
Egzamin z Rachunku Lambda
Zadania będą jakoś punktowane. Zakładam, że bardzo dobry student powinien rozwiązać zadania
za około 75% punktów. 60% punktów powinno starczyć na ocenę bardzo dobrze, a 25% – na ocenę

dostatecznie. Czas trwania egzaminu: 120 do 150 minut. 26 czerwca 2018

Zad. 1. 1) Pojęcie termu w λ-rachunku definiuje się na dwa sposoby. Przytocz obie definicje.

2) Przytocz definicję termu w postaci normalnej (termu, który jest w postaci normalnej, znajduje
się w postaci normalnej).

3) Sformułuj twierdzenie Churcha-Rossera, a właściwie uzupełnij następujące zdanie: JeżeliM =β

N , to . . ., gdzie M i N to λ-termy.

4) Uzupełnij następujące zdanie: Jeżeli λ-term M jest w postaci normalnej i M →→β N , to . . .
Podaj jego uzasadnienie.

5) Czy c1 =β I? Odpowiedź uzasadnij.

Rozw. (lub uwagi dotyczące rozwiązania).

1) Pytanie było mało precyzyjne. Termy λ rachunku często definiuje się w zwykły sposób, jako
wyrażenia z dwoma operacjami: aplikacją i abstrakcją. Wiadomo jednak, że ta definicja ma złe
konsekwencje. Precyzyjniejsza definicja często korzysta z α-konwersji.

Takie były moje oczekiwania. Można też było wspomnieć o termach de Bruijna.

2) Pisząc mało formalnie, term w postaci normalnej to taki, który nie zawiera redeksu, albo taki,
którego nie można przekształcić wykonując jeden (istotny) krok β-redukcji.

3) Jeżeli M =β N , to istnieje term P taki, że M →→β P i N →→β P .

4) Jeżeli λ-term M jest w postaci normalnej i M →β N , to M = N (lub dokładniej, M =α N).

5) Oczywiście termy c1 oraz I nie są termami równymi w sensie β-konwersji. Gdyby były równe, to
z twierdzenia Churcha-Rossera można byłoby je oba β zredukować do pewnego termu P . Wtedy z
punktu 4) otrzymalibyśmy, że c1 =α P =α I. Tak więc c1 i I byłyby termam α konwertowalnymi
i na przykład musiały by mieć taką samą strukturę, a tak nie jest (w c1 mamy dwie abstrakcje i
aplikację, I zawiera tylko jedną abstrakcję).

Zad. 2. Krótko mówiąc, aby zdefiniować relację βη-redukcji →βη rozszerzamy definicję β-redukcji
dopuszczają nowy sposób przekształceń λx. Mx → M . Dokładniej, relacja →βη jest najmniejszą
relacją zgodną z operacjami λ-rachunku spełniającą (z oczywistymi ograniczeniami)

(λx. M)N →βη M [x := N ] oraz λx. Mx→βη M

(tę drugą regułę nazywamy η-redukcją, wymagamy, że x 6∈M). Jak zwykle, relacja →→βη jest zwrot-
nym i przechodnim domknięciem relacji →βη, zaś relacja =βη jest najmniejszą kongruencją zawiera-
jącą →→βη. Dla βη-redukcji, analogicznie, definiuje się także pojęcie termu w postaci normalnej oraz
dowodzi się twierdzenie Churcha-Rossera.

1) Pokaż, że jeżeli term M jest abstrakcją i zmienna x nie jest wolna w M , to λx. Mx→β M .

2) Udowodnij, że jeżeli x 6∈ FV (MN) i Mx =βη Nx, to M =βη N .

3) Wywnioskuj z punktu 2), że c1 =βη I.

4) Termy c1 i I – w przypadku βη-redukcji – powinny mieć wspólny redukt. Znajdź go, a także,
o ile istnieją, postacie normalne tych termów.

5) Wywnioskuj z twierdzenia Churcha-Rossera, że βη-rachunek jest niesprzecznym i istotnym
rozszerzeniem β-rachunku.



Rozw.

Zad. 3. Przyjmijmy, że ω = λx. xx, A = λy. ωy oraz M = AA.

1) Zdefiniuj graf Gβ(X) (X to dowolny λ-term). Jest to raczej graf z wielokrotnymi krawędziami.
Jaki jest stopień wyjściowy wierzchołka odpowiadającego M w grafie Gβ(M).

2) Narysuj graf Gβ(M). Zaznacz na rysunku ścieżkę redukcji normalnej termu M . Ustal także,
czy term M ma postać normalną i zaznacz ją, jeżeli istnieje.

Rozw.
2)

(λy.(λx.xx)y)(λy.(λx.xx)y) → (λy.(λx.xx)y)(λy.yy)

⇓ ↓ ⇑ ↓ ↓

(λy.yy)(λy.(λx.xx)y) → (λy.yy)(λy.yy) ←⊃

Zad. 4. Czy w λ-rachunku jest prawdziwa równość (λy.(λx.M))N = λx.((λy.M)N)? Ewentualnie,
w jakich przypadkach ta równość jest prawdziwa? Oczywiście, x i y to różne zmienne.

Rozw. Te termy oczywiście mogą się różnić, i można szukać różnicy uniemożliwiającej wykazanie
równości, ale to może być trudne i niewiele z tego wynika.

Najpierw zauważmy, że czasem ta równość nie zachodzi. Tak jest na przykład dla M = xy i
N = x. Wtedy

(λy.(λx.M))N = (λy.(λx.xy))x =α (λy.(λz.zy))x = λz.zx

oraz
λx.((λy.M)N) = λx.((λy.xy)x) = λx.xx.

Tak więc znaleźliśmy postacie normalne obu termów, które okazały się różne. Stąd wynika, że w tym
przypadku nie dowiedziemy równości rozważanych termów.

Z drugiej strony rozważane termy wydają się bardzo podobne. Mamy

(λy.(λx.M))N →β (λx.M)[y := N ] = λx.M [y := N ]

oraz
λx.((λy.M)N)→β λx.M [y := N ].

Wygląda na to, że redukują się do tego samego termu. Poprawność tych redukcji wymaga jednak
drobnych założeń: podstawialności N za y w termach λx.M i M odpowiednio. Przedstawione ra-
chunki są poprawne, gdy y nie jest wolna w M (gdy nie mamy za co podstawiać), a także gdy x
nie jest wolna w N (wtedy wykonanie redukcji może wymagać zastąpienia M jego odpowiednioną
wersją, taką samą w obu przypadkach).

Jak widać z podanego przykładu, w sytuacji, w której x jest wolna w N i y jest wolna w M ,
interesujące nas termy mogą być różne.

Zad. 5. 1) Wymień własności redukcji termów z kolorowymi redeksami. Jakie własności różnią tę
redukcję i β-redukcję. Do czego się ona przydaje.

2) Ile razy trzeba wykonać pojedyńczą β-redukcję, aby otrzymać postać normalną termu w sensie
kolorowej redukcji? A ile razy można?

3) Przypuśćmy, że M →→ N . Przyjmijmy, że λ-termy M ′ i N ′ otrzymujemy redukując odpowiednio
w termach M i N najbardziej lewy (pierwszy) redeks. Pokaż, że M ′ →→ N ′. Wskazówka: oczywi-
ście, w tym zadaniu przydatne są termy z kolorowymi redeksami. Trudno jednak pokolorować
redeksy od razu, na początku. Raczej trzeba to robić stopniowo.



4) Przypuśćmy, że λI-term ma nieskończoną redukcję. Pokaż, że nie ma postaci normalnej. Wska-
zówka: wypełniamy termami tablicę indeksowaną liczbami naturalnymi. W pierwszym wierszu
umieszczamy termy z nieskończonej redukcji. W kolumnach umieszczamy kolejne termy nor-
malnej redukcji termu z pierwszego wiersza, do końca. Chciałoby się pokazać, że cała tablica
zostanie wypełniona, ale przynajmniej pierwsza kolumna zostanie wypełniona. Wynika to z
niewielkiego wzmocnienia poprzedniego punktu.

Rozw.

1) W λ-rachunku mamy trzy rodzaje termów: takie, których wszystkie redukcje są skończone (kończą
się postacią normalną), które nie mają skończonych (i zakończonych, maksymalnych) redukcji, i w
końcu takie, które mają zarówno skończone, jak i nieskończone redukcje.

W przypadku rachunku z kolorowymi redeksami mamy tylko termy pierwszego rodzaju. Każ-
dy term ma jednoznacznie wyznaczoną postać normalną, bez kolorowych redeksów. W β-rachunku
term ma tylko najwyżej jedną postać normalną (może nie mieć postaci normalnej). Co więcej, każ-
da redukcja kolorowych redeksów jest skończona i kończy się postacią normalną. W β-rachunku
niekoniecznie.

Przy okazji zauważmy, że w λI-rachunku nie ma termów trzeciego rodzaju.
Kolorowe redeksy bardzo przydają się przy dowodzeniu własności zwykłej β-redukcji. Pozwa-

lają zagwarantować określony przebieg redukcji. Były wykorzystywane w dowodzie twierdzenia o
standaryzacji, o normalizacji (redukcji lewostronnej), przy analizie redukcji quasi-normalnej.

2) Redukując term z kolorowymi redeksami do postaci normalnej możemy przekształcać redeksy
kolejno, od prawej strony. Wtedy wykonamy tyle pojedyńczych redukcji, ile w termie było kolorowych
redeksów.

W pewnym momencie zostało wprowadzone pojęcie wagi termu i zostało wykazane przy pewnych
założeniach, że wykonanie redukcji kolorowego redeksu powoduje zmniejszenie wagi termu. Termowi,
w którym występuje n zmiennych, można nadać wagę 2n+1− 1. Stąd wynika, że redukując kolorowe
redeksy w takim termie wykonamy najwyżej 2n+1 redukcji.

3) Przypuśćmy, że mamy taką sytuację:

M = M0 → M1 → M2 → . . .→ Mn = N
↓ ↓ ↓ ↓ ↓ ↓
M ′ = M ′

0 M ′
1 M ′

2 M ′
n = N ′

(strzałka w dół oznacza redukcję najbardziej lewego redeksu). Wystarczy, że skupimy uwagę na
czterech termach takich, jak M1, M2, M ′

1 i M ′
2. Pokażemy, że M ′

1 →→M ′
2. Są możliwe dwa przypadki.

Jeżeli obie redukcje termu M1 polegają na przykształceniu tego samego redeksu, to M ′
1 = M2 →M ′

2.
Jeżeli M1 jest redukowany na dwa różne sposoby, to kolorujemy oba przekształcane redeksy. Redukcja
M1 →M2 →M ′

2 jest wtedy redukcją wszystkich kolorowych redeksów (do prawej) i M ′
2 jest postacią

normalną M1 w sensie kolorowej redukcji. Możemy też w termie M1 najpierw zredukować pierwszy
(pokolorowany) redeks, a następnie wszystkie kolorowe redeksy termu M ′

1. W ten sposób otrzymamy
postać normalną termu M1, czyli term M ′

2.

4) Postępujemy podobnie jak w pierwszej części zadania, ale zaczynamy od nieskończonej redukcji
termu M i przekształcamy ją w inną nieskończoną redukcję:

M = M0 → M1 → M2 → . . .→ Mn → . . .
↓ ↓ ↓ ↓ ↓
M ′
0 = M ′

0 →→ M ′
1 →→ M ′

2 →→ . . .→→ M ′
n →→ . . .

Gdyby udało się tę tablicę rozbudować w nieskończoność, to pierwsza kolumna tablicy byłaby lewo-
stronną i nieskończoną redukcją termu M i świadczyłaby o braku postaci normalnej M .

Ten nowy wiersz z redukcją nie jest tak regularny, jak pierwszy i to z dwóch powodów. Przej-
ścia między poszczególnymi kolumnami mogą wymagać wielu kroków, co zaburza wygląd tablicy,



ale nie jest specjalnie istotne. Może też zdarzyć się tak, że przejścia wymagają 0 kroków, a wła-
ściwie nie mogą zostać wykonane. Proszę przeanalizować co się będzie działo w przypadku termu
I((λx.xxx)(λx.xxx)).

Aby wypełnić potrzebną, nieskończoną tablicę, musimy wykorzystać założenie i dwie jego kon-
sekwencje: redukując λI-term otrzymujemy w wyniku λI-term, a poza tym redukcja λI-termu z
dwoma redeksami wymaga wykonania przynajmniej dwóch pojedyńczych redukcji.

Ładne rozwiązanie można otrzymać dowodząc przez indukcję, że λI-term, który ma nieskończoną
redukcję, dla każdego naturalnego n ma też nieskończoną redukcja, w której przynajmniej w n
pierwszych krokach redukowane są najbardziej lewe redeksy.

Zad. 6. Przypomnijmy na razie oznaczenia i znane wzory: F 0(M) = M , F n+1(M) = F (F n(M)).

1) Pokaż, że cm (cn x) = cmn x dla wszystkich m,n ∈ N . Postaraj się nie korzystać z ekstensjonal-
ności.

2) Niech F = λabx. ba(ax). Udowodnij, że F cm cn = cmn+1 .

3) Znajdź najbardziej ogólny typ termu F . Odpowiedź uzasadnij.

4) Oznaczmy symbolem nat typ (α→ α)→ α→ α (literały Churcha są typu nat). Chcielibyśmy,
aby term F był typu nat → nat → nat. Pokaż, że nie jest to możliwe, bez względu na to,
co podstawimy za α w podanym typie, nie otrzymamy wyrażenia o którym można dowieść, że
jest typem F .

5) Niech G = λax. aa(ax) (G reprezentuje funkcję g(n) = nn+1). Zbadaj, czy G ma typ i znajdź
najogólniejszy typ tego termu, jeżeli istnieje.

6) Przyjmijmy, że Nat jest typem polimorficznym ∀α (α → α) → α → α. Pokaż (o termie G z
adnotacjami) w polimorficznym systemie λ2, że

` λaNat λαλxα→α. a(α→ α) aα (aα x) : Nat→ Nat.

Rozw.

1) Przekształcamy lewą stronę równości:

cm (cn x) = (λfb.fm(b))(cn x) = λb.(cn x)m(b).

To ostatnie wyrażenie wyliczymy na boku. Dokładniej, udowodnimy przez indukcję ze względu na
m, że (cn x)m(b)→→ xmn(b). Wzór jest oczywisty dla m = 0. Poza tym mamy

(cn x)m+1(b) = (cn x)((cn x)m(b))→→ (cn x)(xmn(b))→ (λa.xn(a))(xmn(b))→ xn(xmn(b)) = x(m+1)n(b).

Kontynuując przekształcanie, z pomocniczego wzoru otrzymujemy, że

λb.(cn x)m(b)→→ λb.xmn(b)← (λfb.fmn(b))x = cmn x.

2) Jak wyżej, najpierw przez indukcję ze względu na n pokazujemy wzór pomocniczy

(cm)n(cm x) = cmn+1 x.

W rachunkach istotne są następujące przekształcenia:

(cm)n+1(cm x) = cm ((cm)n(cm x)) = cm (cmn+1 x) = cmn+2 x

na mocy założenia indukcyjnego i wzoru z poprzedniego punktu.
I dalej

F cm cn = (λabx. ba(ax))cm cn = λx. cn cm (cm x) = λx. ((λfy.fn(y)) cm (cm x)) =

= λx. (cm)n(cm x)) = λx. cnm+1 x = λxa. xm
n+1

(a) = cmn+1 .



3) Znany jest algorytm wyliczający najogólniejszy typ termu. Algorytm ten wylicza najogólniejsze
typy wszystkich podtermów zaczynając od najprostszych. Wyliczając typ złożonego termu rozwiązuje
określone zadanie unifikacyjne i bierze najbardziej ogólne rozwiązanie. Jeżeli w ten sposób da się
ustalić typ termu, to znaleziony typ powinien być najbardziej ogólnym.

Licząc (w sposób nieco uproszczony) typ termu F = λabx. ba(ax) zaczynamy od najprostszych
podtermów a, b, x, następnie ustalamy typy podtermów ax, ba, ba(ax) itd.

Przyjmijmy więc, że
a : α, b : β, x : γ.

Aby term ax miał typ, typ α musi być typem funkcyjnym postaci α = γ → δ. Wtedy ax będzie
typu δ.

Aby term ba miał typ, typ β musi być typem funkcyjnym postaci β = (γ → δ) → κ. Wtedy ba
będzie typu κ.

Aby term ba(ax) miał typ, typ κ musi być typem funkcyjnym postaci κ = δ → ξ. Wtedy ba(ax)
będzie typu ξ.

Nietrudno zauważyć, że

{a : γ → δ, b : (γ → δ)→ δ → ξ, x : γ} ` ba(ax) : ξ.

Wobec tego mamy

` F : (γ → δ)→ ((γ → δ)→ δ → ξ)→ γ → ξ.

Co więcej, ze względu na sposób konstrukcji tego typu, powinien być on najbardziej ogólnym typem
termu F .

4) Przypuśćmy, że po podstawieniu w typie nat → nat → nat za zmienną α typu α′ otrzymujemy
typ nat′ → nat′ → nat′, który jest także typem termu F .

Wszystkie typy termu F otrzymujemy podstawiając w najbardziej ogólnym za zmienne β, γ, δ i
ξ odpowiednie typy β′, γ′, δ′ i ξ′. Powinna więc zachodzić równość następującej postaci

(γ′ → δ′)→ ((γ′ → δ′)→ δ′ → ξ′)→ γ′ → ξ′ = nat′ → nat′ → nat′.

Wynika z niej, że także
(γ′ → δ′) = nat′ = ((γ′ → δ′)→ δ′ → ξ′)

(pierwsze wyrażenie jest implikacją o poprzedniku γ′ → δ′, a drugie – o poporzedniku nat′, itd.).
Nie jest to możliwe, gdyż żadne wyrażenie nie może być równe swojemu właściwemu podwyrażeniu.

5) Term G nie ma typu. Gdyby miał typ, to typy miałyby wszystkie podtermy G, a więc także
podterm aa. Term aa nie ma typu z przyczyn wspomnianych w poprzednim punkcie.

6) Niech Γ = {a : Nat, x : α→ α}.

Γ ` a : Nat

Γ ` a(α→ α) : nat→ nat Γ ` aα : nat Γ ` x : α→ α

Γ ` a(α→ α)(aα) : nat Γ ` (aα)x : α→ α

Γ ` a(α→ α)(aα)((aα)x) : α→ α

a : Nat ` λxα→α a(α→ α)(aα)((aα)x) : nat

a : Nat ` λαλxα→α a(α→ α)(aα)((aα)x) : Nat

` λaNatλαλxα→α a(α→ α)(aα)((aα)x) : Nat→ Nat



Zad. 7. Przyjmijmy, że

P ≡ λa. KI, W ≡ λx. xA0A1, A1 ≡ λxwt. w(t(Sx))(Sx)wt

oraz
Hn ≡ W (Pcn)cnWP,

gdzie S oznacza term definiujący operację następnika, A0 jest dowolnym termem (jego definicja nie
odgrywa w zadaniu w żadnej roli), a P w istotnych przykładach powinien być zastąpiony innym
termem o analogicznych własnościach.

1) Pokaż, że Hn =β Hn+1 dla wszystkich liczb naturalnych n.

2) Uzasadnij, że term H0 nie ma postaci normalnej.

3) Podaj przykład termów Gn takich, że Gn =β Gn+1 dla wszystkich n ∈ N mimo, że term G0
ma postać normalną.

Rozw.

1) Zauważmy, że

Hn = W (Pcn)cnWP = (λx. xA0A1)(Pcn) cnW P → (Pcn)A0A1 cnW P → KIA0A1 cnW P →→

→→ I A1 cnW P → A1 cnW P = (λxwt. w(t(Sx))(Sx)wt) cnW P →→ W (P (Scn))(Scn)WP →→
→→ W (Pcn+1)cn+1WP = Hn+1.

2) Redukcja H0 →→ H1 →→ H2 . . . jest quasi-normalna, gdyż w rachunkach z punktu 1) wszystkie
przejścia z wyjątkiem ostatniego polegają na przekształceniu najbardziej lewego redeksu. Term, dla
którego istnieje nieskończona redukcja quasi-normalna nie ma postaci normalnej.

3) Zadanie jest trochę źle sformułowane, ale chodziło w nim o taki przykład, który świadczyłby o
tym, że analiza termu H0 z punktu 2) jest ważna i rzeczywiście wymaga uzasadnienia.

Proponowałbym następujący:

f x = (Z x) c0 (f (P x)), a właściwie F = λfx. (Z x) c0 (f (P x))

gdzie Z sprawdza, czy x jest zerem, P jest termem reprezentującym odejmowanie jedynki. Tak więc
f wyraża indukcyjną definicję funkcji stale równej 0. Niech Θ będzie kombinatorem punktu stałego
Turinga. Mamy więc redukcję ΘF →→ F (ΘF ). Jeżeli przyjmiemy, że Gn = F n(ΘF ) c13, to zarówno
Gn →→ Gn+1, jak i Gn →→ c0.

Zad. 8. Podaj term F spełniającą równość F x = G x (F (F x)). Oczywiście, pokaż, że wskazany
przez Ciebie term spełnia tę równość. Dowód powinien być pełny, nie może korzystać z jakichkolwiek
twierdzeń.

Zad. 9. Czy istnieje λ-term bez zmiennych wolnych, który jest typu ((((α → β) → α) → α) → α)?
Odpowiedź uzasadnij. To zadanie ma bardzo krótkie rozwiązanie.

Rozw. Rozwiązując takie zadanie możemy spotkać się z trzema sytuacjami.
Po pierwsze, dany typ rozumiany jako formuła może nie być tautologią (klasyczną). O tym

łatwo można się przekonać. Łatwo też można dowieść, że typy są prawami logiki (klasycznej oraz
intuicjonistycznej), a także tautologiami.

Jeżeli dany typ można dowieść w logice intuicjonistycznej, to najprościej to zadanie rozwiązujemu
posługując się tzw. izomorfizmem Curry’ego-Howarda, z którego wynika w szczególności, że typami
są wszystkie prawa intuicjonistycznego rachunku zdań. W tej sytuacji można rozwiązać zadanie
dowodząc daną formułę w logice intuicjonistycznej. Nie powinno to być trudne, gdy skorzystamy z
systemu dedukcji naturalnej.

Najtrudniej rozwiązać zadanie w trzecim przypadku, gdy dany typ jest klasyczną tautologią,
która nie jest prawem logiki intuicjonistycznej.

Typ podany w treści zadania i rozumiany jako formuła nie jest tautologią.
Ciekawsze byłoby to samo zadanie dotyczące typu ((((α→ β)→ α)→ α)→ α)→ α.


