podana przez Churcha i jest dość naturalna. Mi-
mo to sprawia trochę kłopotów. Świadczy o tym następujący przykład. Funkcja
stale równa zero f może być reprezentowana przez F = Kc0, a funkcja nigdzie
nie określona g – przez term G = KΩ. Złożenie f i g jest funkcją nigdzie nie
określoną, a jego naturalną reprezentacją powinien być term λx.F (Gx). Ten term
reprezentuje jednak funkcją stale równą zero.

13.4 Funkcje pierwotnie rekurencyjne

Klasa funkcji pierwotnie rekurencyjnych jest najmniejszą klasą naturalnych funkcji
całkowitych

1) zawierającą funkcje Z, S i Un,k spełniające dla wszystkich możliwych natu-
ralnych argumentów równości

Z(m) = 0, S(m) = m+ 1 oraz Un,k(m1,m2, . . . ,mn) = mk

2) i zamkniętą ze względu na złożenie

h(m1,m2, . . . ,mn) = f(g1(m1,m2, . . . ,mn), . . . , gk(m1,m2, . . . ,mn))

(czyli h jest pierwotnie rekurencyjne dla wszystkich pierwotnie rekurencyj-
nych funkcji f i g1, . . . , gk)

3) oraz definiowanie przez rekursję prostą

f(0,m1,m2, . . . ,mn) = g(m1,m2, . . . ,mn) oraz

f(k + 1,m1,m2, . . . ,mn) = h(f(k,m1,m2, . . . ,mn), k,m1,m2, . . . ,mn)

(czyli f jest pierwotnie rekurencyjne dla wszystkich pierwotnie rekurencyj-
nych funkcji g i h).

Definiowanie przez rekursję prostą obejmuje także przypadek n = 0. W tym
przypadku definicja przyjmuje postać

f(0) = g oraz f(k + 1) = h(f(k), k)

dla dowolnie ustalonej liczby g.
Zdecydowana większość używanych funkcji naturalnych to funkcje pierwotnie

rekurencyjne. Wielu matematyków nie poda przykładu funkcji naturalnej, która
nie jest pierwotnie rekurencyjna.
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13.5 λ-definiowalność funkcji pierwotnie rekurencyjnych

Twierdzenie 13.1 Klasa całkowitych funkcji lambda definiowalnych jest zamknię-
ta ze względu na złożenie.

Dowód. Ten dowód ma jasną ideę i może zostać przedstawiony na przykładzie.
Przypuśćmy, że funkcja h jest złożeniem całkowitych funkcji f , g1 i g2 takim, że

h(m,n) = f(g1(m,n), g2(m,n)).

Niech F , G1 i G2 będą termami definiującymi odpowiednio funkcje f , g1 i g2.
Wtedy term

λab.F (G1ab)(G2ab)

definiuje funkcję h. Ponieważ zajmujem się funkcjami całkowitymi, więc wystarczy
sprawdzić tylko warunek 1) z definicji funkcji lambda definiowalnej (patrz str. 28).
Sprawdzenie tego warunku nie nastręcza żadnych trudności. 2

Twierdzenie 13.2 Klasa całkowitych funkcji lambda definiowalnych jest zamknię-
ta ze względu na definiowanie przez rekursję prostą.

Dowód. Najpierw zajmiemy się przykładem, z którego powinno wynikać, że re-
kursja ma coś wspólnego z iteracją, zwłaszcza w przypadku, gdy kolejną wartość
definiujemy bez parametrów.

Pokażemy lambda definiowalność funkcji takiej, że f(0) = 1 i f(n+1) = 2·f(n).
Oczywiście, f(n) = 2n). Nietrudno zauważyć, że f(n) = hn(1), gdzie h(n) = 2 · n.
Jeżeli znajdziemy term H definiujący h, to korzystając z interpretacji numera-
łów Churcha możemy uznać za definiujący f term λa.aHc1. Term H możemy
analogicznie zdefiniować jako λa.aLc0, gdzie L jest termem definiujący funkcję
powiększającą argument o 2. Możemy przyjąć, że L = λafx.af(f(fx)).

Teraz musimy rozbudować aparat. Przyjmijmy, że

[M,N ] = λx.xMN, K = true = λxy.x oraz K∗ = false = λxy.y.

Oczywiście, mamy [M,N ]K = M oraz [M,N ]false = N , o ile zmienna x nie
występuje w termach M i N .

Pokażemy (znowu na przykładzie) lambda definiowalność funkcji f definiowanej
wzorami

f(0,m) = g(m) oraz f(k + 1,m) = h(f(k,m), k,m).

Przyjmijmy, że G i H są termami definiującymi odpowiednio g i h.
Nawiasy kwadratowe oznaczają rodzaj funkcji pary. Niech q oznacza funkcję

taką, że
q(m, [a, b]) = [h(a, b,m), b+ 1].

W rachunku lambda taką funkcję reprezentuje term

Q = λuvw.w(H(vK)(vK∗)u)(S(vK∗).

Weźmy
F = λab.a(Qb)[Gb, c0]K,

Pokażemy najpierw, że

Qcm[cf , ck] = [ch(f,k,m), ck+1].
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Oczywiście,

Qcm[cf , ck] = λw.w(H([cf , ck]K)([cf , ck]K∗)cm)(S([cf , ck]K∗)) =

= λw.w(Hcfckcm)(Sck) = [Hcfckcm, ck+1] = [ch(f,k,m), ck+1].

Stąd przez indukcję otrzymujemy, że

(Qcm)k([cg(m), c0]) = [cf(k,m), ck]

Zauważmy, że k = 0 równość ta jest oczywista. Ponadto

(Qcm)k+1([cg(m), c0]) = Qcm[cf(k,m), ck] = [ch(f(k,m),k,m), ck+1] = [cf(k+1,m), ck+1].

Stąd, jako wniosek, otrzymujemy

Fckcm = ck(Qcm)[Gcm, c0]K = (Qcm)k([cg(m), c0])K = [cf(k,m), ck]K = cf(k,m).

Równość ta świadczy o tym, że F definiuje funkcję f . 2

Wniosek 13.3 Funkcja poprzednik p : N → N taka, że p(0) = 0 oraz p(n+1) = n
jest definiowalna w rachunku lambda.

Dowód. Jest to wniosek ważny z historycznego punktu widzenia. Znalezienie do-
wodu tego faktu sprawiało trochę kłopotów.

Funkcję p można zdefiniować przez rekursję prostą („pustą”, nie odwołującą
się do wartości poprzedniej) przyjmując, że

p(0) = 0 oraz p(n+ 1) = U2,2(p(n), n).

Wystarczy więc powtórzyć wyżej przedstawioną konstrukcję w tym przypadku. 2

Twierdzenie 13.2 można dowieść także jeszcze inną, ważną metodą, korzystając
z twierdzenia o punkcie stałym.
Dowód. Dowodzimy raz jeszcze twierdzenie 13.2 korzystając z twierdzenia o punk-
cie stałym i oznaczeń w wprowadzonych w dowodzie poprzednim.

Przyjmijmy, że

M = λfax.Zero a(Gx)(H(f(Pa)x)(Pa)x).

W tym wzorze P oznacza term reprezentujący funkcję poprzednik, a Zero jest
równe λx.x(Kfalse)true i zaaplikowane do cn przyjmuje jako wartość albo K =
true, albo K∗ = false zależnie od tego, czy n jest równe 0, czy nie.

Korzystając z twierdzenia o punkcie stałym znajdujemy term F taki, że MF =
F . O tym termie dowodzi się, że

Fc0cm = cg(m) oraz Fck+1cm = H(Fckcm)ckcm.

Stąd już łatwo, przez indukcję, wyprowadzić tezę twierdzenia. 2

Wniosek 13.4 Funkcje pierwotnie rekurencyjne są lambda definiowalne. 2
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13.6 Operacja minimum

Operacją minimum nazywamy przyporządkowanie funkcji naturalnej g : Nn+1 →
N funkcji f : Nn → N oznaczanej wzorem

f(k1, . . . , kn) = µm(g(k1, . . . , kn,m) = 0)

przyjmującą jako wartość f(k1, . . . , kn) najmniejszą liczbę m spełniającą warunek
g(k1, . . . , kn,m) = 0.

Definicja ta z kilku powodów może być niejasna. Możemy ją stosować dla róż-
nych rodzajów funkcji g. W najbardziej ogólnym przypadku, g może być dowolną
naturalną funkcją częściową. Wtedy pojawiają się niejasności związane z defini-
cją wartości funkcji f . Jest jednak naturalny algorytm pozwalający na obliczanie
wartości f . Algorytm ten przeszukuje kolejno liczby naturalne dopóty, dopóki nie
znajdzie wartości m spełniającej warunek g(k1, . . . , kn,m) = 0. Operacja mini-
mum powinna być tak rozumiana, aby ten algorytm pozwalał na wyliczanie war-
tości funkcji definiowanych za pomocą tej operacji. Nietrudno zauważyć, że ten
algorytm zawodzi w dwóch sytuacjach: jeżeli nie jest w stanie obliczyć potrzebnej
wartości funkcji g, (na przykład zawsze oblicza g(k1, . . . , kn, 0)), lub gdy funkcja g
dla odpowiednich parametrów nie przyjmuje wartości 0. W tych dwóch przypad-
kach funkcja definiowana za pomocą operacji minimum nie jest określona.

O operacji minimum mówimy, że jest efektywna, jeżeli stosujemy ją wyłącznie
do całkowitych funkcji g takich, że

∀k1, . . . , kn∃m g(k1, . . . , kn,m) = 0.

Będziemy też rozważać operację minimum ograniczoną do całkowitych funk-
cji g.

13.7 Funkcje rekurencyjne

Klasa całkowitych funkcji rekurencyjnych jest najmniejszą klasą funkcji zawierają-
cą Z, S oraz Un,k i zamkniętą ze na złożenie, rekursję prostą i efektywną operację
minimum.

Klasa (częściowych) funkcji rekurencyjnych jest najmniejszą klasą funkcji za-
wierającą Z, S oraz Un,k i zamkniętą ze na złożenie, rekursję prostą i operację
minimum.

Definicja klasy funkcji rekurencyjnych wymaga wyjaśnienia, co to jest złożenie
funkcji częściowych i jak definiujemy przez rekursję prostą w przypadku takich
funkcji. Te pojęcia można wyjaśnić podobnie, jak operację minimum, wskazując
naturalne algorytmy, które powinny obliczać odpowiednie funkcje i żądając zgod-
ności definicji i obliczeń za pomocą odpowiedniego algorytmu.

Zgodnie z tezą Churcha, klasa częściowych funkcji rekurencyjnych jest klasą
funkcji naturalnych, które są obliczalne w jakimkolwiek, intuicyjnym sensie.

Klasę funkcji rekurencyjnych można definiować na wiele sposobów. Na przy-
kład, można w definicji tej klasy nie wspominać o rekursji prostej. Rekursja prosta
jest potrzebna do zdefiniowania trzech funkcji: dodawania, mnożenia i funkcji cha-
rakterystycznej relacji nierówności. Mając te trzy funkcje, możemy kodować ciągi
liczb naturalnych za pomocą liczb naturalnych, a to z kolei pozwala rekursję prostą
zastąpić operacją minimum.

Można też ograniczać rolę operacji minimum. Można stosować ją wyłącznie do
funkcji całkowitych. Bardzo silny rezultat tego typu wyraża twierdzenie o postaci
normalnej.
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Twierdzenie 13.5 (o postaci normalnej Kleene’ego) Jeżeli f jest częściową
funkcją rekurencyjną, to istnieją dwie pierwotnie rekurencyjne (a więc całkowite)
funkcje g i h takie, że

f(~k) = h(µm(g(~k,m) = 0)).

Dowód. O h można nawet założyć, że jest określoną, bardzo prostą funkcją. Szkic
dowodu twierdzenia jest następujący: zmieniamy trochę i rozbudowujemy algorytm
obliczający wartości funkcji f , dodajemy licznik kroków algorytmu i dodatkowo o
1 zwiększamy ewentualny wynik obliczeń. Niech g oznacza funkcję

f ′(~k, t) =
{

0 jeżeli obliczenie wartości f(~k) wymaga > t kroków,
f(~k) + 1 jeżeli obliczenie wartości f(~k) wymaga ¬ t kroków.

Można przekonać się, że funkcja f ′ jest pierwotnie rekurencyjna.
W teorii rekursji przyjmuje się, że 0 koduje prawdę. Funkcję g definiujemy jako

funkcję boolowską, taką że

g(~k, w) = 0 ≡ f ′(~k, (w)1) = (w)0 ∧ (w)0 > 0,

gdzie w jest liczbą, o ktrórej myślimy, że koduje ciąg (ewentualnie parę) liczb o
pierwszej współrzędnej (w)0 i drugiej (w)1. Niech h(x) = (x)0 − 1 będzie zdefinio-
wana jako zmniejszona o 1 pierwsza współrzędna pary kodowanej przez x. Dla tak
zdefiniowanej funkcji h zachodzi wzór z tezy twierdzenia. 2

Wniosek 13.6 Klasa częściowych funkcji rekurencyjnych jest najmniejszą klasą
funkcji zawierającą funkcje pierwotnie rekurencyjne i zamkniętą ze względu na zło-
żenie i operację minimum stosowaną do funkcji całkowitych. 2

13.8 Operacja minimum i λ-definiowalność

Twierdzenie 13.7 Niech g : N2 → N będzie całkowitą funkcją definiowaną w
lambda rachunku za pomocą termu G. Wtedy funkcja f : N → N taka, że f(m) =
µn(g(m,n) = 0) jest lambda definiowalna.

Dowód. Zdefiniujmy pomocniczą funkcję h : N2 → N przyjmując, że

h(k,m) =
{
k jeżeli g(m, k) = 0
h(k + 1,m) w przeciwnym przypadku

Funkcja h jest definiowana przez specyficzną indukcję. Powinna być definiowana
za pomocą termu H takiego, że

H = λxy.Zero(Gyx)x(H(Sx)y),

gdzie Zero jest termem zdefiniowanym na stronie 30.
Zauważmy, że term H o wyżej podanej własności spełnia też warunki

1) jeżeli g(m, k) = 0, to Hckcm →→β ck,

2) jeżeli g(m, k) 6= 0, to Hckcm →→β Hck+1cm, Przy czym wykonując podaną
redukcję przynajmniej raz redukujemy pierwszy o lewej strony redeks.
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Pokażemy, że term F = Hc0 definiuje funkcję f . Nietrudno zauważyć, że jeżeli
wartość f(m) jest określona, to dla pewnego k mamy

g(m, l) 6= 0 dla l < k oraz g(m, k) = 0.

Wobec tego mamy następującą redukcję

Fcm = Hc0cm →→β Hc1cm →→β . . . Hck−1cm →→β Hckcm →→β ck = cf(m).

Natomiast jeżeli f(m) nie jest określona i g(m, k) 6= 0 dla wszystkich k, to
mamy nieskończoną redukcję

Fcm = Hc0cm →→β Hc1cm →→β Hc2cm →→β . . .

która jest quasi-normalna. Z wniosku 12.6 otrzymujemy, że term Fcm nie ma po-
staci normalnej.

Pozostaje podać konstrukcję termu H. Wymaga to posłużenia się operatorem
punktu stałego. Musi to być szczególny operator, gwarantujący wymagane wła-
sności H. Takim może być tzw. operator Turinga. Niech więc

1) A = λxy.y(xxy),

2) Θ = AA,

3) M = λhxy.Zero(Gyx)x(h(Sx)y).

Wtedy

H = ΘM = AAM →β M(AAM) = MH →β λxy.Zero(Gyx)x(H(Sx)y)

i zachodzą wymienione wcześniej własności H. 2

13.9 Nowsze rozumienie definiowalności

Funkcje definiowalne według Churcha mają może nawet bardzo intuicyjną defi-
nicję, ale jest ona zbyt restrykcyjna i trudno się nią posugiwać. Często inaczej
formułuje się warunek nieokreśloności funkcji.

TermM nazywamy rozwiązalnym (ang. solvable), jeżeli istnieją termyN1, . . . , Nk

takie, że
(λx1 . . . xn.M)N1 . . . Nk = I,

gdzie zmienne x1, . . . , xn są wszystkimi zmiennymi wolnymi w termie M .
Nietrudno zauważyć, że numerały Churcha są rozwiązalne. Mamy bowiem

cnII = I. Także term xy(ωω) (gdzie ω = λz.zz) jest rozwiązałny, ponieważ
(λxy.xy(ωω))KI = I, jednak nie ma on postaci normalnej.

Mówimy, że term jest w głowowej postaci normalnej, jeżeli jest on postaci

λx1 . . . xn.xN1 . . . Nm,

gdzie m i n są dowolnymi liczbami naturalnymi, także mogą być równe 0, x oraz
x1, . . . , xn są dowolnymi zmiennymi, a N1 . . . Nm są dowolnymi termami.

Term ωω nie jest w głowowej postaci normalnej i nie ma głowowej postaci
normalnej.

Lemat 13.8 Zachodzą następujące fakty:
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1) Term w postaci normalnej jest w głowowej postaci normalnej.

2) Jeżeli term ma postać normalną, to ma też głowową postać normalną.

3) Jeżeli term ma głowową postać normalną, to jest rozwiązalny. 2

Podany lemat jest łatwy do wykazania, ale prawdziwa jest też trudniejsza do
udowodnienia implikacja odwrotna do ostatniej z wymienionych, a więc mamy

Twierdzenie 13.9 Term ma głowową postać normalną wtedy i tylko wtedy, gdy
jest rozwiązalny. 2

Możemy teraz zmodyfikować definicję definiowalności (znaną ze strony 28).
Funkcja częściowa dwóch zmiennych f : N2 → N jest lambda definiowalna, jeżeli
dla pewnego termu F ∈ Λ są spełnione dla dowolnych m,n ∈ N następujące
warunki:

1) jeżeli wartość f(m,n) jest określona, to w lambda rachunku daje się dowieść,
że Fcmcn = cf(m,n) (lub równoważnie Fcmcn →→β cf(m,n)),

2) jeżeli wartość f(m,n) nie jest określona, to wyrażenie Fcmcn nie ma głowowej
postaci normalnej a więc nie jest rozwiązalne.

Twierdzenie 13.10 Złożenie częściowych funkcji lambda definiowalnych jest lamb-
da definiowalne (w sensie powyższej definicji).

Dowód. Dowód znowu przedstawimy na przykładzie. Przypuśćmy, że funkcja h
jest złożeniem całkowitych funkcji f , g1 i g2 takim, że

h(m,n) = f(g1(m,n), g2(m,n)).

Niech F , G1 i G2 będą termami definiującymi odpowiednio funkcje f , g1 i g2.
Wtedy term

H = λab.G1abII G2abII F (G1ab)(G2ab)

definiuje złożenie h. Sprawdzenie warunku 1) z definicji funkcji lambda definio-
walnej nie nastręcza żadnych trudności. Wystarczy zauważyć, że jeżeli wartość
gi(m,n) jest określona, to GicmcnII →→β cgi(m,n)II →→β I.

Aby sprawdzić, że spełniony jest warunek 2), rozważamy kilka przypadków.
Jeżeli wartość g1(m,n) nie jest określona, a mimo to term Hcmcn jest rozwiązalny,
to

HcmcnN1 . . . Nk →→β I

dla pewnych termów N1, . . . , Nk. Ale także

HcmcnN1 . . . Nk →→β G1cmcnII G2acmcnII F (G1cmcn)(G2cmcn)N1 . . . Nk,

więc z twierdzenia Churcha-Rossera mamy

G1cmcnII G2acmcnII F (G1cmcn)(G2cmcn)N1 . . . Nk →→β I.

To przeczy jedna stwierdzeniom, że wartość g1(m,n) nie jest określona i term
G1cmcn nie jest rozwiązalny.

Analogiczne rozumowanie jest słuszne w pozostałych przypadkach: gdy wartość
g1(m,n) jest, a g2(m,n) nie jest określona, oraz gdy wartości g1(m,n) i g2(m,n)
są określone, a wartość f(g1(m,n), g2(m,n)) nie jest określona. 2

Dowód twierdzenia 13.7 można uzupełnić tak, aby pozostał prawdziwy po zmia-
nie pojęcia definiowalności.
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Twierdzenie 13.11 Niech g : N2 → N będzie całkowitą funkcją definiowaną
w lambda rachunku za pomocą termu G. Wtedy funkcja f : N → N taka, że
f(m) = µn(g(m,n) = 0) jest lambda definiowalna.

Dowód. Zostanie tylko uzupełniony przy zachowaniu oznaczeń.
Zmianie ulega jedynie fragment, w którym sprawdzamy własności F w przy-

padku, gdy f(m) nie jest określona. Załóżmy więc, że tak jest i dodatkowo, że
term Fcm = Hc0cm jest jednak rozwiązalny. Wtedy znajdujemy termy N1, . . . , Nk

takie, że
Hc0cmN1 . . . Nk →→β I.

Jednak w dalszym ciągu powyższy term można redukować w następujący sposób:

Hc0cmN1 . . . Nk →→β Hc1cmN1 . . . Nk →→β Hc2cmN1 . . . Nk →→β . . .

i jest to redukcja quasi-normalna. Z wniosku 12.6 wynika, że term Hc0cmN1 . . . Nk

nie ma postaci normalnej i nie może zostać zredukowany do termu I, który jest w
postaci normalnej. 2
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