
Termy λ-rachunku według de Bruijna

Antoni Kościelski

Spis treści

1 Wyrażenia de Bruijna 1
1.1 Definicja wyrażeń de Bruijna . 1
1.2 Podstawianie w wyrażeniach de Bruijna 2
1.3 Przekształcanie wyrażeń w wyrażenia de Bruijna 2
1.4 Przekształcanie wyrażeń de Bruijna w λ-termy 3

2 α-konwersja a wyrażenia de Bruijna 3
2.1 Zmienne w wyrażeniach de Bruijna 3
2.2 Występowanie zmiennych w termach de Bruijna 4
2.3 Własności podstawiania . 5
2.4 Własności usuwania . 5
2.5 Termy h-poprawne . 7
2.6 Usuwanie i dodawanie razem . 7

1 Wyrażenia de Bruijna

1.1 Definicja wyrażeń de Bruijna

Znaczenie programistyczne ma sposób przedstawiania wyrażeń lambda rachunku
wymyślony przez Nicolasa de Bruijna. Może zostać opisany poprzez następującą
gramatykę.

1) 〈w. de Bruijna〉 ::= 〈zmienna〉 | 〈aplikacja〉 | 〈abstrakcja〉

2) 〈wyrażenie proste〉 ::= 〈zmienna〉 | (〈aplikacja)〉) | (〈abstrakcja〉)

3) 〈aplikacja〉 ::= 〈zmienna〉〈wyrażenie proste〉 |

(〈abstrakcja〉)〈wyrażenie proste〉 | 〈aplikacja〉〈wyrażenie proste〉

4) 〈abstrakcja〉 ::= λ 〈w. de Bruijna〉

5) 〈zmienna〉 ::= 〈liczba naturalna〉

W wyrażeniach tego rodzaju po symbolu λ nie piszemy zmiennej, a na pozo-
stałych pozycjach, w których zwykłe są zmienne, umieszczamy liczby naturalne.
Liczb naturalnych jednak nie można utożsamiać ze zmiennymi: w wyrażeniach de
Bruijna tylko przekazują informacje o zmiennych. Co więcej, w ustalonym wyraże-
niu ta sama liczba przekazuje informacje zależne od jej umiejscowienia i w różnych
miejscach może opisywać różne zmienne.

1

Wyrażenia de Bruijna można też uważać za drzewa. Mogą to być drzewa bi-
narne, które mają trzy rodzaje węzłów: liście, które odpowiadają zmiennym i mają
etykiety będące liczbami naturalnymi oraz wskaźniki do dwóch pustych drzew, wę-
zły odpowiadające abstrakcjom, które zamiast lewego poddrzewa mają wskaźnik
pusty, i w końcu węzły odpowiadające aplikacjom, które mają dwa wskaźniki do
dwóch niepustych poddrzew.

Aby przekształcać wyrażenia w wyrażenia de Bruijna i odwrotnie potrzebny
jest tzw. kontekst (słowo kontekst będzie więc miało przynajmniej dwa znaczenia).
Kontekst może być rozumiany jako ciąg wszystkich zmiennych bez powtórzeń.
Przyjmijmy, że jeżeli Γ jest kontekstem, to Γn oznacza zmienną znajdującą się w
kontekście Γ na n-tym miejscu, a Γ(x) oznacza numer zmiennej x w kontekście Γ.
Dalej możemy myśleć, że posługujemy się jednym, ustalonym kontekstem Γ.

1.2 Podstawianie w wyrażeniach de Bruijna

Dla wyrażenia de Bruijna M i liczb naturalnych a i b zdefiniujemy teraz wyrażenie
M [a← b]. Operacja ta ma być odpowiednikiem operacji M [Γa := Γb] podstawiania
w zwykłym termie M za zmienną Γa zmiennej Γb.

Przyjmujemy, że

1) a[a← b] = b oraz c[a← b] = c dla liczb c 6= a,

2) (MN)[a← b] = M [a← b]N [a← b],

3) (λM)[a← b] = λM [a+ 1← b+ 1].

Definicja tej operacji pozwala częściowo odtworzyć sposób tworzenia wyrażeń
de Bruijna. Przekształcając zwykły λ-term (rozumiany jako drzewo) w wyraże-
nie de Bruijna, konkretne wolne wystąpienie zmiennej x zastępujemy numerem
zmiennej x powiększonym o liczbę operatorów λ na ścieżce od tego wystąpienia
do korzenia.

1.3 Przekształcanie wyrażeń w wyrażenia de Bruijna

Aby w λ-termach zastępować zmienne liczbami naturalnymi musimy dokładnie
wiedzieć, co znaczy liczba n w wyrażeniu de Bruijna. Tak więc wystąpienie liczby
0 oznacza albo zmienną związaną pierwszym (licząc od wystąpienia liczby) opera-
torem λ znajdującym się na ścieżce od tego wystąpienia do korzenia termu, albo
zmienną Γ0, jeżeli na tej ścieżce nie ma żadnego operatora λ. Wystąpienie liczby 1
oznacza albo zmienną związaną drugim operatorem λ znajdującym się na ścieżce
od tego wystąpienia do korzenia, albo zmienną Γ0, jeżeli na tej ścieżce jest tylko
jeden operator λ, albo też zmienną Γ1, jeżeli na rozważanej ścieżce nie ma żadnego
operatora. Dla większych n sytuacja jest analogiczna.

Zdefiniujemy teraz funkcję Usun nazwy, która dane λ-wyrażenie przekształca
w odpowiadające mu wyrażenie de Bruijna. Algorytm definiujący tę funkcję będzie
rekurencyjny i będzie korzystać z pomocniczej zmiennej h o wartościach natural-
nych. Definicję funkcji Usun nazwy można przedstawić w następujący sposób:

Dane: lambda wyrażenie W (i kontekst Γ).

Usun nazwy(W) = Usun nazwy(W, 0), a więc wykonanie funkcji Usun nazwy
wymaga wywołania innej funkcji z dodatkowym parametrem h, równym 0,
niżej mamy rekurencyjną definicję tej funkcji:

2

1) Jeżeli x jest zmienną, to Usun nazwy(x, h) = Γ(x) + h.

2) Usun nazwy(MN,h) = Usun nazwy(M,h)Usun nazwy(N, h).

3) Usun nazwy(λxM, h) = λUsun nazwy(M,h+ 1)[Γ(x) + h+ 1← 0].

Aby zastąpić liczbami zmienne w podtermie nie wystarczy znajomość samego
podtermu; musimy znać cały term, a właściwie musimy wiedzieć, ile operatorów λ
znajduje się na ścieżce prowadzącej od podtermu do korzenia termu. Liczbę tych
operatorów przekazujemy funkcji w formie dodatkowego argumentu. Zauważmy
też, że zastępując liczbami zmienne w niewielkim podtermie nie mamy informacji,
czy występująca w nim zmienna jest w całym termie wolna, czy też jest związana.
Początkowo zmienna jest więc traktowana jako wolna. Zmienne wolne zastępowane
są dużymi liczbami w przeciwieństwie do zmiennych związanych. Wobec tego po
stwierdzeniu, że zmienna jest jednak związana, musimy zmienić odpowiadającą jej
liczbę. Robimy to wykonując stosowne podstawienie.

1.4 Przekształcanie wyrażeń de Bruijna w λ-termy

Teraz zdefiniujemy funkcję Dodaj nazwy, która dane wyrażenie de Bruijna zamie-
nia na zwykłe wyrażenie λ-rachunku. Funkcja ta będzie korzystać z pewnego pa-
rametru c ∈ N , od którego będą zależeć wybierane nazwy zmiennych związanych.
W ogólnym przypadku jest potrzebna jakaś zasada wyboru nazw tych zmiennych.
Będziemy zakładać, że liczba c jest większa od wszystkich liczb występujących w
wyrażeniu de Bruijna danym jako argument, i jako zmiennych związanych będzie-
my używać tych o numerach większych od c.

Funkcję tę można przedstawić w następujący sposób:

Dane: wyrażenie de Bruijna W i kontekst Γ.

Dodaj nazwy(W) = Dodaj nazwy(W, 0).

1) Jeżeli x jest liczbą, to Dodaj nazwy(x, h) = Γx−h.

2) Dodaj nazwy(MN,h) = Dodaj nazwy(M,h)Dodaj nazwy(N, h).

3) Dodaj nazwy(λM, h) = λΓcDodaj nazwy(M [0 ← c + h + 1], h + 1) i do-
datkowo wykorzystanie nazwy (zmiennej) o numerze c powinno spowodować
zwiększenie c o 1.

2 α-konwersja a wyrażenia de Bruijna

2.1 Zmienne w wyrażeniach de Bruijna

Rolę zmiennych w termach de Bruijna pełnią liczby naturalne. Będziemy analizo-
wać wystąpienia zmiennych w takich wyrażeniach.

Jeżeli wyrażenie de Bruijna uważamy za drzewo, to wystąpieniem zmiennej w
tym wyrażeniu będziemy nazywać dowolny liść tego drzewa. Jeżeli liściem tym (w
tym liściu) jest liczba x, to będziemy mówić, że jest to wystąpienie liczby x, a
nawet to wystąpienie – nie do końca poprawnie – będziemy utożsamiać z liczbą x.

Jeżeli wyrażenie de Bruijna uważamy za ciąg znaków i liczb, to wystąpienie
zmiennej x to pozycja w tym ciągu, na której znajduje się liczba x.

3

Dla każdego wystąpienia zmiennej x w wyrażeniu de Bruijna M definiujemy
indukcyjnie zagnieżdżenie zM(x) tego wystąpienia. Jeżeli M jest zmienną (czyli
zmienną x), to zM(x) = 0. Jeżeli M = M1M2 i wystąpienie x znajduje się w
termie Mi, to zM(x) = zMi(x). W końcu, jeżeli M = λM ′, to zM(x) = zM ′(x) + 1.

Wystąpienia w termie M zmiennej x nazywamy związanym, jeżeli x < zM(x).
Pozostałe wystąpienia zmiennych nazywamy wolnymi.

Lemat 2.1 Wykonywanie podstawienia M [a ← b] polega na zamianie wystąpień
liczb x takich, że x = a+ zM(x) liczbami b+ zM(x). 2

Lemat 2.2 Jeżeli w wyrażeniu de Bruijna M występuje liczba x taka, że zM(x) ¬
x < zM(x) + h, to podczas wykonywania procedury Dodaj nazwy(M,h) występuje
błąd polegający na próbie ustalenia nazwy Γc dla pewnego c < 0. W przeciwnym
razie, jeżeli dla wszystkich wystąpień liczb x w termie M mamy albo x < zM(x),
albo zM(x) + h ¬ x, to procedura Dodaj nazwy(x, h) jest wykonywana poprawnie.
2

Wniosek 2.3 Procedura Dodaj nazwy(M), czyli Dodaj nazwy(M, 0) jest wyko-
nywana poprawnie dla dowolnego wyrażenia de Bruijna M . 2

2.2 Występowanie zmiennych w termach de Bruijna

Zdefiniujemy teraz pojęcie, które ma odpowiadać w przypadku termów de Bruijna
warunkowi x ∈ FV (M). Pojęcie to zostanie zdefiniowane przez indukcję ze względu
na budowę termu de Bruijna M . Pamiętajmy, że rolę zmiennych w termach de
Bruijna pełnią liczby naturalne.

Jeżeli term de Bruijna M jest liczbą naturalną, to liczba x występuje w M
wtedy i tylko wtedy, gdy jest równa M . Jeżeli term M jest aplikacją M1M2, to
liczba x występuje w M wtedy i tylko wtedy, gdy x występuje w M1 lub w M2.
Jeżeli term M jest abstrakcją λN , to liczba x występuje w M wtedy i tylko wtedy,
gdy liczba x+ 1 występuje w termie N .

Lemat 2.4 Dla dowolnego termu de BruijnaM i dla dowolnych liczb x, y i a 6= x,
jeżeli x nie występuje w M , to nie występuje też w termie M [y ← a].

Dowód. Lemat ten dowodzimy przez indukcję ze względu na M . Sprawdzimy go
jedynie w przypadku abstrakcji M = λN .

Załóżmy, że x nie występuje w termie λN . Oznacza to, że x+ 1 nie występuje
w termie N . Term (λN)[y ← a] jest równy λN [y + 1 ← a + 1]. Aby sprawdzić,
że x nie występuje w λN [y + 1 ← a + 1], badamy, czy x + 1 nie występuje w
N [y + 1← a+ 1]. Tak jest na mocy założenia indukcyjnego dla termu N . 2

Lemat 2.5 Jeżeli x 6= a, to x nie występuje w termie M [x← a].

Dowód. Przez indukcję ze względu na M dowodzimy, że teza lematu zachodzi dla
wszystkich liczb x i a. 2

Lemat 2.6 Jeżeli liczba x nie występuje w termie de Bruijna M , to M [x← a] =
M .

Dowód. Lemat ten ma oczywisty dowód przez indukcję ze wględu na M . 2

4

2.3 Własności podstawiania

Lemat 2.7 Jeeli liczby a, a′, b, b′ speniają warunki a 6= a′, a 6= b′ oraz b 6= a′, to
dla wszystkich termów de Bruijna M mamy

M [a← b][a′ ← b′] = M [a′ ← b′][a← b].

Dowód. Lemat dość oczywisty, dowodzony przez indukcję ze względu na budowę
termu M , dla wszystkich możliwych parametrów. Najważniejsze, że przechodzi dla
elementarnych termów, czyli liczb. „Drugie” kroki są łatwe do wykazania. 2

Lemat 2.8 Jeżeli a 6= b, to dla wszystkich termów de Bruijna M mamy

M [a← b][a← b′] = M [a← b].

Dowód. Taki jak poprzedni lub z lematów 2.5 i 2.6. 2

Lemat 2.9 Dla wszystkich termów de Bruijna M i liczb b nie występujących w M
zachodzi równość

M [a← b][b← c] = M [a← c].

Dowód. Taki jak poprzedni. 2

2.4 Własności usuwania

Lemat 2.10 Jeżeli zmienna x nie jest wolna w (zwykłym) termie M , to Γ(x) + h
nie występuje w termie Usun nazwy(M,h).

Dowód. Również ten lemat łatwo dowodzi się przez indukcję ze względu na bu-
dowę termu M . 2

Lemat 2.11 Jeżeli M jest λ-termem i podstawialna za x w M zmienna y nie
należy do FV (M), to dla wszystkich liczb h

Usun nazwy(M,h)[Γ(x) + h← Γ(y) + h)] = Usun nazwy(M [x := y], h).

Dowód. Przez indukcję ze względu na M .

Przypadek 1: M = x. Wtedy

Usun nazwy(x, h)[Γ(x) + h← Γ(y) + h] = Γ(y) + h.

Podobnie przekształcamy drugą stronę wzoru do tego samego rezultatu.

Przypadek 2: zmienną M jest z 6= x. Wtedy także z 6= y oraz

Usun nazwy(z, h)[Γ(x) + h← Γ(y) + h] = Γ(z) + h,

gdyż dla różnych x i z mamy Γ(x) 6= Γ(z) (z własności kontekstów). Tak samo
przekształcamy drugą stronę wzoru.

Przypadek 3: M jest aplikacją. Teza wynika stąd, że wszystkie rozważane ope-
racje, a więc oba podstawiania ·[· := ·] oraz ·[· ← ·], a także Usun nazwy, można
przestawiać z operacją aplikacji.

5

Przypadek 4: M jest abstrakcją λxM ′. Wtedy

Usun nazwy(λxM ′, h)[Γ(x) + h← Γ(y) + h] =

= (λUsun nazwy(M ′, h+ 1)[Γ(x)] + h+ 1← 0])[Γ(x) + h← Γ(y) + h] =

= λUsun nazwy(M ′, h+ 1)[Γ(x)] + h+ 1← 0][Γ(x) + h+ 1← Γ(y) + h+ 1] =

= λUsun nazwy(M ′, h+ 1)[Γ(x)] + h+ 1← 0] =

= Usun nazwy(λxM ′, h) = Usun nazwy((λxM ′)[x := y], h),

na mocy lematu 2.8.

Przypadek 5: M jest abstrakcją λzM ′ dla z 6= x oraz x 6∈ FV (M ′). Wtedy

Usun nazwy(λzM ′, h)[Γ(x) + h← Γ(y) + h] =

= (λUsun nazwy(M ′, h+ 1)[Γ(z)] + h+ 1← 0])[Γ(x) + h← Γ(y) + h] =

= λUsun nazwy(M ′, h+ 1)[Γ(z)] + h+ 1← 0][Γ(x) + h+ 1← Γ(y) + h+ 1] =

= λUsun nazwy(M ′, h+ 1)[Γ(x)] + h+ 1← 0] =

= Usun nazwy(λzM ′, h) = Usun nazwy((λzM ′)[x := y], h)

na mocy lematów z rozdziału 2.2.

Przypadek 6: M jest abstrakcją λzM ′ dla z 6= x oraz x ∈ FV (M ′). Tym razem
podstawialność y implikuje, że y 6= z. Na mocy lematu 2.7

Usun nazwy(λzM ′, h)[Γ(x) + h← Γ(y) + h] =

= (λUsun nazwy(M ′, h+ 1)[Γ(z)] + h+ 1← 0])[Γ(x) + h← Γ(y) + h] =

= λUsun nazwy(M ′, h+ 1)[Γ(z)] + h+ 1← 0][Γ(x) + h+ 1← Γ(y) + h+ 1] =

= λUsun nazwy(M ′, h+ 1)[Γ(x) + h+ 1← Γ(y) + h+ 1][Γ(z)] + h+ 1← 0] =

= λUsun nazwy(M ′[x := y], h+ 1)[Γ(z) + h+ 1← 0] =

= Usun nazwy((λzM ′)[x := y], h). 2

Wniosek 2.12 Przypuśćmy, że mamy dane lambda term M i zmienną y. która
nie jest wolna w M i jest podstawialna w M za zmienną x. Wtedy dla dowolnego
naturalnego h zachodzi równość

Usun nazwy(λx.M, h) = Usun nazwy(λy.M [x := y], h).

Dowód. Zauważmy, że

Usun nazwy(λy.M [x := y], h) =

= λUsun nazwy(M [x := y], h+ 1)[Γ(y) + h+ 1← 0] =

= λUsun nazwy(M,h+ 1)[Γ(x) + h+ 1← Γ(y) + h+ 1][Γ(y) + h+ 1← 0] =

= λUsun nazwy(M,h+ 1)[Γ(x) + h+ 1← 0] = Usun nazwy(λy.M [x := y], h).

Poszczególne równości otrzymujemy z lematów 2.11, 2.10 oraz 2.9. 2

6

2.5 Termy h-poprawne

Zaczynamy od pomocniczego pojęcia związanego z operacją Dodaj nazwy. Wyko-
nanie tej operacji może zakończyć się błędem polegającym na otrzymaniu ujemne-
go argumentu kontekstu. Gwarancją poprawności wykonania operacjiDodaj nazwy(M,h)
jest h poprawność termu M .

Term de Bruijna M nazywamy h-poprawnym, jeżeli jest on liczbą i M ­ h,
albo jest on aplikacją M1M2 i oba jej człony M1 i M2 są h poprawne, albo też
jest on abstrakcją λM ′ i term M ′[0 ← c] jest h + 1-poprawny dla c ­ h + 1 i
większego od innych liczb w termie M ′ (np. dla najmniejszej liczby c o podanych
własnościach).

Lemat 2.13 Jeżeli M jest h-poprawny, to także h-poprawnym jest dowolny term
M [a← b+ h].

Dowód. Dowodzimy to przez indukcję ze względu na M i dowód jest prosty. 2

Z powyższych lematów wynika

Wniosek 2.14 Jeżeli M jest h-poprawny, to operacja Dodaj nazwy(M,h) jest
wykonywana poprawnie (nie powoduje błędu). 2

2.6 Usuwanie i dodawanie razem

Lemat 2.15 Dla dowolnego h i dowolnego termu h-poprawnego termu de Bruijna
M mamy

Usun nazwy(Dodaj nazwy(M,h), h) = M.

W szczególności, operacja Usun nazwy przyjmuje jako wartości wszystkie termy
de Bruijna.

Dowód. Przez indukcję ze względu na M .
Jeżeli M jest liczbą, to

Usun nazwy(Dodaj nazwy(M,h), h) = Usun nazwy(ΓM−h, h) = (M−h)+h = M.

Jeżeli M jest aplikacją, to teza lematu wynika w oczywisty sposób z założeń
indukcyjnych.

Przypuśćmy, że M jest abstrakcją λM ′. Wtedy

Usun nazwy(Dodaj nazwy(M,h), h) =

= Usun nazwy(λΓcDodaj nazwy(M ′[0← c+ h+ 1], h+ 1), h) =

= λUsun nazwy(Dodaj nazwy(M ′[0← c+ h+ 1], h+ 1), h+ 1)

[Γ(Γc) + h+ 1← 0] =

= λM ′[0← c+ h+ 1][Γ(Γc) + h+ 1← 0] =

= λM ′[0← c+ h+ 1][c+ h+ 1← 0] = λM ′ = M. 2

Lemat 2.16 Dla dowolnego h i dowolnego termu h-poprawnego termu de Bruijna
M mamy

Dodaj nazwy(Usun nazwy(M,h), h) ≡α M.

7

Dowód. Przez indukcję ze względu na budowę termu M . Jest to oczywiste dla
aplikacji. Dla zmiennej M mamy

Dodaj nazwy(Usun nazwy(M,h), h) = Dodaj nazwy(Γ(M) + h, h) =

= ΓΓ(M)+h−h = ΓΓ(M) = M ≡α M.

W końcu, dla abstrakcji λxM mamy

Dodaj nazwy(Usun nazwy(λxM, h), h) =

= Dodaj nazwy(λUsun nazwy(M,h+ 1)[Γ(x) + h+ 1← 0], h) =

= λΓcDodaj nazwy(

Usun nazwy(M,h+ 1)[Γ(x) + h+ 1← 0][0← c+ h+ 1], h+ 1)

= λΓcDodaj nazwy(Usun nazwy(M,h+ 1)[Γ(x) + h+ 1← c+ h+ 1], h+ 1)

= λΓcDodaj nazwy(Usun nazwy(M,h+ 1), h+ 1)[x := Γc]

= λΓcM [x := Γc] ≡α M. 2

Jako wniosek z prowadzonych rozważań otrzymujemy

Twierdzenie 2.17 Dla każdej pary wyrażeń rachunku lambda M i N , warunek
M ≡α N jest równoważny równości Usun nazwy(M) = Usun nazwy(N). 2

8

