Egzamin z Rachunku Lambda
Zadania beda jakos punktowane. Zakltadam, ze bardzo dobry student powinien rozwigza¢ zadania
za okoto 75% punktéw. 60% punktéw powinno starczyé na ocene bardzo dobrze, a 25% — na ocene
dostatecznie. Czas trwania egzaminu: 120 do 150 minut. 26 czerwca 2018

Zad. 1. 1) Pojecie termu w A-rachunku definiuje sie na dwa sposoby. Przytocz obie definicje.

2) Przytocz definicje termu w postaci normalnej (termu, ktéry jest w postaci normalnej, znajduje
si¢ w postaci normalnej).

3) Sformutuj twierdzenie Churcha-Rossera, a wtasciwie uzupelnij nastepujace zdanie: Jezeli M =g
N, to ..., gdzie M i N to A-termy.

4) Uzupelnij nastepujace zdanie: Jezeli A-term M jest w postaci normalnej i M —3 N, to ...
Podaj jego uzasadnienie.

5) Czy ¢; =g I?7 OdpowiedZ uzasadnij.
Rozw. (lub uwagi dotyczace rozwiazania).

1) Pytanie bylo malo precyzyjne. Termy A rachunku czesto definiuje sie w zwyktly sposob, jako
wyrazenia z dwoma operacjami: aplikacjg i abstrakcja. Wiadomo jednak, ze ta definicja ma zte
konsekwencje. Precyzyjniejsza definicja czesto korzysta z a-konwersji.

Takie byly moje oczekiwania. Mozna tez byto wspomnie¢ o termach de Bruijna.

2) Piszac malo formalnie, term w postaci normalnej to taki, ktéry nie zawiera redeksu, albo taki,
ktérego nie mozna przeksztalcié wykonujac jeden (istotny) krok g-redukcji.

3) Jezeli M =4 N, to istnieje term P taki, ze M —3 P 1 N —»3 P.
4) Jezeli \-term M jest w postaci normalnej i M —3 N, to M = N (lub doktadniej, M =, N).

5) Oczywiscie termy ¢; oraz I nie sa termami réwnymi w sensie S-konwersji. Gdyby byty réwne, to
z twierdzenia Churcha-Rossera mozna bytoby je oba [ zredukowa¢ do pewnego termu P. Wtedy z
punktu 4) otrzymalibysmy, ze ¢; =, P =, I. Tak wiec ¢; i I bylyby termam « konwertowalnymi
i na przyktad musialy by mie¢ taks sama strukture, a tak nie jest (w ¢; mamy dwie abstrakcje i
aplikacje, I zawiera tylko jedna abstrakcje).

Zad. 2. Krotko moéwige, aby zdefiniowaé relacje Bn-redukcji —g, rozszerzamy definicj¢ (-redukeji
dopuszczaja nowy sposob przeksztalcen Ax. Max — M. Dokladniej, relacja —g, jest najmniejsza
relacja zgodna z operacjami A-rachunku spelniajaca (z oczywistymi ograniczeniami)

(Az. M)N —g, Mz := N| oraz A\x. Mx —g, M

(te druga regute nazywamy n-redukcja, wymagamy, ze x ¢ M). Jak zwykle, relacja — g, jest zwrot-
nym i przechodnim domknigciem relacji — g, , za$ relacja =g, jest najmniejsza kongruencjg zawiera-
jaca —»g,. Dla Bn-redukcji, analogicznie, definiuje si¢ takze pojecie termu w postaci normalnej oraz
dowodzi sie twierdzenie Churcha-Rossera.

1) Pokaz, ze jezeli term M jest abstrakcja i zmienna x nie jest wolna w M, to Ax. Mz —3 M.

w N

)
) Udowodnij, ze jezeli ¢ FV(MN) i Mz =g, Nz, to M =g, N.
) Wywnioskuj z punktu 2), ze ¢; =g, I.

)

4) Termy ¢y i [ —w przypadku fBn-redukcji — powinny mieé¢ wspolny redukt. Znajdz go, a takze,

o ile istniejg, postacie normalne tych terméw.

5) Wywnioskuj z twierdzenia Churcha-Rossera, ze f@n-rachunek jest niesprzecznym i istotnym
rozszerzeniem [-rachunku.



Rozw.

Zad. 3. Przyjmijmy, ze w = A\x. vz, A = \y. wy oraz M = AA.

1) Zdefiniuj graf Gz(X) (X to dowolny A-term). Jest to raczej graf z wielokrotnymi krawedziami.
Jaki jest stopien wyjsciowy wierzchotka odpowiadajacego M w grafie Gz(M).

2) Narysuj graf Gz(M). Zaznacz na rysunku $ciezke redukeji normalnej termu M. Ustal takze,
czy term M ma posta¢ normalng i zaznacz ja, jezeli istnieje.

Rozw.
2)

MNy.(Az.zx)y)( Ay.(Ar.xx)y) — (Ay.(Ar.zz)y)(Ay.yy)
) 1
Ayyy) Ay (Azzz)y)  —  (Agyy)(yyy) O

Zad. 4. Czy w A-rachunku jest prawdziwa réwnosé (Ay.(Az.M))N = Az.((A\y.M)N)? Ewentualnie,
w jakich przypadkach ta réwnos¢ jest prawdziwa? Oczywiscie, x i y to rézne zmienne.

Rozw. Te termy oczywiscie moga si¢ réznic¢, i mozna szuka¢ réznicy uniemozliwiajacej wykazanie
rownosci, ale to moze by¢ trudne i niewiele z tego wynika.
Najpierw zauwazmy, ze czasem ta réwnos$¢ nie zachodzi. Tak jest na przyktad dla M = zy i
N = z. Wtedy
Ay.(Ax.M))N = (Ay.(Az.zy))x =4 (Ay.(Az.2y))z = Az.2x

oraz

Az.(Ay.M)N) = Az.((\y.zy)x) = Az.xx.

Tak wiec znalezliSmy postacie normalne obu termoéw, ktére okazaty sie rézne. Stad wynika, ze w tym
przypadku nie dowiedziemy réwnosci rozwazanych termow.
Z drugiej strony rozwazane termy wydaja si¢ bardzo podobne. Mamy

(Ay.(Ax.M))N —5 (Ax.M)[y :== N| = \x.M[y := N]|

oraz

Ar.(Ay.M)N) —5 \x. My := NJ.

Wyglada na to, ze redukuja sie do tego samego termu. Poprawnos¢ tych redukeji wymaga jednak
drobnych zatozen: podstawialnosci N za y w termach Ax.M i M odpowiednio. Przedstawione ra-
chunki sa poprawne, gdy y nie jest wolna w M (gdy nie mamy za co podstawiac), a takze gdy z
nie jest wolna w N (wtedy wykonanie redukcji moze wymagaé zastapienia M jego odpowiedniong
wersja, taka sama w obu przypadkach).

Jak wida¢ z podanego przyktadu, w sytuacji, w ktérej x jest wolna w N i y jest wolna w M,
interesujgce nas termy moga by¢ rézne.

Zad. 5. 1) Wymien wlasnosci redukeji terméw z kolorowymi redeksami. Jakie whasnosci réznia te
redukcje i f-redukcje. Do czego sie ona przydaje.

2) Ile razy trzeba wykonaé¢ pojedyncza [-redukeje, aby otrzymaé posta¢ normalna termu w sensie
kolorowej redukcji? A ile razy mozna?

3) Przypu$émy, ze M — N. Przyjmijmy, ze A\-termy M’ i N’ otrzymujemy redukujac odpowiednio
w termach M i N najbardziej lewy (pierwszy) redeks. Pokaz, ze M’ — N'. Wskazowka: oczywi-
Scie, w tym zadaniu przydatne sg termy z kolorowymi redeksami. Trudno jednak pokolorowaé
redeksy od razu, na poczatku. Raczej trzeba to robié¢ stopniowo.



4) Przypusémy, ze AI-term ma nieskoniczona redukcje. Pokaz, Ze nie ma postaci normalnej. Wska-
zoéwka: wypelniamy termami tablice indeksowana liczbami naturalnymi. W pierwszym wierszu
umieszczamy termy z nieskonczonej redukcji. W kolumnach umieszczamy kolejne termy nor-
malnej redukcji termu z pierwszego wiersza, do konca. Chcialoby sie pokazaé¢, ze cata tablica
zostanie wypelniona, ale przynajmniej pierwsza kolumna zostanie wypetniona. Wynika to z
niewielkiego wzmocnienia poprzedniego punktu.

Rozw.

1) W A-rachunku mamy trzy rodzaje terméw: takie, ktérych wszystkie redukcje sa skoriczone (koncza
sie postacia normalna), ktére nie maja skonczonych (i zakonczonych, maksymalnych) redukeji, i w
koncu takie, ktére maja zaréwno skonczone, jak i nieskonczone redukcje.

W przypadku rachunku z kolorowymi redeksami mamy tylko termy pierwszego rodzaju. Kaz-
dy term ma jednoznacznie wyznaczong posta¢ normalng, bez kolorowych redeksow. W [(-rachunku
term ma tylko najwyzej jedna posta¢ normalng (moze nie mie¢ postaci normalnej). Co wiecej, kaz-
da redukcja kolorowych redeksow jest skonczona i konczy sie postacia normalng. W [(-rachunku
niekoniecznie.

Przy okazji zauwazmy, ze w A[-rachunku nie ma terméw trzeciego rodzaju.

Kolorowe redeksy bardzo przydaja sie przy dowodzeniu wlasnosci zwyktej (-redukcji. Pozwa-
laja zagwarantowa¢ okreslony przebieg redukcji. Byly wykorzystywane w dowodzie twierdzenia o
standaryzacji, o normalizacji (redukcji lewostronnej), przy analizie redukcji quasi-normalne;j.

2) Redukujac term z kolorowymi redeksami do postaci normalnej mozemy przeksztatcaé redeksy
kolejno, od prawej strony. Wtedy wykonamy tyle pojedynczych redukeji, ile w termie byto kolorowych
redeksow.

W pewnym momencie zostalo wprowadzone pojecie wagi termu i zostato wykazane przy pewnych
zatozeniach, ze wykonanie redukcji kolorowego redeksu powoduje zmniejszenie wagi termu. Termowi,
w ktérym wystepuje n zmiennych, mozna nada¢ wage 2" — 1. Stad wynika, ze redukujac kolorowe
redeksy w takim termie wykonamy najwyzej 2" redukcji.

3) Przypusémy, ze mamy taka sytuacje:

M = My —-— My - My —-...— M, = N

! l ! l ! l
M o= M, M M M, = N

(strzatka w dét oznacza redukcje najbardziej lewego redeksu). Wystarczy, ze skupimy uwage na
czterech termach takich, jak My, My, M| i M. Pokazemy, ze M| — MJ. Sa mozliwe dwa przypadki.
Jezeli obie redukcje termu M, polegaja na przyksztalceniu tego samego redeksu, to M| = My — M3.
Jezeli M; jest redukowany na dwa rézne sposoby, to kolorujemy oba przeksztatcane redeksy. Redukcja
M, — My — M) jest wtedy redukcja wszystkich kolorowych redeksow (do prawej) i M) jest postacia
normalng M; w sensie kolorowej redukcji. Mozemy tez w termie M; najpierw zredukowaé¢ pierwszy
(pokolorowany) redeks, a nastepnie wszystkie kolorowe redeksy termu M. W ten sposéb otrzymamy
posta¢ normalng termu M, czyli term M.,

4) Postepujemy podobnie jak w pierwszej czesci zadania, ale zaczynamy od nieskonczonej redukcji
termu M i przeksztatcamy ja w inng nieskonczong redukcje:

M = My - My - My —...— M, — ...

l ! ! ! !
My = My — M{ — M), —...— M — ...

Gdyby udato sie te tablice rozbudowa¢ w nieskonczonosé, to pierwsza kolumna tablicy bytaby lewo-
stronng i nieskonczona redukcja termu M i Swiadczytaby o braku postaci normalnej M.

Ten nowy wiersz z redukcja nie jest tak regularny, jak pierwszy i to z dwoch powodow. Przej-
Scia miedzy poszczegdlnymi kolumnami moga wymagaé¢ wielu krokow, co zaburza wyglad tablicy,



ale nie jest specjalnie istotne. Moze tez zdarzy¢ sie¢ tak, ze przejscia wymagaja 0 krokéw, a wita-
Sciwie nie mogg zosta¢ wykonane. Prosze przeanalizowaé co si¢ bedzie dziato w przypadku termu
I(Az.zxx)(A\r.xzx)).

Aby wypetnié¢ potrzebna, nieskonczong tablice, musimy wykorzysta¢ zatozenie i dwie jego kon-
sekwencje: redukujac AI-term otrzymujemy w wyniku A/-term, a poza tym redukcja Al-termu z
dwoma redeksami wymaga wykonania przynajmniej dwoch pojedynczych redukcji.

Ladne rozwigzanie mozna otrzymac¢ dowodzac przez indukcje, ze AI-term, ktéry ma nieskonczong
redukcje, dla kazdego naturalnego m ma tez nieskonczona redukcja, w ktoérej przynajmniej w n
pierwszych krokach redukowane sg najbardziej lewe redeksy.

Zad. 6. Przypomnijmy na razie oznaczenia i znane wzory: FO(M) = M, F*"*Y(M) = F(F"(M)).

Pokaz, ze ¢, (¢, ) = Cpmp @ dla wszystkich m,n € N. Postaraj sie nie korzystac¢ z ekstensjonal-
nosci.

Niech F' = Aabzx. ba(ax). Udowodnij, ze F ¢, ¢, = Cpntr.
Znajdz najbardziej ogdlny typ termu F'. Odpowiedz uzasadnij.

Oznaczmy symbolem nat typ (o« — a) — o — « (literaly Churcha sa typu nat). Chcieliby$my,
aby term F' byl typu nat — nat — nat. Pokaz, ze nie jest to mozliwe, bez wzgledu na to,
co podstawimy za o w podanym typie, nie otrzymamy wyrazenia o ktorym mozna dowies¢, ze
jest typem F'.

n+1)

Niech G = Aaz.aa(ax) (G reprezentuje funkcje g(n) = n"*'). Zbadaj, czy G ma typ i znajdz

najogdélniejszy typ tego termu, jezeli istnieje.

Przyjmijmy, ze Nat jest typem polimorficznym Vo (o — o) — o — «a. Pokaz (o termie G z
adnotacjami) w polimorficznym systemie A2, ze

F Xa™ Ma A\z® 7% a(a — a) aa (aaz) : Nat — Nat.

Rozw.

1) Przeksztalcamy lewa strone réwnosei:

Cm (cnx) = (Afb.f™(D)(cn ) = Ab.(c,y )™ (D).

To ostatnie wyrazenie wyliczymy na boku. Doktadniej, udowodnimy przez indukcje ze wzgledu na
m, ze (¢, x)™(b) — 2™ (b). Wzdr jest oczywisty dla m = 0. Poza tym mamy

(cn )™ (b) = (ea ) ((cn 2)™(B) = (ca @) (@™ (1)) — (Aa.z"(a)) (2™ (b)) — & (@™"(b)) = 2™+ I"(b).

Kontynuujac przeksztatcanie, z pomocniczego wzoru otrzymujemy, ze

Ab.(c, )" (b) — Ab.x™(b) «— (Afb.f™™(b))x = Cn .

2) Jak wyzej, najpierw przez indukcje ze wzgledu na n pokazujemy wzoér pomocniczy

(cm)"(Cm ) = Cppnt1 .

W rachunkach istotne sg nastepujace przeksztaltcenia:

(em)" T H(em ) = o ((em)™ (e T)) = o (Cont1 T) = Cpntz @

na mocy zalozenia indukcyjnego i wzoru z poprzedniego punktu.
I dalej

F ¢y ¢, = (Aabz. ba(az))cp, ¢n = Ax. cp e () = Az (Afy. " (v)) em (cm ) =

= AT (C)" (e ) = AZ. Cymir & = Aza. 2™ (a) = Cpnin.



3) Znany jest algorytm wyliczajacy najogdlniejszy typ termu. Algorytm ten wylicza najogdlniejsze
typy wszystkich podterméw zaczynajac od najprostszych. Wyliczajac typ ztozonego termu rozwigzuje
okreslone zadanie unifikacyjne i bierze najbardziej ogdlne rozwigzanie. Jezeli w ten sposob da sie
ustali¢ typ termu, to znaleziony typ powinien by¢ najbardziej ogdlnym.

Liczac (w spos6b nieco uproszczony) typ termu F' = Aabx. ba(ax) zaczynamy od najprostszych
podterméw a, b, x, nastepnie ustalamy typy podterméw ax, ba, ba(ax) itd.
Przyjmijmy wiec, ze
a:a, b:3, x:7.

Aby term ax mial typ, typ o musi by¢ typem funkcyjnym postaci a = v — 6. Wtedy ax bedzie
typu d.

Aby term ba mial typ, typ f musi by¢ typem funkeyjnym postaci = (y — ) — k. Wtedy ba
bedzie typu k.

Aby term ba(ax) mial typ, typ £ musi by¢ typem funkcyjnym postaci k = § — £. Wtedy ba(ax)
bedzie typu &.

Nietrudno zauwazy¢, ze

{a:y—0,b:(y—06) —06—=& z:v}Fbalax) : &.
Wobec tego mamy
FE =) (=) =i — =&
Co wiecej, ze wzgledu na sposob konstrukeji tego typu, powinien by¢ on najbardziej ogdlnym typem

termu F'.

4) Przypusémy, ze po podstawieniu w typie nat — nat — nat za zmienna « typu o' otrzymujemy
typ nat’ — nat’ — nat’, ktéry jest takze typem termu F'.
Wszystkie typy termu F' otrzymujemy podstawiajac w najbardziej ogélnym za zmienne 3, 7, d i
¢ odpowiednie typy (', v/, 0’ i £. Powinna wiec zachodzi¢ réwnosé nastepujacej postaci

(V=)= (=) —d—-¢) -+ — & =nat' — nat’ — nat’.
Wynika z niej, ze takze
(7 = &) =mat’ = () = ) = &' =)
(pierwsze wyrazenie jest implikacja o poprzedniku 4 — ¢, a drugie — o poporzedniku nat’, itd.).
Nie jest to mozliwe, gdyz zadne wyrazenie nie moze by¢ rowne swojemu wtasciwemu podwyrazeniu.

5) Term G nie ma typu. Gdyby mial typ, to typy mialyby wszystkie podtermy G, a wiec takze
podterm aa. Term aa nie ma typu z przyczyn wspomnianych w poprzednim punkcie.

6) Niech I' = {a: Nat,z: a — a}.

I'-a: Nat
'k a(o — «) : nat — nat 'k aa : nat l'Fx:a—a
'k a(a — a)(aa) : nat 'k (a)r:a— «

'k ala— a)(aa)((aa)z) : a — «

a:Nat - Az*"*a(a — a)(aa)((aq)z) : nat
a: Nat - dadz*"*a(a — «a)(aa)((ax)x) : Nat
F AaNat Ao r* 7Y a(a — a)(aa)((ac)z) : Nat — Nat




Zad. 7. Przyjmijmy, ze
P=Xa. KI, W =Xz. xAgA;, A1 = Azwt. w(t(Sx))(Sx)wt

oraz
H, = W(Pc,)c, WP,

gdzie S oznacza term definiujacy operacje nastepnika, Ay jest dowolnym termem (jego definicja nie

odgrywa w zadaniu w zadnej roli), a P w istotnych przyktadach powinien by¢ zastapiony innym

termem o analogicznych wlasnosciach.

1) Pokaz, ze H,, = H, 1 dla wszystkich liczb naturalnych n.
2) Uzasadnij, ze term Hj nie ma postaci normalnej.

3) Podaj przyklad terméw G, takich, ze G,, = G,4+1 dla wszystkich n € N mimo, ze term Gy
ma posta¢ normalna.

Rozw.
1) Zauwazmy, ze
H, = W(Pcp)c, WP = (Ax. ©A¢A1)(Pcyp) cn W P — (Pc,) Ag A1y, WP — KIAyAyc, W P —
— TA1cy, WP — Ay, W P = (Azwt. w(t(Sz))(Sz)wt) c, W P — W(P(S¢,))(Se,) WP —
— W(Pcpi1)cniitWP = Hypyq.

2) Redukcja Hy — Hy — H,... jest quasi-normalna, gdyz w rachunkach z punktu 1) wszystkie
przejscia z wyjatkiem ostatniego polegaja na przeksztatceniu najbardziej lewego redeksu. Term, dla
ktorego istnieje nieskonczona redukcja quasi-normalna nie ma postaci normalne;j.

3) Zadanie jest troche zle sformutowane, ale chodzito w nim o taki przykltad, ktéry swiadezytby o
tym, ze analiza termu Hy z punktu 2) jest wazna i rzeczywiscie wymaga uzasadnienia.
Proponowatbym nastepujacy:

fe=(Zx)c(f(Px)), awladciwie F' = Afx. (Zz)co (f (Px))

gdzie Z sprawdza, czy x jest zerem, P jest termem reprezentujacym odejmowanie jedynki. Tak wiec
f wyraza indukcyjng definicje funkcji stale rownej 0. Niech © bedzie kombinatorem punktu statego
Turinga. Mamy wiec redukcje © F' — F (O F)). Jezeli przyjmiemy, ze G,, = F"(OF) ¢13, to zaréwno
G, — Gpiq, jak i G, — .

Zad. 8. Podaj term F' spelniajaca réwnos¢ F'x = G z (F (F x)). Oczywiscie, pokaz, ze wskazany
przez Ciebie term spetnia te réwnosé. Dowdd powinien by¢ pelny, nie moze korzystaé z jakichkolwiek
twierdzen.

Zad. 9. Cgzy istnieje A-term bez zmiennych wolnych, ktéry jest typu ((((a — ) — a) — a) — «)?
Odpowiedz uzasadnij. To zadanie ma bardzo krotkie rozwigzanie.

Rozw. Rozwiazujac takie zadanie mozemy spotkac si¢ z trzema sytuacjami.

Po pierwsze, dany typ rozumiany jako formuta moze nie by¢ tautologia (klasyczna). O tym
latwo mozna sie przekonaé. Latwo tez mozna dowie$é, ze typy sa prawami logiki (klasycznej oraz
intuicjonistycznej), a takze tautologiami.

Jezeli dany typ mozna dowies¢ w logice intuicjonistycznej, to najprosciej to zadanie rozwigzujemu
poshugujac sie tzw. izomorfizmem Curry’ego-Howarda, z ktorego wynika w szczegoélnosci, ze typami
sa wszystkie prawa intuicjonistycznego rachunku zdan. W tej sytuacji mozna rozwiaza¢ zadanie
dowodzac dana formute w logice intuicjonistycznej. Nie powinno to by¢ trudne, gdy skorzystamy z
systemu dedukcji naturalne;j.

Najtrudniej rozwiazaé¢ zadanie w trzecim przypadku, gdy dany typ jest klasyczng tautologia,
ktora nie jest prawem logiki intuicjonistycznej.

Typ podany w tresci zadania i rozumiany jako formuta nie jest tautologia.

Ciekawsze bytoby to samo zadanie dotyczace typu ((((« — ) — @) — a) — a) — a.



