
Semantyka call by value

Antoni Kościelski

1 Definicja semantyki

Semantyka call by value jest pojęciem z teorii języków programowania, w której
oprócz analizy różnych konstrukcji stosowanych w językach programowania wyja-
śnia się także, na czym polega wykonanie programu lub nawet tworzy i analizuje
aparat do opisu działania programów. W przypadku rachunku lambda odpowied-
nikiem programu jest term, a wykonanie programu polega na wyliczeniu jego war-
tości. Wyliczenie wartości aplikacji AB jest interpretowane jako wykonanie funk-
cji A z parametrem B, który w semantyce call by value jest jakby wywoływany
przez wartość, a więc wymaga wyliczenia przed przystąpieniem do wykonywania
funkcji. Samo wykonanie funkcji polega na wykonaniu β-redukcji. Jedną z metod
definiowania semantyki jest opisanie jednego kroku wykonania programu (jest to
tzw. semantyka małych kroków). Wtedy wykonanie programu polega na iterowa-
niu wykonania pojedyńczych kroków. W związku z tym opiszemy relacją A→ B,
którą będziemy interpretować jako stwierdzenie, że term B otrzymujemy z A w
wyniku wykonania pojedyńczego przekształcenia.

Przejdźmy do formalnej definicji tej semantyki. Przyjmujemy, że symbole T z
indeksami będą oznaczać dowolne termy λ-rachunku, a symbole V – wartości.

Wartościami będziemy nazywać dowolne abstrakcje, czyli termy zaczynające
się symbolem λ. Oprócz wartości (potencjalnych) zdefiniujemy też pojęcie warto-
ści termu T . Wartością termu T będzie zawsze jedna z wartości, a więc abstrakcja
odpowiednio związana z termem T . Teraz tylko zasygnalizujemy, że wartością do-
wolnej abstrakcji jest ona sama.

Relację redukcji w jednym kroku w semantyce call by value definiujemy przez
indukcję przyjmując, że spełnia następujące reguły:

T1 → T ′1
T1T2 → T ′1T2

,
T2 → T ′2

V T2 → V T ′2
oraz

(λx T )V → T [x := V ]
.

Aby zrozumieć tę definicję zauważmy, że możemy przekształcać tylko aplikacje,
za to na trzy sposoby (zależnie od postaci T1T2, V T2 lub (λx T )V ). W żaden sposób
nie przekształcamy zmiennych, abstracji, ani termów postaci xT ze zmienną x. Ma-
jąc aplikację możemy przedstawić ją w postaci T1T2 . . . Tn−1Tn = (T1T2 . . . Tn−1)Tn,
gdzie T1 nie jest już aplikacją, a więc jest albo zmienną, albo wartością. Dzięki
pierwszej regule, przekształcanie takiego termu sprowadza się do przekształcania
jego fragmentu T1T2. Jeżeli T1 jest zmienną, to obliczenia kończą się bez wylicze-
nia wartości. Jeżeli T1 jest wartością, to stosując drugą regułę próbujemy wyliczyć
wartość termu T2. Jeżeli zakończy się to sukcesem, to trzecia reguła pozwala za-
stosować β-redukcję.

Jest oczywiste, że redukcja → jest β-redukcją z dodatkowymi ograniczeniami.
Zauważmy, że mamy

Lemat 1.1 Dla dowolnego T1 istnieje najwyżej jeden term T2 taki, że T1 → T2. 2

1



Wartością termu T nazywamy wartość V taką, że T →∗ V . Oczywiście, jeżeli
wartość termu istnieje, to jest jednoznacznie wyznaczona.

Widać również, że redukowanie termu T może zakończyć się na trzy sposoby:
albo utworzeniem nieskończonej redukcji T = T0 → T1 → . . . → Tn → . . .,
albo utworzeniem skończonej redukcji zakończonej termem, który jednak nie jest
wartością, lub też znalezieniem wartości termu T .

2 Wartości boolowskie i testowanie

Przypomnijmy, że w rachunku lambda wartości boolowskie reprezentujemy zwykle
jako termy K = λxy. x, odpowiadający prawdzie, oraz K∗ = λxy.y, oznaczający
fałsz.

W dalszych rachunkach symbolem A będziemy oznaczać wartość termu A.
Przy takiej definicji wartości logicznych term test, czyli if then else definiuje

się zwykle jako λxyz. xyz. Prześledźmy, jak w semantyce call by value redukuje
się wyrażenie postaci

test A B C ≡ if A then B else C ≡ (λxyz. xyz)ABC →∗ (λxyz. xyz)ABC →

→ (λyz. Ayz)BC →∗ (λyz. Ayz)BC →∗ A B C.

Wobec tego

test K B C ≡ if K then B else C →∗ KBC → (λy. B)C → B

oraz

test K∗ B C ≡ if K∗ then B else C →∗ K∗BC → (λy.y) C → C.

Przeprowadzone rachunki wymagają jednak drobnego założenia o istnieniu war-
tości termów A, B i C. Możemy też posłużyć się bardziej skomplikowanym wyra-
żeniem

test K (λt. B) (λt. C) I,

które redukuje się w następujący sposób:

test K (λt. B) (λt. C) I →∗ K (λt. B) (λt. C) I ≡ (λxy. x) (λt. B) (λt. C) I →

→ (λy. (λt. B)) (λt. C) I → (λt. B) I → B.

Podobnie,
test K∗ (λt. B) (λt. C) I →∗ C.

W dalszym ciągu tego tekstu liczby naturalne będą reprezentowane poprzez
numerały Churcha, a najważniejsze będzie testowanie, czy dany numerał reprezen-
tuje 0. Term wykonujący to testowanie będziemy oznaczać symbolem Z. Możemy
przyjąć, że

Z ≡ λx. x (λy. K∗) K.

Wtedy

Z c0 ≡ Z (λfx. x)→ (λfx. x) (λy. K∗) K → (λx.x) K → K,

a także

Z cn+1 ≡ Z (λfx. fn+1(x))→ (λfx. fn+1(x)) (λy. K∗) K →∗

→∗ (λy. K∗)n+1(K)→ (λy. K∗)n(K∗)→ (λy. K∗)n−1(K∗)→∗ K∗.



3 Punkty stałe i rekursja

Spróbujemy teraz pokazać na, mam nadzieję, dostatecznie ogólnym przykładzie,
że klasa funkcji obliczalnych zgodnie z semantyką call by value jest zamknięta ze
względu na rekursję prostą. Zrobimy to posługując się odpowiednim operatorem
punktu stałego. Jak zwykle, będzie nam potrzebny term reprezentujący operację
poprzednika. Na razie będziemy posługiwać się takim termem wierząc, że uda się
go zdefiniować, i będziemy go oznaczać symbolem P .

Przypuśćmy, że f : N → N jest funkcją taką, że

f(0) = m oraz f(n+ 1) = h(f(n), n)

dla wszystkich liczb naturalnych n. Przyjmijmy też, że H jest termem definiującym
funkcję h. Tak więc term definiujący funkcję f powinien spełniać równość

F x = if (Z x) then cm else (H (F (P x)) (P x)).

Równości tej nadamy nieco inną postać przy okazji wykorzystując znany już term
test:

F x = test (Z x) (λ t.cm) ((λyt. H (F y) y) (P x)) I.

Niech teraz

G = λfx.test (Z x) (λ t.cm) ((λyt. H (f y) y) (P x)) I.

Term F możemy teraz zdefiniować jako fix G, czyli wynik zaplikowania operatora
punktu stałego fix do termu G. Powinniśmy jednak użyć specjalnego operatora
fix.

Zadanie 3.1 Prześledź, co się stanie, jeżeli w roli operatora punkty stałego uży-
jemy operatora Y lub operatora Turinga Θ.

Niech
fix ≡ λf. Af Af , gdzie Af ≡ λx. f(λz. xxz).

Zauważmy, że

fix G ≡ (λf. Af Af )G→ AG AG → G (λz. AG AG z).

Stąd (przekształcane redeksy zostały podkreślone)

fix G cn+1 →
→ AG AG cn+1

→ G (λx. AG AG x) cn+1
→∗ test (Z cn+1) (λ t. cm) ((λyt. H ((λz. AG AG z) y) y) (P cn+1)) I

→∗ test K∗ (λ t. cm) ((λyt. H ((λz. AG AG z) y) y) (P cn+1)) I

→∗ (λz. K∗ (λ t. cm) z) ((λyt. H ((λz. AG AG z) y) y) (P cn+1)) I

→∗ (λz. K∗ (λ t. cm) z) ((λyt. H ((λz. AG AG z) y) y) cn) I

→ (λz. K∗ (λ t. cm) z) (λt. H ((λz. AG AG z) cn) cn) I

→ K∗ (λ t .cm) (λt. H ((λz. AG AG z) cn) cn) I

→∗ (λt. H ((λz. AG AG z) cn) cn) I

→ H ((λz. AG AG z) cn) cn
→∗ H (AG AG cn) cn.



Jeżeli teraz założymy, że wartością termu AG AG cn jest cf(n), a wartością
H cf(n) cn jest ch(f(n),n) ≡ cf(n+1), to otrzymamy, że

fix G cn+1 → AG AG cn+1 →∗ H (AG AG cn) cn →∗ H cf(n) cn →∗ ch(f(n),n) ≡ cf(n+1).

Łatwo przekonać się powtarzając przedstawione rachunki, że

fix G c0 → AG AG c0 →∗ (λt. cm) I → cm.

Z zasady indukcji matematycznej otrzymujemy więc, że w semantyce call by value
termy fix G, AG AG, a także będące wartościami termy λx. fix G x oraz
λx. AG AG x definiują funkcję f , o ile funkcja h jest odpowiednio zdefiniowana.

4 Pary i operacja poprzednika

Funkcje pary Pair ≡ [·, ·] i odczytujące współrzędne pary fst i snd definiujemy
jak zwykle przyjmując

Pair ≡ [·, ·] ≡ λxyb. bxy, fst ≡ λp. pK oraz snd ≡ λp. pK∗.

Nietrudno sprawdzić, że

Pair X Y ≡ [·, ·] X Y →∗ λb. X Y ≡ [X,Y ]

oraz
fst (Pair X Y )→∗ X,
snd (Pair X Y )→∗ Y

przynajmniej dla termów X i Y mających wartość (X oznacza wartość termu X).
Mając operację pary i posługując się numerałami Churcha w standardowy spo-

sób definiujemy poprzednik P . Weźmy

ss ≡ λp. (λx. Pair x (S x))(snd p)

oraz
P ≡ λm. fst (m ss [c0, c0]).

Wtedy, jeżeli term S oznacza operację następnika, to

ss [cm, cn] ≡
≡ (λp. (λx. Pair x (S x))(snd p)) [cm, cn]→ (λx. Pair x (S x))(snd [cm, cn])→
→ (λx. Pair x (S x)) cn → Pair cn (S cn))→ (λyb. b cn y)(S cn)→∗

→∗ (λyb. b cn y) cn+1 → λb. b cn cn+1 ≡ [cn, cn+1].

Mamy także

P c0 ≡
≡ (λm. fst (m ss [c0, c0])) c0 → fst (c0 ss [c0, c0]) ≡ fst ((λfx. x) ss [c0, c0])→
→ fst ((λx. x) [c0, c0])→ fst [c0, c0]→∗ c0

oraz

P cn+1 ≡
≡ (λm. fst (m ss [c0, c0])) cn+1 → fst (cn+1 ss [c0, c0]) ≡
≡ fst ((λfx. fn+1(x)) ss [c0, c0])→∗ fst ((ss)n+1([c0, c0]))→∗

→∗ fst ((ss)n(ss [c0, c0]))→∗ fst ((ss)n([c0, c1]))→∗ fst ((ss)n−1([c1, c2]))→∗

→∗ fst ((ss)n−k([ck, ck+1]))→∗ fst [cn, cn+1]→∗ cn


