Termy A-rachunku wedlug de Bruijna

Antoni Koscielski

Spis tresci

1

Wyrazenia de Bruijna 1
1.1 Definicja wyrazen de Bruijna 1
1.2 Podstawianie w wyrazeniach de Bruijna 2
1.3 Przeksztalcanie wyrazen w wyrazenia de Bruijna 2
1.4 Przeksztatcanie wyrazen de Bruijna w A-termy 3
a-konwersja a wyrazenia de Bruijna 3
2.1 Zmienne w wyrazeniach de Bruijna 3
2.2 Wystepowanie zmiennych w termach de Bruijna 4
2.3 Wtlasnosci podstawiania L. 5
2.4 Wilasnosci usuwania 5
2.5 Termy h-poprawne 7
2.6 Usuwanie i dodawanie razem 7

1 Wyrazenia de Bruijna

1.1 Definicja wyrazen de Bruijna

Zmnaczenie programistyczne ma sposob przedstawiania wyrazen lambda rachunku
wymyslony przez Nicolasa de Bruijna. Moze zosta¢ opisany poprzez nastepujaca
gramatyke.

1) (w. de Bruijna) ::= (zmienna) | (aplikacja) | (abstrakcja)

2) (wyrazenie proste) ::= (zmienna) | ((aplikacja))) | ({(abstrakcjay)

3) (aplikacja) ::= (zmienna)(wyrazenie proste) |
((abstrakcja))(wyrazenie proste) | (aplikacja)(wyrazenie proste)

4) (abstrakcja) = A (w. de Bruijna)

5) (zmienna) ::= (liczba naturalna)

W wyrazeniach tego rodzaju po symbolu A nie piszemy zmiennej, a na pozo-

statych pozycjach, w ktérych zwykte sa zmienne, umieszczamy liczby naturalne.
Liczb naturalnych jednak nie mozna utozsamiaé¢ ze zmiennymi: w wyrazeniach de
Bruijna tylko przekazuja informacje o zmiennych. Co wiecej, w ustalonym wyraze-
niu ta sama liczba przekazuje informacje zalezne od jej umiejscowienia i w réznych
miejscach moze opisywaé rézne zmienne.

Wyrazenia de Bruijna mozna tez uwaza¢ za drzewa. Moga to by¢ drzewa bi-
narne, ktore maja trzy rodzaje weztow: liscie, ktére odpowiadajg zmiennym i maja
etykiety bedace liczbami naturalnymi oraz wskazniki do dwéch pustych drzew, we-
zty odpowiadajace abstrakcjom, ktore zamiast lewego poddrzewa maja wskaznik
pusty, i w koncu wezty odpowiadajace aplikacjom, ktore majg dwa wskazniki do
dwdbch niepustych poddrzew.

Aby przeksztalca¢ wyrazenia w wyrazenia de Bruijna i odwrotnie potrzebny
jest tzw. kontekst (stowo kontekst bedzie wiec miato przynajmniej dwa znaczenia).
Kontekst moze by¢ rozumiany jako ciag wszystkich zmiennych bez powtorzen.
Przyjmijmy, ze jezeli I" jest kontekstem, to I',, oznacza zmienng znajdujaca sie w
kontekscie I' na n-tym miejscu, a I'(x) oznacza numer zmiennej x w kontekscie T.
Dalej mozemy mysle¢, ze postugujemy sie jednym, ustalonym kontekstem TI'.

1.2 Podstawianie w wyrazeniach de Bruijna

Dla wyrazenia de Bruijna M i liczb naturalnych a i b zdefiniujemy teraz wyrazenie
M]a < b]. Operacja ta ma by¢ odpowiednikiem operacji M[T', := T'y] podstawiania
w zwyklym termie M za zmienng I', zmiennej I'.

Przyjmujemy, ze

1) ala < b] = b oraz cla « b] = ¢ dla liczb ¢ # a,
2) (MN)[a < b] = Mla < b|N|a « b,
3) AM)la bl =AMla+1—b+1].

Definicja tej operacji pozwala czeSciowo odtworzy¢ sposdb tworzenia wyrazen
de Bruijna. Przeksztatcajac zwykly A-term (rozumiany jako drzewo) w wyraze-
nie de Bruijna, konkretne wolne wystapienie zmiennej x zastepujemy numerem
zmiennej x powickszonym o liczbe operatoréow A na Sciezce od tego wystapienia
do korzenia.

1.3 Przeksztalcanie wyrazen w wyrazenia de Bruijna

Aby w A-termach zast¢powa¢ zmienne liczbami naturalnymi musimy doktadnie
wiedzie¢, co znaczy liczba n w wyrazeniu de Bruijna. Tak wiec wystapienie liczby
0 oznacza albo zmienng zwiazana pierwszym (liczac od wystapienia liczby) opera-
torem A znajdujacym sie na $ciezce od tego wystapienia do korzenia termu, albo
zmienng [y, jezeli na tej Sciezce nie ma zadnego operatora A\. Wystapienie liczby 1
oznacza albo zmienng zwigzang drugim operatorem A znajdujacym si¢ na Sciezce
od tego wystapienia do korzenia, albo zmienng [y, jezeli na tej Sciezce jest tylko
jeden operator A, albo tez zmienng I'y, jezeli na rozwazanej Sciezce nie ma zadnego
operatora. Dla wiekszych n sytuacja jest analogiczna.

Zdefiniujemy teraz funkcje Usun_nazwy, ktéra dane A-wyrazenie przeksztatca
w odpowiadajace mu wyrazenie de Bruijna. Algorytm definiujacy te funkcje bedzie
rekurencyjny i bedzie korzysta¢ z pomocniczej zmiennej h o wartosciach natural-
nych. Definicje funkcji Usun_nazwy mozna przedstawi¢ w nastepujacy sposob:

Dane: lambda wyrazenie W (i kontekst I').

Usun_nazwy(W) = Usun_nazwy(W,0), a wiec wykonanie funkcji Usun_nazwy
wymaga wywolania innej funkcji z dodatkowym parametrem h, réwnym 0,
nizej mamy rekurencyjng definicje tej funkcji:

1) Jezeli x jest zmienna, to Usun_nazwy(z, h) = I'(x) + h.
2) Usun_nazwy(M N, h) = Usun_nazwy(M, h)Usun_nazwy(N, h).
3) Usun_nazwy(Ax M, h) = AUsun_nazwy(M,h + 1)[['(x) + h+ 1 « 0].

Aby zastagpi¢ liczbami zmienne w podtermie nie wystarczy znajomo$é samego
podtermu; musimy zna¢ caly term, a wtasciwie musimy wiedzie¢, ile operatorow A
znajduje sie na Sciezce prowadzacej od podtermu do korzenia termu. Liczbe tych
operatoréw przekazujemy funkcji w formie dodatkowego argumentu. Zauwazmy
tez, ze zastepujac liczbami zmienne w niewielkim podtermie nie mamy informac;ji,
czy wystepujaca w nim zmienna jest w calym termie wolna, czy tez jest zwigzana.
Poczatkowo zmienna jest wiec traktowana jako wolna. Zmienne wolne zastepowane
sg duzymi liczbami w przeciwienstwie do zmiennych zwiazanych. Wobec tego po
stwierdzeniu, ze zmienna jest jednak zwigzana, musimy zmieni¢ odpowiadajaca jej
liczbe. Robimy to wykonujac stosowne podstawienie.

1.4 Przeksztalcanie wyrazen de Bruijna w A\-termy

Teraz zdefiniujemy funkcje Dodaj_nazwy, ktéra dane wyrazenie de Bruijna zamie-
nia na zwykte wyrazenie A-rachunku. Funkcja ta bedzie korzysta¢ z pewnego pa-
rametru ¢ € N, od ktorego beda zaleze¢ wybierane nazwy zmiennych zwiazanych.
W ogdélnym przypadku jest potrzebna jakas zasada wyboru nazw tych zmiennych.
Bedziemy zakltadaé, ze liczba c¢ jest wieksza od wszystkich liczb wystepujacych w
wyrazeniu de Bruijna danym jako argument, i jako zmiennych zwiazanych bedzie-
my uzywac tych o numerach wickszych od c.
Funkcje te mozna przedstawi¢ w nastepujacy sposob:

Dane: wyrazenie de Bruijna W i kontekst I'.
Dodaj nazwy(W) = Dodaj_nazwy(W,0).
1) Jezeli z jest liczba, to Dodaj nazwy(x,h) =Ty}
2) Dodaj-nazwy(MN,h) = Dodaj nazwy(M, h)Dodaj nazwy(N,h).

3) Dodaj nazwy(AM,h) = AT'.Dodaj nazwy(M[0 «— ¢+ h+ 1],h + 1) i do-
datkowo wykorzystanie nazwy (zmiennej) o numerze ¢ powinno spowodowaé
zwigkszenie ¢ o 1.

2 oa-konwersja a wyrazenia de Bruijna

2.1 Zmienne w wyrazeniach de Bruijna

Role zmiennych w termach de Bruijna petnig liczby naturalne. Bedziemy analizo-
waé wystgpienia zmiennych w takich wyrazeniach.

Jezeli wyrazenie de Bruijna uwazamy za drzewo, to wystapieniem zmiennej w
tym wyrazeniu bedziemy nazywaé¢ dowolny lisé¢ tego drzewa. Jezeli lisciem tym (w
tym lidciu) jest liczba x, to bedziemy moéwié, ze jest to wystapienie liczby z, a
nawet to wystapienie — nie do konica poprawnie — bedziemy utozsamiac z liczba x.

Jezeli wyrazenie de Bruijna uwazamy za ciag znakoéw i liczb, to wystapienie
zmiennej r to pozycja w tym ciggu, na ktorej znajduje sie liczba x.

Dla kazdego wystapienia zmiennej x w wyrazeniu de Bruijna M definiujemy
indukcyjnie zagniezdzenie zy/(z) tego wystapienia. Jezeli M jest zmienna (czyli
zmienna x), to zy(z) = 0. Jezeli M = M;M, i wystapienie x znajduje sie w
termie M;, to zp(z) = zp,(x). W konieu, jezeli M = AM’, to zy(x) = 2y (x) + 1.

Wystapienia w termie M zmiennej x nazywamy zwiazanym, jezeli z < zp/(z).
Pozostate wystapienia zmiennych nazywamy wolnymi.

Lemat 2.1 Wykonywanie podstawienia M[a < b] polega na zamianie wystgpien
liczb x takich, Ze x = a + zp(x) liczbami b+ zp(z). O

Lemat 2.2 Jezeli w wyraZeniu de Bruijna M wystepuje liczba x taka, Ze zp(x) <
x < zpy(x) + h, to podczas wykonywania procedury Dodaj nazwy(M, h) wystepuje
blqad polegajqacy na préobie ustalenia nazwy I'. dla pewnego ¢ < 0. W przeciwnym
razie, jezeli dla wszystkich wystgpien liczb x w termie M mamy albo x < zp(x),
albo zyr(x) + h < z, to procedura Dodaj nazwy(x,h) jest wykonywana poprawnie.
O

Whniosek 2.3 Procedura Dodaj nazwy(M), czyli Dodaj_nazwy(M,0) jest wyko-
nywana poprawnie dla dowolnego wyrazenia de Bruijna M. O

2.2 Wystepowanie zmiennych w termach de Bruijna

Zdefiniujemy teraz pojecie, ktére ma odpowiada¢ w przypadku terméw de Bruijna
warunkowi z € F'V(M). Pojecie to zostanie zdefiniowane przez indukcje ze wzgledu
na budowe termu de Bruijna M. Pamictajmy, ze role zmiennych w termach de
Bruijna petnig liczby naturalne.

Jezeli term de Bruijna M jest liczba naturalna, to liczba x wystepuje w M
wtedy i tylko wtedy, gdy jest réwna M. Jezeli term M jest aplikacja M;M,, to
liczba x wystepuje w M wtedy i tylko wtedy, gdy x wystepuje w M; lub w M.
Jezeli term M jest abstrakcja AN, to liczba wystepuje w M wtedy i tylko wtedy,
gdy liczba x + 1 wystepuje w termie N.

Lemat 2.4 Dia dowolnego termu de Bruijgna M i dla dowolnych liczb x, y i a # x,
jezeli x nie wystepuje w M, to nie wystepuje tez w termie My <« al.

Dowdd. Lemat ten dowodzimy przez indukcje ze wzgledu na M. Sprawdzimy go
jedynie w przypadku abstrakcji M = AN.

Zatozmy, ze x nie wystepuje w termie AN. Oznacza to, ze x + 1 nie wystepuje
w termie N. Term (AN)[y < a] jest réwny AN[y + 1 < a + 1]. Aby sprawdzi¢,
ze x nie wystepuje w AN[y + 1 <« a + 1], badamy, czy « + 1 nie wystepuje w
N[y + 1« a + 1]. Tak jest na mocy zalozenia indukcyjnego dla termu N. O

Lemat 2.5 Jezeli © # a, to x nie wystepuje w termie M|z «— a].

Dowéd. Przez indukcje ze wzgledu na M dowodzimy, ze teza lematu zachodzi dla
wszystkich liczb x i a. O

Lemat 2.6 Jezeli liczba x nie wystepuje w termie de Bruijna M, to M|z « a] =
M.

Dowdd. Lemat ten ma oczywisty dowod przez indukcje ze wgledu na M. O

2.3 Wlasnosci podstawiania

Lemat 2.7 Jeeli liczby a,a’, b,V speniajg warunki a # a', a # b oraz b # d’, to
dla wszystkich termow de Bruijna M mamy

Mla < b][a' «— V'] = M[a" — V][a < b].

Dowdd. Lemat do$¢ oczywisty, dowodzony przez indukcje ze wzgledu na budowe
termu M, dla wszystkich mozliwych parametréw. Najwazniejsze, ze przechodzi dla
elementarnych terméw, czyli liczb. | Drugie” kroki sg tatwe do wykazania. O

Lemat 2.8 Jezeli a # b, to dla wszystkich termow de Bruigna M mamy
Mla « bl[a < V] = M[a < V).
Dowdd. Taki jak poprzedni lub z lematéw 2.5 1 2.6. O

Lemat 2.9 Dla wszystkich termow de Bruigna M 1 liczb b nie wystepujgcych w M
zachodzi rownosc
Mla « b][b — ¢] = M|a « ¢].

Dowdd. Taki jak poprzedni. O

2.4 Wlasnosci usuwania

Lemat 2.10 Jezeli zmienna x nie jest wolna w (zwyktym) termie M, to I'(x) + h
nie wystepuje w termie Usun_nazwy(M, h).

Dowdéd. Réwniez ten lemat tatwo dowodzi sie przez indukcje ze wzgledu na bu-
dowe termu M. O

Lemat 2.11 Jezelt M jest \-termem 1 podstawialna za x w M zmienna y nie
nalezy do FV (M), to dla wszystkich liczb h

Usun_nazwy(M, h)[['(x) + h «— IT'(y) + h)|] = Usun_nazwy(M[zx = y|, h).
Dowdd. Przez indukcje ze wzgledu na M.
Przypadek 1: M = z. Wtedy
Usun_nazwy(x, h)[I'(z) + h — T(y) + h] = T(y) + h.
Podobnie przeksztatcamy druga strone wzoru do tego samego rezultatu.
Przypadek 2: zmienng M jest z # x. Wtedy takze z # y oraz
Usun_nazwy(z, h)[I'(x) + h < T'(y) + h] = () + h,

gdyz dla réznych x i z mamy ['(z) # ['(z) (z wlasnosci kontekstéw). Tak samo
przeksztatcamy druga strone wzoru.

Przypadek 3: M jest aplikacja. Teza wynika stad, ze wszystkie rozwazane ope-
racje, a wiec oba podstawiania |- := -] oraz -[- < -], a takze Usun_nazwy, mozna
przestawiaé z operacja aplikacji.

Przypadek 4: M jest abstrakcja AxM'. Wtedy

Usun_nazwy(AzM', h)[I'(x) + h — I'(y) + h] =

= (AUsun_nazwy(M',h+ 1)[I'(z)] + h+ 1 < 0))[I(x) + h — I'(y) + h] =

= ANUsun_nazwy(M',h+1)[I'(z)] + h+1—0][['(z) +h+1—T(y) +h+1] =
= AUsun_nazwy(M',h+ 1)[I'(z)| + h+1 0] =

= Usun_nazwy(AxM’, h) = Usun_nazwy((AzM')[z :=y], h),

na mocy lematu 2.8.

Przypadek 5: M jest abstrakcja AzM' dla z # x oraz x & FV(M'). Wtedy

Usun_nazwy(AzM', h)[I'(z) + h «— I'(y) + h] =

= (A\Usun_nazwy(M',h+ 1)[I'(z)] + h+1 < 0))[['(x) + h — T'(y) + h] =

= ANUsun_nazwy(M',h+1)[I'(2)] + h+ 1 —0)[I'(z) + h+ 1 —T(y)+ h+ 1] =
= AUsun_nazwy(M',h+ 1)[I'(z)] + h+1 0] =

= Usun_nazwy(AzM', h) = Usun_nazwy((A\zM')[z :=y], h)

na mocy lematéw z rozdziatu 2.2.

Przypadek 6: M jest abstrakcja AzM' dla z # x oraz x € FV(M'). Tym razem
podstawialno$¢ y implikuje, ze y # 2. Na mocy lematu 2.7

Usun_nazwy(AzM' h)[T'(z) + h — T'(y) + h] =

= (AUsun_nazwy(M',h +1)[I'(2)] + h+ 1« 0))[I'(x) + h «I'(y) + h] =

= AUsun_nazwy(M',h+ 1)[I'(z)] + h+1—0][(z) + h+1—T(y) + h+1] =
= AUsun_nazwy(M',h+ 1)[I'(x) + h+1 —T(y) + h+ 1J[I'(z)] + h+ 1 0] =
= AUsun_nazwy(M'[x :=y|,h+ 1)[['(2) + h+1 0] =

= Usun_nazwy((AzM')[x :=y],h). O

Whniosek 2.12 Przypusémy, ze mamy dane lambda term M i zmienng y. ktora
nie jest wolna w M 1 jest podstawialna w M za zmienng x. Wtedy dla dowolnego
naturalnego h zachodzi rownosé

Usun_nazwy(Ax.M, h) = Usun_nazwy(\y.M [z := y|, h).

Dowéd. Zauwazmy, ze

Usun_nazwy(Ay.M[z :=y|,h) =

= AUsun_nazwy(M[z :=y],h+ 1)[['(y) + h+1 0] =

= AUsun_nazwy(M,h+ 1)[I'(z) +h+1—T(y) +h+1|[I'(y) + h+1—0] =
= NUsun_nazwy(M,h + 1)[['(z) + h + 1 « 0] = Usun_nazwy(A\y.M [z :=y|, h).

Poszczegodlne réwnosci otrzymujemy z lematéw 2.11, 2.10 oraz 2.9. O

2.5 Termy h-poprawne

Zaczynamy od pomocniczego pojecia zwigzanego z operacja Dodaj_nazwy. Wyko-
nanie tej operacji moze zakonczy¢ si¢ btedem polegajacym na otrzymaniu ujemne-
go argumentu kontekstu. Gwarancja poprawnosci wykonania operacji Dodaj_nazwy(M, h)
jest h poprawnos¢ termu M.

Term de Bruijna M nazywamy h-poprawnym, jezeli jest on liczba i M > h,
albo jest on aplikacja MM, i oba jej cztony M; i My sa h poprawne, albo tez
jest on abstrakcja AM’ i term M’'[0 < ¢] jest h + 1-poprawny dla ¢ > h+11i
wiekszego od innych liczb w termie M’ (np. dla najmniejszej liczby ¢ o podanych
wlasnodciach).

Lemat 2.13 Jezeli M jest h-poprawny, to takze h-poprawnym jest dowolny term
Mla — b+ h].

Dowdéd. Dowodzimy to przez indukcje ze wzgledu na M i dowdd jest prosty. O
Z powyzszych lematow wynika

Whniosek 2.14 Jezeli M jest h-poprawny, to operacja Dodaj nazwy(M,h) jest
wykonywana poprawnie (nie powoduje bledu). O

2.6 Usuwanie i dodawanie razem

Lemat 2.15 Dla dowolnego h i dowolnego termu h-poprawnego termu de Bruijna
M mamy
Usun_nazwy(Dodaj_nazwy(M, h), h) = M.

W szczegolnosci, operacja Usun_nazwy przyjmuje jako wartosci wszystkie termy
de Bruijna.

Dowéd. Przez indukcje ze wzgledu na M.
Jezeli M jest liczba, to

Usun_nazwy(Dodaj-nazwy(M, h), h) = Usun_-nazwy(Ly—p, h) = (M—h)+h = M.

Jezeli M jest aplikacja, to teza lematu wynika w oczywisty sposob z zatozen
indukcyjnych.
Przypuéémy, ze M jest abstrakcjag AM’. Wtedy

Usun_nazwy(Dodaj_nazwy(M,h), h) =
= Usun_nazwy(Al'.Dodaj_nazwy(M'|0 < c+h+1],h+1),h) =
= AUsun_nazwy(Dodaj nazwy(M'[0 «— c+ h+1],h+1),h + 1)
L(C.)+h+1«—0]=
=AMM'[0—c+h+1][[T,)+h+1«0]=
=AM'[0—c+h+1c+h+1—0 =AM =M. O
Lemat 2.16 Dla dowolnego h i dowolnego termu h-poprawnego termu de Bruijna

M mamy
Dodaj nazwy(Usun_nazwy(M,h),h) =, M.

Dowéd. Przez indukcje ze wzgledu na budowe termu M. Jest to oczywiste dla
aplikacji. Dla zmiennej M mamy

Dodaj-nazwy(Usun_nazwy(M, h), h) = Dodaj-nazwy(I'(M) + h,h) =
=I'ranysn-n=Tran = M =, M.

W koncu, dla abstrakcji Az M mamy

Dodaj nazwy(Usun_nazwy(AzM, h), h) =
= Dodaj_nazwy(AUsun_nazwy(M,h + 1)[['(x) + h+ 1« 0], h) =
= M'.Dodaj nazwy(
Usun_nazwy(M,h+ 1)[['(x) + h+1«—0][0 —c+h+1],h+ 1)
= Al'.Dodaj nazwy(Usun_nazwy(M,h + 1)[I'(z) + h+1«—c+h+1],h+1)
= A['.Dodaj nazwy(Usun_nazwy(M,h + 1), h+ 1)z :=T]
=N M[z:=T.] =, M. O

Jako wniosek z prowadzonych rozwazan otrzymujemy

Twierdzenie 2.17 Dla kazdej pary wyrazen rachunku lambda M i N, warunek
M =, N jest rownowazny rowno$ci Usun_nazwy(M) = Usun_nazwy(N). O

