Semantyka call_by_value

Antoni Koscielski

1 Definicja semantyki

Semantyka call by_value jest pojeciem z teorii jezykéw programowania, w ktorej
oprocz analizy roznych konstrukeji stosowanych w jezykach programowania wyja-
Snia si¢ takze, na czym polega wykonanie programu lub nawet tworzy i analizuje
aparat do opisu dziatania programéw. W przypadku rachunku lambda odpowied-
nikiem programu jest term, a wykonanie programu polega na wyliczeniu jego war-
tosci. Wyliczenie wartodci aplikacji AB jest interpretowane jako wykonanie funk-
cji A z parametrem B, ktory w semantyce call by_value jest jakby wywolywany
przez wartos¢, a wiec wymaga wyliczenia przed przystapieniem do wykonywania
funkcji. Samo wykonanie funkcji polega na wykonaniu S-redukcji. Jedna z metod
definiowania semantyki jest opisanie jednego kroku wykonania programu (jest to
tzw. semantyka malych krokéw). Wtedy wykonanie programu polega na iterowa-
niu wykonania pojedynczych krokéw. W zwigzku z tym opiszemy relacjag A — B,
ktorg bedziemy interpretowaé jako stwierdzenie, ze term B otrzymujemy z A w
wyniku wykonania pojedynczego przeksztalcenia.

Przejdzmy do formalnej definicji tej semantyki. Przyjmujemy, ze symbole T' z
indeksami beda oznacza¢ dowolne termy A-rachunku, a symbole V' — wartosci.

Wartosciami bedziemy nazywaé¢ dowolne abstrakcje, czyli termy zaczynajace
sie symbolem A. Oprocz wartosci (potencjalnych) zdefiniujemy tez pojecie warto-
Sci termu T'. Wartoscia termu 1" bedzie zawsze jedna z wartosci, a wiec abstrakcja
odpowiednio zwiazana z termem 7T'. Teraz tylko zasygnalizujemy, ze wartoscia do-
wolnej abstrakcji jest ona sama.

Relacje redukeji w jednym kroku w semantyce call_by_value definiujemy przez
indukcje przyjmujac, ze spetnia nastepujace reguty:

Tl — Tl/ T2 — TQI
oraz .
TT, — T|T,' VT — VT} Az T)V — Tz := V]

Aby zrozumie¢ te definicje zauwazmy, ze mozemy przeksztalcac tylko aplikacje,
za to na trzy sposoby (zaleznie od postaci 11T, VT lub (Ax T)V'). W zaden sposéb
nie przeksztatcamy zmiennych, abstracji, ani termow postaci 27" ze zmienng x. Ma-
jac aplikacje mozemy przedstawi¢ ja w postaci /Ty ... T, 1T, = (T1 T ... T, 1)T,,
gdzie T nie jest juz aplikacja, a wiec jest albo zmienna, albo wartoscia. Dzieki
pierwszej regule, przeksztatcanie takiego termu sprowadza sie do przeksztatcania
jego fragmentu T175. Jezeli T7 jest zmienna, to obliczenia konczg sie bez wylicze-
nia wartosci. Jezeli T} jest wartodcia, to stosujac druga regute probujemy wyliczy¢
wartos¢ termu T5. Jezeli zakonczy sie to sukcesem, to trzecia reguta pozwala za-
stosowaé [-redukcje.

Jest oczywiste, ze redukcja — jest J-redukcja z dodatkowymi ograniczeniami.

Zauwazmy, ze mamy

Lemat 1.1 Dla dowolnego T} istnieje najwyzej jeden term Ty taki, ze Ty — Ty. O



Wartoscia termu 7" nazywamy wartos¢ V' taka, ze T —* V. Oczywiscie, jezeli
warto$¢ termu istnieje, to jest jednoznacznie wyznaczona.

Widaé¢ réwniez, ze redukowanie termu 7' moze zakonczy¢ sie na trzy sposoby:
albo utworzeniem nieskonczonej redukcji 7' = Ty — 17 — ... = T, — ..
albo utworzeniem skonczonej redukcji zakonczonej termem, ktory jednak nie jest
wartodcia, lub tez znalezieniem wartosci termu 7.

2 Wartosci boolowskie 1 testowanie

Przypomnijmy, ze w rachunku lambda wartosci boolowskie reprezentujemy zwykle
jako termy K = Azy. x, odpowiadajacy prawdzie, oraz K* = Azy.y, oznaczajacy
fatsz.
W dalszych rachunkach symbolem A bedziemy oznaczaé¢ warto$é termu A.
Przy takiej definicji wartosci logicznych term test, czyli i f _then_else definiuje
si¢ zwykle jako Aryz. zyz. Przesledzmy, jak w semantyce call_by_value redukuje
sie wyrazenie postaci

test ABC =if Athen Belse C = (A\vyz. vyz)ABC —* (\vyz. 2yz)ABC —

— (A\yz. Ayz)BC —* (\yz. Ayz)BC —* A B C.
Wobec tego

test K BC =if K then B else C —* KBC — (\y. B)C — B
oraz
test K* BC =if K* then Belse C —* K*BC — (\y.y) C — C.

Przeprowadzone rachunki wymagaja jednak drobnego zatozenia o istnieniu war-
tosci terméw A, B i C. Mozemy tez postuzy¢ sie bardziej skomplikowanym wyra-
zeniem

test K (At. B) (At. C) I,

ktore redukuje sie w nastepujacy sposob:
test K (A\t. B) (\t. C) I —=* K (M. B) (At. C) I = (Azxy. x) (M. B) (M. C) I —

— (A\y. (M. B)) (M. C) I — (M. B) I — B.

Podobnie,
test K* (A\t. B) (At. C) I —* C.

W dalszym ciagu tego tekstu liczby naturalne beda reprezentowane poprzez
numeraly Churcha, a najwazniejsze bedzie testowanie, czy dany numerat reprezen-
tuje 0. Term wykonujacy to testowanie bedziemy oznacza¢ symbolem Z. Mozemy

przyjac, ze
Z=Xx.xz (\y. K*) K.

Wtedy
Zeo=2 M. z) — Mz z) My K°) K — (Ara) K — K,
a takze
Z o = Z (M. 7 (2) — (Mo 7 (@) Oy K7) K ="

=" (. K"K — (g K7)M(E) = (g K5)"H(KT) =" K



3 Punkty state i rekursja

Sprobujemy teraz pokaza¢ na, mam nadzieje, dostatecznie ogdlnym przyktadzie,
ze klasa funkcji obliczalnych zgodnie z semantyka call_by_value jest zamknieta ze
wzgledu na rekursje prosta. Zrobimy to postugujac sie odpowiednim operatorem
punktu statego. Jak zwykle, bedzie nam potrzebny term reprezentujacy operacje
poprzednika. Na razie bedziemy postugiwaé sie takim termem wierzac, ze uda sie
go zdefiniowaé, i bedziemy go oznacza¢ symbolem P.

Przypusémy, ze f : N — N jest funkcja taka, ze

f(0)=m oraz f(n+1)=h(f(n),n)

dla wszystkich liczb naturalnych n. Przyjmijmy tez, ze H jest termem definiujacym
funkcje h. Tak wiec term definiujacy funkcje f powinien speliaé réwnosé

Fax=if (Zz)then ¢y else (H (F (P x)) (P x)).

Roéwnoscei tej nadamy nieco inna postacé przy okazji wykorzystujac znany juz term
test:
Fa=test (Zx)(Atcy) (M\yt. H(Fy)y) (Px))l.

Niech teraz
G = Mfztest (Z x) (At.cy,) (Myt. H (fy)y) (Px)) I

Term F mozemy teraz zdefiniowaé jako fix GG, czyli wynik zaplikowania operatora
punktu statego fix do termu G. Powinnidmy jednak uzy¢ specjalnego operatora

fix.

Zadanie 3.1 Przesledz, co sie stanie, jezeli w roli operatora punkty statego uzy-
jemy operatora Y lub operatora Turinga ©.

Niech
fix=Nf. Ay Ay, gdzie Ay = Az, f(Az. zxz).

Zauwazmy, ze
fix G = (M. A Ap)G — Ag A — G (M\2. Ag Ag 2).

Stad (przeksztalcane redeksy zostaly podkreslone)

Jfix G epa —
— Ag Ag ¢
— G (M\r. Ag Ag T) Crtr
—*test (Z cpy1) (At cm) (Ayt. H (Az. Ag Ag 2)
—*test K* (A t. ¢p) (Ayt. H (Az. Ag Ac 2) y) v)
—* (Az. K* (A t. ) 2) (Ayt. H (Az. Ag A 2) y)
—* (Az. K* (A t. en) 2) (Ayt. H (Az. Ag A 2) y)
— (Az. K* (A t.cp) 2) (M. H (M2, Ag Ag 2) ¢n) €
— K* (At .cpm) (M. H (A2, Ag Ag 2) ¢p) cn) 1
—* (M. H (Az. Ag Ag 2) ¢n) ¢cn) 1
— H ((A\z. Ag Ag 2) ¢n) ¢p
—* H (Ag Ag ¢) cp.

) y) (P cnsn)) 1
Pecu)) I
y) (P eni1)) 1
y) cn) 1
) 1

y
(

n




Jezeli teraz zalozymy, ze wartoscig termu Ag Ag ¢, jest ¢y, a wartodcig
H cymy cn jest cnirm)n) = Cf(nt1), t0 otrzymamy, ze

fix G cpy1 — Ag Ag o1 =" H (Ag Ag ¢n) ¢ =" H i) ¢ =" Chif(n)m) = CHint1)-
Latwo przekonac¢ si¢ powtarzajac przedstawione rachunki, ze
fix G co — Ag Ag co =" (At. ¢) I — .

7 zasady indukcji matematycznej otrzymujemy wiec, ze w semantyce call_by_value
termy fix G, Ag Ag, a takze bedgce wartodciami termy Ax. fix G x oraz
Ax. Ag Ag x definiuja funkcje f, o ile funkcja h jest odpowiednio zdefiniowana.

4 Pary i operacja poprzednika
Funkcje pary Pair = [,+] 1 odczytujace wspotrzedne pary fst i snd definiujemy
jak zwykle przyjmujac

Pair = [-,:] = Azyb. bxy, fst = \p. pK oraz snd = A\p. pK™.

Nietrudno sprawdzié¢, ze

Pair XY =[,-] XY =" X. XY = [X,Y]
oraz
fst (Pair XY) —* X,
snd (Pair X Y) =>*Y

przynajmniej dla terméw X i Y majacych wartosé (X oznacza warto$é termu X).
Majac operacje pary i postugujac sie numeratami Churcha w standardowy spo-
s6b definiujemy poprzednik P. WeZzmy

ss = Ap. (Az. Pair x (S z))(snd p)

oraz
P =Xm. fst (m ss [cg, col).

Wtedy, jezeli term S oznacza operacje nastepnika, to

S [Cm, Cn] =
= (Ap. (\z. Pair x (S x))(snd p)) [em, cn] — (Az. Pair x (S z))(snd [¢pm, ¢a]) —
— (Az. Pair x (S z)) ¢, — Pair ¢, (S ¢,)) — (A\yb. b ¢, y)(S ¢,) —*
—* (Ayb. b ¢ y) cpy1 — Ab. b ey Cuy1 = e, Cora)-

Mamy takze

Py =
= (Am. fst (m ss [co,co0))) co — fst (co s [co,c0]) = fst (Afx. x) ss [co, c0]) —
— fst (Azx. x) [co, co]) — fst [co,co] = o
Pc, =
= (Am. fst (m ss [co,c0))) Cnyr — fSt (Cny1 SS [co,0)) =
= fst ((Mfa. f7(x)) ss [co, co]) =" fst ((s5)""([co, co])) =7
—* fst ((ss)"(ss [co,co])) =" fst ((ss)"([co, c])) =" fst ((s8)" " ([er, ea])) =

—* fst ((s8)" *([ck, ch])) =" [t [cn, Cnga] = cn



