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1 Sylwetka Herbranda

Jacques Herbrand urodzit sie¢ 12 lutego 1908 roku. Byt nieslychanie zdolnym czto-
wiekiem. W latach 1928-29 przygotowal rozprawe doktorska opublikowang w Pol-
sce w 1930 roku. Zawiera ona m.in. dowod twierdzenia o dedukcji i konstruktywny
dowdd twierdzenia Godla o petnosci, otrzymany w oparciu o tzw. twierdzenie Her-
branda, ktérego dowdd zawiera algorytm semirozstrzygajacy, czy dane zdanie jest
tautologiag rachunku kwantyfikatoréw. Wiosnag 1931 roku Herbrand mial zasuge-
rowal Godlowi rozszerzenie definicji klasy funkeji rekurencyjnych (pochodzacej z
pracy Goédla) po to, by opisaé pojecie obliczalnosci. Latem 1931 roku, 27 sierpnia,
zgingt w Alpach podczas wspinaczki.



2 Twierdzenie Herbranda

2.1 Rodzaje formutl

Formuta jest tautologia, jezeli jest spelniona w kazdej strukturze przy kazdym
wartosciowaniu. Oczywiscie, zdanie jest tautologia wtedy i tylko wtedy, gdy jest
spelnione w kazdej strukturze.

Formuta jest sprzeczna, jezeli nie jest speliona przy zadnym warto$ciowaniu
w zadnej strukturze. Dowodzi si¢ korzystajac z lematu 5.4 z czesci 2, ze zdanie jest
sprzeczne wtedy i tylko wtedy, gdy nie jest spetnione w zadnej strukturze.

Formuta jest spetnialna, jezeli jest struktura, w ktorej jest spetniona przy pew-
nym wartosciowaniu. Podobnie jak wyzej dowodzi sie, ze zdanie jest spelnialne
wtedy i tylko wtedy, gdy jest spetnione w pewnej strukturze.

Lemat 2.1 Dla dowolnej formuly ¢ zachodzq nastepujgce réwnowaznosci:
1) ¢ jest tautologiq wtedy i tylko wtedy, gdy —p jest sprzeczna,

2) ¢ jest spelnialna wtedy i tylko wtedy, gdy ¢ nie jest sprzeczna. O

2.2 Skolemizacja

Bedziemy teraz rozwazaé ustalony jezyk pierwszego rzedu, pozwalajacy na za-
pisywanie dowolnych formut z kwantyfikatorami. Kazdej formule ¢ tego jezyka
przypiszemy pewng formute ¢*.

Formute ¢* wyliczamy w nastepujacy sposob:

1) sprowadzamy ¢ do preneksowej postaci normalnej, a wiec znajdujemy réw-
nowazng jej formute, ktéra zaczyna sie blokiem kwantyfikatoréw, po ktérym
znajduje sie formuta bezkwantyfikatorowa (mozna dodatkowo sprowadzi¢ te
formute na przyktad do koniunkcyjnej postaci normalnej),

2) domykamy posta¢ normalna formuty ¢ (dopisujac do niej kwantyfikatory
og6lne po wszystkich zmiennych wolnych),

3) dopoki sa w otrzymanej formule kwantyfikatory egzystencjalne i mozna jej
nada¢ postac
Ve, ... Va, y ¢

zastepujemy ja formuta

v-73'1 vxn 3y¢[9<—f(351, R xn)]v

gdzie f jest nowym symbolem funkcyjnym. Analogiczna definicje przyjmu-
jemy w przypadku, gdy n = 0, wtedy symbol f powinien by¢ nowa stata.

4) usuwamy z otrzymanej w ten sposob formuly kwantyfikatory dopisane w
punkcie 2). Otrzymana w ten sposéb formute oznaczamy symbolem ¢*.



2.3 Wilasno$é skolemizacji

W logice klase formuty definiujemy nieco inaczej niz w arytmetyce. Formuta jest

klasy II; (X;), jezeli zaczyna sie blokiem kwantyfikatoréw uniwersalnych (odpo-

wiednio: egzystencjalnych), po ktorej jest juz formuta bez kwantyfikatorow.
Najpierw powinnismy zauwazy¢, ze zachodzi oczywisty

Lemat 2.2 Formuta ¢* jest klasy 11,. O

Lemat 2.3 Zdanie V¥ Jy ¢ jest spetnione w strukturze A wtedy i tylko wtedy, gdy
w pewnym rozszerzeniu A’ struktury A o interpretacje symbolu funkcyjnego f jest
spetnione zdanie VI ply «— f(Z)].

Dowdd. Zdanie V' Jy ¢ jest logiczna konsekwencja zdania V' ply «— f(Z)], jest
wiec spetnione w strukturze A’ a takze w strukturze powstajacej przez usuniecie
interpretacji zbednych symboli.

Aby dowies¢ implikacje w drugg strone zauwazmy, ze strukturze mozna zdefi-
niowac¢ catkowitg funkcje F' taka, ze

A olf —dlly — F(a)].

Latwo sprawdzi¢ postugujac sie lematem 7?7 (lemat 5.3 z czedci 2), ze jezeli F
uznamy za interpretacje symbolu f i dodamy do A, to w otrzymanej strukturze
A’ bedzie spelione zdanie VZ [y «— f(Z)]. O

Mozemy teraz wyprowadzi¢ wersje lematu 2.3 dotyczaca operacji *:

Lemat 2.4 Formuta ¢ jest spetniona w strukturze A wtedy i tylko wtedy, gdy w
pewnym rozszerzeniu A’ struktury A o interpretacje dodanych symboli funkcyjnych
jest spetniona formuta @*.

Dowdéd. Konstrukcja ¢* polega utworzeniu pewnego ciggu formut zaczynajacego
sie @ 1 konczacego sie p*. Dla kazdej pary kolejnych formut w tym ciagu, spetnianie
w strukturze A pierwszej jest rownowazne spelnianiu w pewnym rozszerzeniu A
drugiej. W wiekszosci przypadkow tak jest na podstawie lematu 2.3.

Pierwsze przeksztaltcenie polega na zastapieniu formuty ¢ jej postacia normal-
na . Roéwnowaznos¢ ¢ < 1 jest prawem rachunku kwantyfikatoréw, na mocy
twierdzenia 5.6 o poprawnosci (czesé 2) jest spelniona w kazdej strukturze. Stad
spetnianie w strukturze ¢ jest réwnowazne spetnianiu w niej ». W pozostatych
przypadkach potrzebny fakt wynika z lematu 5.5 z czesci 2. O

7 powyzszego lematow wynika seria wnioskow wyjasniajacych sens logiczny
operacji *. W szczegolnosci

Whniosek 2.5 Zdanie ¢ jest spetnialne wtedy i tylko wtedy, gdy spetnialne jest p*.

Dowdd. Jest to wlasciwie oczywista konsekwencja poprzedniego lematu. O
Whniosek 2.6 Zdanie ¢ jest sprzeczne wtedy 1 tylko wtedy, gdy p* jest sprzeczne.O

Whiosek 2.7 Zdanie ¢ jest tautologiq wtedy i tylko wtedy, gdy (—p)* jest sprzecz-
na. O

Whniosek 2.8 Zdanie ¢ jest tautologiq wtedy i tylko wtedy, gdy —(—)* jest tau-
tologig. O

Na koniec zauwazmy, ze formuta —(=p)* jest z oczywistych powodéw réwno-
wazna formule klasy ;. Tak wiec badanie, czy ¢ jest tautologia, sprowadza sie
do badania, czy jest tautologia pewna, tatwa do zalgorytmizowanego wyliczenia
formuta klasy ;.



2.4 Model Herbranda

Teraz musimy rozwaza¢ jezyk z przynajmniej jedng stata. Jezeli z jakis powoddéw
rozwazamy jezyk bez statych, to dodajemy do niego pewna stata, ktéra ma je-
dynie spetni¢ podany wymog formalny. Niech 7y oznacza zbiér termoéw statych
w tym jezyku. Bedziemy rozwaza¢ modele dla rozwazanego jezyka z uniwersum
rownym 7.

W takich modelach symbole funkcyjne mozemy interpretowaé¢ w specyficzny
sposob. Przyjmujemy, ze k-argumentowy symbol f oznacza funkcje F : 78 — Tg
taka, ze

F(ty, ... t) = flt, ... ),

czyli operacje tworzenia termu z gtéwnym symbolem f. Analogicznie, stala ¢ w
takim uniwersum interpretujemy jako term c.

Modele o uniwersum 7, w ktorych state i symbole funkcyjne interpretujemy w
podany sposob, nazywamy modelami Herbranda.

Lemat 2.9 W dowolnym modelu Herbranda H warto$é termu t przy wartoscio-
waniu h jest rowna

tle — h@)lly = h(y)]- ..

W szczegolnosci, wartoscig termu statego t przy dowolnym wartosciowaniu w mo-
delu Herbranda jest term t. Ponadto, dla dowolnej formuty ¢ mamy

Hielhl & Hiselr —h@)]y—hy)]... O

Tak wiec w modelach Herbranda liczenie wartosci termu przy danym warto-
Sciowaniu mozna sprowadzi¢ do liczenia wartosci pewnego termu statego. Podobnie
spelnianie formuty przy danym wartosciowaniu jest rownowazne spetnianiu pewnej
formuty statej, czyli bez zmiennych wolnych.

2.5 Model Herbranda wyznaczony przez dang strukture

Przypuéémy, ze A jest dowolng, ustalong strukturg dla rozwazanego jezyka. Sym-
bolem val bedziemy w tym rozdziale oznacza¢ funkcje przyporzadkowujaca termo-
wi t € 7y jego wartos¢ w strukturze A.

Lemat 2.10 Jezeli h jest wartosciowaniem zmiennych w modelu Herbranda, to
val(t[h]) = tval o h|. O

Struktura A wyznacza pewien model Herbranda H 4. W modelu H 4 symbol
relacyjny r jest interpretowany jako relacja R taka, ze

<t1,...,tk>€R <~ A|:T<t1...,tk).

Z powyzszej definicji otrzymuje, ze dla specyficznych wartosciowan zmiennych,
majacych posta¢ val o h zachodzi réwnowaznosé

AEr(ty,... ty)[valoh] & Ha Er(te, ... t,)[h].
Mamy bowiem
AEr(ty,. .. to)[val o h] < (ti[val o h), ... tu[val o h]) € R <
< (val(ty[h]), ... ,val(t,[h])) € Ry < AEr(ti]h], ... t,]h]) &
< (th[h], ... talh]) € R Ha Er(tilh], ... tulh]) © Ha Er(t1, ..., t0)[R]



Lemat 2.11 Jezeli ¢ jest formulg bez kwantyfikatoréow, a h jest wartosciowaniem
zmiennych w strukturze H 4 (w zbiorze 1y ), to nastepujgce warunki sq réwnowazne;

1) A= plval o hj
2) Hal= ¢lh]. D
Whiosek 2.12 Jezeli ¢ jest formulg klasy 31 oraz Hy = ¢, to A | ¢.

Whiosek 2.13 Zdanie ¢ klasy ¢ jest tautologiq wtedy i tylko wtedy, gdy jest
spetnione w kazdym modelu Herbranda.

Whniosek 2.14 Zdanie —p* jest tautologiq wtedy i tylko wtedy, gdy zdanie —p*
jest spetnione w kazdym modelu Herbranda.

Twierdzenie 2.15 Zdanie @ jest tautologiq wtedy i tylko wtedy, gdy zdanie —~(—p)*
jest spetnione w kazdym modelu Herbranda.

W tzw. teorii modeli pokazuje sie, ze dla zwyktych niesprzecznych teorii T" kaz-
dy nieskonczony zbiér mozna przeksztatci¢ w model teorii T'. Jezeli nawet utoz-
samimy izomorficzne modele teorii T', to jest ich wiecej niz kazda z gory zadana
moc. Modeli Herbranda jest jednak albo skonczenie wiele (w przypadku skonczo-
nego uniwersum), albo continuum. Twierdzenie 2.15 méwi wiec, ze badajac, czy ¢
jest tautologia, mozna sprawdzi¢ spelnianie prostszej formuty —(—¢)* w stosunko-
wo matej ,liczbie” modeli, dla najwyzej continuum modeli.

2.6 Kolejny krok

Twierdzenie 2.16 Niech ¢ bedzie formulq bez kwantyfikatorow. Zdanie o =
dxy ... dx,p = AT ¢ jest spelnione w kazdym modelu Herbranda wtedy i tylko
wtedy, gdy istnieje skonczenie wiele ukladéw terméw ty,... 6y € 1, takich, ze
formuta

YT — G V... V[T — t,]

jest tautologiq w sensie rachunku zdari (rézne formuly atomowe wwazamy za rézne
zmienne zdaniowe).

Dowdd. Zauwazmy, ze formuta ¢ wynika z kazdego cztonu podanej alternatywy i z
calej alternatywy. Jezeli ta alternatywa jest tautologia, to jest spetniona w kazdym
modelu Herbranda, w kazdym takim modelu sa tez spetnione wszystkie wnioski z
tej alternatywy i ostatecznie, w kazdym modelu Herbranda jest spetniona formuta
. Dowdéd w druga strone jest trudniejszy.

Ustawmy w ciag wszystkie zdania atomowe (czyli formuty atomowe bez zmien-
nych wolnych). Na ogoél jest ich nieskonczenie wiele, taki jest zreszta istotny przy-
padek. Niech o0, oznacza n-te zdanie atomowe w utworzonym ciagu. Bedziemy
teraz rozwazac skonczone i nieskoriczone ciagi zero-jedynkowe.

Aby zdefniowa¢ model Herbranda nalezy podaé, ktore zdania atomowe sg w
nim spetnione. Majac wiec nieskonczony cigg zero-jedynkowy a € 2% mozemy
zdefiniowa¢ model Herbranda H, przyjmujac, ze

Ho Eon <= a(n)=1.

Zauwazmy od razu, ze w ten sposob mozna opisaé wszystkie modele Herbranda.



Przy okazji zwroémy tez uwage na to, ze taki cigg o moze by¢ dla nas warto-
Sciowaniem w sensie znanym z rachunku zdan. Faktycznie jest to wartosciowanie
zdan atomowych, ale takze pewnych obiektoéw, ktore mozemy uwazaé za zmien-
ne zdaniowe i z ktérych mozemy budowa¢ formuly rachunku zdan. Majac takie
warto$ciowanie mozemy wyliczy¢ wartos¢ logiczng dowolnego zdania zapisanego w
rozwazanym jezyku bez uzycia kwantyfikatorow.

Kazdemu a € 2V przypiszemy teraz pewng liczbe

m(a) =min{k € N: 3t € T" (Hqo E V[T — 1] A
AVl > k formuta o; nie jest podformuty [ « f])}.

Z zalozenia, ze w modelu H,, jest spetnione zdanie ¢ wynika, ze liczba m(«) jest
dobrze zdefiniowana. Tak jest, poniewaz w modelach Herbranda kazdy element
jest wartoscig termu statego.

Liczby m(a) maja interesujace wlasnosci. Na przyktad, jezeli o, 8 € 2V oraz
a(i) = B(i) dla wszystkich ¢ < m(«), to m(a) = m(f).

Teraz bedziemy zajmowacé sie wartoscig

max{m(a): a € 2"}
i — aby zbada¢ te warto$¢ — rozwazac zbior
X = {{a(0),...,a(m(a))) : a € 2V}

skoniczonych ciagow zero-jedynkowych.

Przypusémy, ze wspomniane maksimum nie jest okreslone. Wtedy zbior X jest
nieskonczony i zawiera dowolnie dtugie ciagi. W takiej sytuacji istnieje nieskon-
czony ciag v, ktorego kazdy skonczony cigg poczatkowy jest prefiksem pewnego
elementu zbioru X. Takie v konstruujemy przez indukcje. Przypusémy, ze zdefi-
niowali$my juz v(0),v(1),...,v(n — 1) i ciag ten jest taki, ze

Xn = {{xo, 21, ..., xpm1) EX :n<mAVi <n~y(i) =z}
jest nieskonczony. Oczywiscie,
X, ={(xo,z1,.. ., &m_1) EX :n<mAz, =0AYi<n~y(i) =xz;}U
U{{zg, 21, ..., Tm-1) EX :n<mAx, =1AVYi<n~y(i) =z}

Jeden ze sktadnikow tej sumy jest nieskonczony. Jezeli jest to pierwszy sktad-
nik, to przyjmujemy, ze y(n) = 0. Zbior X, ;1 jest nieskonczony, gdyz rézni sie
od pierwszego sktadnika najwyzej jednym elementem (y(0),v(1),...,v(n — 1),0).
Analogicznie definiujemy ~y(n) w drugim z mozliwych przypadkéw.

Kazdy prefiks tak zdefiniowanego ciggu v daje si¢ wydtuzy¢ do elementu X
(nawet na nieskoriczenie wiele sposobow).

Takze ciag (v(0),...,v(m(7))) mozna wiec wydtuzyé¢ do (3(0),...,B3(m(B)))
dla pewnego (3 takiego, ze m(y) < m(3). Ze wspomnianej wyzej wlasnosci wynika
jednak, ze m(vy) = m(8). Uzyskana sprzeczno$é¢ dowodzi, ze wspomniane maksi-
mum jest liczba naturalng, a zbior X jest skonczony.

Teraz, dla kazdego elementu s € X bierzemy ciag s taki, ze s = (a5(0), ..., as(m(as)))
oraz termy t,, dla ktérych

Ha, }: 1/}[3? — t_;]

Nietrudno zauwazy¢, ze alternatywa
V vlE L]
seX

jest szukang tautologia rachunku zdan. O



Twierdzenie 2.17 (Herbrand) Przypusémy, Ze mamy zdanie ¢ i formula —(—p)*
jest rownowazna 3xy ... x, P, gdzie ¥ jest formulg bez kwantyfikatorow. Zdanie ¢
jest tautologiq wtedy 1 tylko wtedy, gdy istnieje skonczony cigg uktadéw termow
t, et € 1) taki, zZe formuta

YT — 7]V .. V[T — by

jest tautologiq. Dokladniej, jest ona prawdziwa bez wzgledu na to, jakie sq wartosci
logiczne formut atomowych z tej formuly.

Dowdd. Jest to wniosek z twierdzen 2.151 2.16. O

2.7 Implementacje algorytmu Herbranda
2.7.1 Proéba Paula Gilmora

Twierdzenie Herbranda podaje zalgorytmizowany sposoéb badania, czy dana for-
muta jest prawem rachunku kwantyfikatoréw, okreslany jako algorytm Herbranda.
Wobec twierdzenia o dedukeji moze by¢ tez podstawa algorytmu badajacego, czy
dana formute mozna dowies¢ w skonczenie aksjomatyzowalnej teorii, np. w teorii ()
Robinsona. Oczywiscie, w obu wspomianych przypadkach otrzymujemy algorytmy
semirozstrzygajace.

Pierwsza prébe implementacji algorytmu Herbranda podjat w 1960 roku Paul
Gilmore z IBM. Préba ta zostata uznana za nieudana. Gilmore wykorzystywat
procedure badania tautologii oparta o nastepujacy

Lemat 2.18 Formuia rachunku zdan ¢ w koniunkcyjnej postaci normalnej jest
tautologiq wtedy 1 tylko wtedy, gdy kazdy wystepujocy w niej czton koniunkcyi jest
alternatywq postaci

.V pV...VpVLL.

dla pewnej zmiennej zdaniowej p (ewentualnie dla negacji p). O

2.7.2 Metoda Martina Davisa i Hilarego Putnama
Twierdzeniu 2.17 mozna tez nada¢ postac

Twierdzenie 2.19 (Herbrand) Przypusémy, Ze mamy zdanie ¢ i formuta —(—p)*
jest rownowazna 3xy ... x, 20, gdzie § jest formulq bez kwantyfikatorow, najlepiej
w koniunkcyjnej postact normalnej. Zdanie ¢ jest tautologiq wtedy i tylko wtedy,
gdy istnieje skonczony cigg ukladéw termdw iy, ..., b, € 1y taki, ze formula

S[Z — ] A  AO[T «— L]

jest sprzeczng formutq rachunku zdan. Dokladniej, okaze sie ona sprzeczna, jezeli
rozne jej formuly atomowe bedziemy uwazac za rozne zmienne zdaniowe.
Dowéd. Jest to oczywiste przeformutowanie twierdzenia 2.17. O

Metode badania tautologii lepiej dostosowana do algorytmu Herbranda i opar-
tego na wyzej przytoczonej wersji twierdzenia Herbranda zaproponowali w 1960
roku Martin Davis i Hilary Putnam. Gléwna jej czescig jest algorytm

P = ¢
for all uktadéw terméw ¢
D = O NI — 1];
if ® jest sprzeczna, then return ¢ jest tautologia.



2.7.3 Badanie sprzecznosci wedlug Davisa i Putnama

Gléwnym osiggnieciem Davisa i Putnama bylo zwrdcenie uwagi na regute rezo-
lucji i opracowanie opartego o te regute algorytmu badania sprzecznosci formut
rachunku zdan w koniunkcyjnej postaci normalnej.

Koniunkcje i alternatywy w tym algorytmie sa implementowane jako zbiory
cztonow. Tak wiec sposoéb implementacji formut gwarantuje przemiennosé i tgcz-
no$¢ obu spojnikow. Przy takiej implementacji dobrze jest zalozy¢, ze koniunkcje
i alternatywy rozumiane jako zbiory sa niepuste. Taka implementacja zwyktych
formul prowadzi do zbioréw niepustych. Dalej zaktadamy, ze zbiér pusty nie jest
ani koniunkcja, ani alternatywa.

Danymi dla algorytmu jest zbior alternatyw literatow, czyli zbioréw zmiennych
zdaniowych i ich negacji. Interesuje nas, czy jest to zbior sprzeczny lub czy dana
koniunkcja jest sprzeczna.

Dany zbior alternatyw podczas badania sprzecznosci jest upraszczany na kilka
sposob6w, w tym oparte o nastepujace lematy i podobne. W skrocie, stosujemy
stosujemy trzy metody przeksztatcania danych: usuwanie tautologii, usuwanie po-
jedynczych literatow i rezolucje.

Lemat 2.20 Jezeli formuta T jest tautologiq, to formula o AT jest sprzeczna wtedy
1 tylko wtedy, gdy sprzeczna jest formuta p. O

Zgodnie z tym lematem, dany zbior alternatyw, ktérego sprzecznosé jest badana
mozna uprosci¢ usuwajac z niego alternatywy, w ktorych pewna zmienna wystepuje
z negacja 1 bez. Sprzeczno$¢ obydwu takich zbioréw jest rownowazna.

Lemat 2.21 Jezeli zmienna zdaniowa p nie wystepuje w1, to formuta (pV ) A
jest sprzeczna wtedy 1 tylko wtedy, gdy 1 jest sprzeczna. O

Podany algorytm pozwala w pewnych przypadkach zastapi¢ badanie sprzeczno-
Sci zbioru alternatyw badaniem innego zbioru, ztozonego z alternatyw, w ktorych
nie wystepuje okreslony literat p. Mozna tak postapic, jezeli w danym zbiorze nie

wystepuje —p.

Lemat 2.22 Jezeli zmienna zdaniowa p nie wystepuje w 1, to formula p A (p V
©) A (—p V) jest sprzeczna wtedy i tylko wtedy, gdy v jest sprzeczna. O

Jezeli w danym zbiorze wystepuje alternatywa, ktorej jedynym czlonem jest
literal p, to mozna taki zbior uprosci¢ usuwajac z niego wszystkie alternatywy, w
ktorych wystepuje literat i usuwajac z pozostatych alternatyw negacje tego literatu.

Gléwny sposob przeksztatcania danego zbioru odpowiada wnioskowaniu za po-
mocy reguly rezolucji. Badanie metodg Davisa - Putnama, czy formuta jest tauto-
logia, moze by¢ rozumiane jako dowodzenie tego faktu metoda nie wprost stosujac
tylko regute rezolucji

OV, 20V
eV
cho¢ w specyficznej sytuacji i ze wspomaganiem potrzebnym po to, by bez proble-
mow zatrzymac algorytm. Ten gtowny sposob przeksztatcania jest oparty o

Lemat 2.23 Zaléimy, ze zmienna zdaniowa p nie wystepuje w formutach o, 1
oraz 6. Wtedy formula (p VvV @) A (=p V ) AN § jest sprzeczna wtedy i tylko wtedy,
gdy sprzeczna jest formula (¢ V) Ad. O



2.7.4 Metoda Johna Alana Robinsona

Algorytm Herbranda korzystajacy z metody Davisa i Putnama polega szukaniu
dwdch rzeczy: odpowiednich podstawien i dowodu sprzecznosci. W 1965 roku uka-
zata sie praca Johna Robinsona, w ktorej zauwazyl, ze za jednym zamachem mo-
zemy szuka¢ podstawien i dowodu sprzecznosci. Metoda Robinsona oparta jest o
taka oto wersje wniosku 2.6:

ES

Whniosek 2.24 Zdanie ¢ jest tautologiq wtedy i tylko wtedy, gdy zdanie (—p)
sprzeczne, lub rownowaznie, gdy daje sie z niego wyprowadzié sprzecznosé. O

jest

Natomiast badanie sprzecznos$ci w tej metodzie jest oparte o regute rezolucji
bardziej ogblng niz stosowana przez Davisa.

Podstawianie i unifikatory. Najpierw musimy uog6lni¢ operacje podstawiania
plr « t]. Zwykle podstawiamy za jedna zmienna, mogliSmy tez iterowaé¢ podsta-
wianie i podstawia¢ po kolei za kilka zmiennych. Teraz przez podstawianie be-
dziemy rozumie¢ zbior par ztozonych ze zmiennej i termu, i bedziemy stosowaé
nastepujaca notacje

0=lxy —t1,...,0, — t],

gdzie x; sa zmiennymi, a t; — termami. Wykonujac podstawienie 6 jednoczesnie
za zmienne x; podstawiamy termy ¢;. Definiujac takie podstawianie zmieniamy
sposOb podstawiania za zmienne przyjmujac

il = xi[wy —t, .. x, — ] =t

oraz
Yo =ylry —t1, ..., xp —ta] =y

dla zmiennych y réoznych od zy, ..., x,.

Podstawienie 6 = [z1 < y1, ..., T, < Y| nazywamy przemianowaniem zmien-
nych, jezeli v, ..., ¥y, sa zmiennymi i zalezno$¢ miedzy x; oraz y; jest roznowarto-
Sciowa.

Podstawienie 6 jest unifikatorem terméw ¢y i to, jezeli t160 = t20. Analogicznie
definiujemy unifikator formut bez kwantyfikatoréw (takie formuty mozna uwazaé
za termy, w ktérych wystepuja takze funkcje o wartosciach boolowskich).

Podstawienie 0y jest najogoélniejszym unifikatorem termow t; i t9, jezeli jest
unifikatorem tych terméw i dla kazdego innego unifikatora 6 istnieje podstawienie
0" takie, ze t10 = t,000’ oraz to0 = t90,0’.

Regula rezolucji wg Robinsona. Robinson zauwazyl, ze do wyprowadzania
sprzecznosci w tym kontekscie przydatna jest nastepujaca reguta rezolucji

61\/(107 _'52v¢
VR

gdzie 0 jest najogdélniejszym unifikatorem formut (atomowych) d; i dy, rozumiana
podobnie, jak w Prologu. W szczegoélnosci dopuszczamy stosowanie tej reguty w
sytuacjach, gdy podane przestanki (jedna lub obie) redukuja si¢ do formul ¢; i
—0s.

Przytoczona reguta rezolucji rozumiana literalnie nie wystarcza do wyprowa-
dzania sprzecznosci ze sprzecznych zbioréw formut. Swiadezy o tym nastepujacy
przyktad: za pomoca tej reguty nie wyprowadzimy sprzecznosci z formut A(z),
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—B(z) oraz —A(x) V B(f(z)). Mozemy z nich wyprowadzi¢ tylko B(f(z)). Z for-
mul - B(z) i B(f(z)) nic nie wyprowadzimy, poniewaz napisy B(x) i B(f(z)) nie
daja sie zunifikowa¢. Mimo to formuta Vo (A(z) A =B(x) A (mA(z) V B(f(2))))
jest sprzeczna.

Wobec tego dopuszczamy jeszcze mozliwo$¢é stosowania nastepujacej reguty

wnioskowania: o

el

dla dowolnego przemianowania zmiennych 6. Zwykle obie podane tutaj reguty sto-
sujemy w powigzany sposob: najpierw w formutach, ktore majg sta¢ sie przestan-
kami reguty rezolucji przemianowujemy zmienne, a nastepnie stosujemy rezolucje.

W przytoczonym przyktadzie tatwo uzyskaé sprzecznosé¢ po przemianowaniu
w formule =B(x) zmiennej x na y. Najogdlniejszym unifikatorem B(y) i B(f(z))
jest podstawienie [y < f(z)]. Po wykonaniu tego podstawienia formuty —B(y) i
B(f(x)) staja sie sprzeczne.

Zauwazmy, ze obie reguty w nastepujacym sensie zachowuja niesprzecznosé:

Lemat 2.25 Przyjmijmy, Ze A jest dowolng strukturg, ¢ — formula bez kwantyfi-
katorow, a 0 — dowolnym podstawienie. Wtedy warunek A |= ¢ implikuje A = 6.
Jezeli natomiast 0 jest przemianowaniem zmiennych, to warunek A = ¢ jest row-
nowazny z A = ¢b.

Dowdd. Trzeba pamietaé, ze spelianie formuly oznacza jej spetnianie przy kaz-
dym wartosciowaniu zmiennych. O

Lemat 2.26 Przyjmijmy, ze w strukturze A spelnione sq¢ formuly 61 V ¢ oraz
=0y VU 1 0 jest unifikatorem formut 61 i 63. Wiedy A = (p V)0. O

Whniosek 2.27 Jezeli 11, ...,1, sq alternatywamsi literatow i postugujac sie po-
danymi requtami potrafimy wyprowadzi¢ z nich sprzecznosé, to formuta

n
VT /\ (8
i=1
jest sprzeczna. O

Twierdzenie o petnosci dla metody rezolucji. Aby uzasadnic¢ korzystanie z
metody rezolucji Robinson udowodnit

Twierdzenie 2.28 Przypusémy, ze mamy formule VT (1 A ... A y) klasy 11,
w koniunkcyjnej postaci normalnej. Formula ta jest sprzeczna wtedy i tylko wte-
dy, gdy z alternatyw literatow 1y, . .., ¥, daje sie wyprowadzié sprzeczno$é (czyli
alternatywe bez cztondw) stosujac jedynie przemianowanie zmiennych i requle re-
zolucji.

Dowdéd. Wobec wniosku 2.27 wystarczy pokazad, jak z formuly sprzecznej mozna
wyprowadzi¢ sprzecznosé. W tym celu bedziemy korzysta¢ z aparatu i oznaczen
wprowadzonych w dowodzie twierdzenia 2.16 Herbranda.

Najpierw przyjmijmy, ze 0 = =0 oraz o' = . To oznaczenie pozwala inaczej

sformutowa¢ definicje modeli H,, sa to modele takie, ze

H, = /\ 0?(1')

i<n
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dla wszystkich n € N. Teraz zmodyfikujemy nieco definicje m(«). Zaltozenie o
sprzecznosci danej formuty oznacza, ze w kazdym modelu Herbranda H,, spetniona
jest formuta

a wiec takze pewna formuta postaci —);[¥ «— ﬂ . Przyjmijmy, ze

m(a) = min{k e N: E|_] <m H{E 76 t.ze /\ O’ia(i) = —nﬁj[f — ﬂ jest tautolggj;%}_

i<k

Liczby m(«) sa dobrze zdefiniowane i maja wlasnosé podang w dowodzie twier-
dzenia 2.16: jezeli a, 3 € 2V oraz a(i) = B(i) dla wszystkich i < m(a), to
m(a) = m(f). Dlatego tez mozna powtérzy¢ rozumowanie z dowodu tego twier-
dzenia i wykazac, ze zbior

X = {{a(0),...,a(m(a))) : a € 2V}

jest skonczony.

Zbior X moze by¢ uwazany za zbiér wszystkich maksymalnych gatezi pewnego
drzewa binarnego i moze by¢ z takim drzewem utozsamianym. To drzewo pozwala
odtworzy¢ interesujace nas wyprowadzenie sprzecznosci.

Niech (a(0),...,a(m(a))) bedzie najdtuzszym elementem zbioru X. Dla usta-
lenia uwagi przyjmijmy, ze a(m(a)) = 0. Wezmy ciag 3 € 2V taki, ze 8(i) = a(i)
dla i < m(a) oraz G(m(«a)) = 1. Z wyboru a wynika, ze m((3) < m(«), ostra nie-
rownos¢ prowadzi do sprzecznosci z przytoczona wlasnoscia przyporzadkowania
m. Stad m(«) = m(B) i w zbiorze X mamy dwa ciagi

(a(0),...,a(m(a) —1),0) = (a(0),...,a(m(a)))

((0),.. ., a(mfa) = 1),1) = (5(0), ..., B(m(53))).

Z nalezenia do X pierwszego z ciagéw wynika, ze dla pewnych j i o formulta
( A of‘“’) = i [# — T
i<m(a)

jest tautologia. Po uwzglednieniu, ze ;{7 « fo] jest alternatywa V, Cj, literatow
(. formule t¢ mozna inaczej zapisa¢, w postaci

a(0 a(m(a)—1
Ao @V v =gt v =6l )V ). (1)
Poniewaz przytoczona formuta jest tautologia i w ciagu og, 01, . . . sa same formuty

atomowe, wiec kazdy literat C;, jest réwnowazny ﬂalal dla pewnego [ < m(«).
Z drugiej strony, na mocy definicji m(«), formuta

( A af‘(i)) = [T — 1], cayli N\(mog @ v...v ﬁasl(g)(f)l_l) vV =Cj,)
i<m(a)—1 v

nie jest tautologia. Pewien literat Cj, nie jest wigc postaci —Ula(l) dla I < m(«).
Nietrudno zauwazy¢, ze ten literal jest réwny o,,(). Spostrzezenie to pozwala
przedstawic¢ formute ;7 — to] w postaci

i[Z — to] = Tam) V @y = polT — to] V @ol — to] (2)
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dla pewnej atomowej formuly py i pewnej klauzuli ¢ (alternatywy literalow z );
réznych od py).

Na koniec zauwazmy, ze jezeli w koniunkcji (1) opuscimy czton odpowiadajacy
literatowi 0,0, to otrzymamy tautologie postaci

( A af(”) = —po[T — To). (3)

i<m(a)—1
To samo rozumowanie mozemy przeprowadzi¢ dla nalezacego do X ciagu
(a(0),...,a(m(a) — 1),1). Przyjmijmy, ze w tym przypadku dla pewnych j’ i
t

—

1 tautologia okazuje sie formuta
( A oz’““‘)) =~y [T 1],
i<m(a)
W tym przypadku formuta v 7 t_ﬂ daje sie przedstawi¢ w postaci
UplT =] = 20am) V) = [T — ]V [T — 1] (4)

dla pewnej atomowej formuly p; i pewnej klauzuli ¢ (alternatywy literalow z ¢
réznych od p;). Podobnie, jak poprzednio, pokazujemy takze, ze tautologia jest
formuta

( A a;‘(i)) = [T — ). (5)
)—1

i<m(a

Teraz mozemy juz zaczaé konstruowac rezolucyjny dowdd sprzecznosci klauzul
Y1, .., Ym. Z tych klauzul wybieramy dwie: ; oraz ;. Najpierw uroztaczniamy
zmienne zastepujac ©j przez ;¥ « y]. Zgodnie z wzorami (2) i (4) mamy

Yj = po Vo oraz Ypl¥ ¢l = ap[T Y]V pi[T  y].

Wezmy podstawienie § = [ « tg,7 « t;]. To podstawienie unifikuje formuty pg
oraz p1|Z < y]. Mamy bowiem

pﬂe = pO[f<— ﬂ)ag‘% {1] = pﬂ[f% 75—[)] = Oa(m)
oraz
p[T — 10 = pi[T — PT — to,§ — 0] = p[F — T — 0] = ;[T — 1] = Tapm)-

Niech wiec 6y bedzie najogdlniejszym unifikatorem formut pg i p1[Z «— 7], a ¢
— takim podstawieniem, ze

Wi = ;000 oraz V[T — G0 = vy [T — 71060 (6)
Reguta rezolucji pozwala z formul +; przez ¢ [% < ] wywnioskowaé formule

wobo V 1T — F)bo.

Dotgczmy te formute do klauzul vy, ...,9,,. Gdyby z tego zbioru udalo nam
sie wyprowadzi¢ sprzecznosé, to potrafiliby$my ja wyprowadzié¢ takze ze zbioru
Uiy eeo s Y.

Dla nowego zbioru klauzul sprobujemy wyliczyé¢ funkcje m’ zdefiniowang tak,
jak funkcja m dla zbioru 1, ...,%,,. Dla dowolnego v € 2V wartoéci m(vy) i
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m/(y) zaleza od mozliwosci wskazywania klauzul i konstruowania odpowiednich
podstawien. Jezeli definiujac m(7y) rozpatrywalidmy klauzule 1; z podstawieniem
terméw ¢, to nadal mozemy to robi¢. Wynika stad, ze nowe mozliwosci mogg do-
prowadzi¢ najwyzej do zmniejszenia wartosci m(y), a wiec zachodza nieréwnosci
m' () < m(y). Jezeli X jest zbiorem maksymalnych gatezi pewnego drzewa binar-
nego T', to zbior

X' = {{a(0),...,a(m/(a))): a € 2V}

opisuje drzewo, ktorego maksymalne gatezie uleglty pewnemu skréoceniu, a wiec
poddrzewo drzewa T'. Pokazemy teraz, ze przejscie do nowego drzewa powoduje
skrocenie przynajmniej jednej gatezi.

Przypomnijmy, ze rozpoczeliémy konstrukcje od wyboru ciggu o € 2V wy-
znaczajacego maksymalng gataz («(0),...,a(m(a))) € X. Otz dla tego ciagu o
zachodzi nieréwnos$é¢ m'(a) < m(a)). Aby sie o tym przekonaé, zgodnie z definicja
m’(«), wystarczy wskazaé odpowiednia klauzule i podstawienie na przykltad dla
k = m(«a) — 1. Ta odpowiednia jest dotaczona klauzula

woblo V 1T — 46,

a szukanym podstawieniem jest €’. Interesujaca nas nieréwnosé¢ wynika z tego, ze
formuta

( /\ Uia(i)> = (oo V o1 [T — 7]60)¢’ (7)
i<m(a)—1

jest tautologia. Z wzoréw (6) i definicji podstawienia 6 wynika, ze jest to formuta

i<m(a)—1

( A U?(i)) = (w0l — to] V 1 [Z — &]).

Jest ona réwnowazna koniunkeji

A Jf(i) = —po[T — o] | A A aia(i) = - [T ]
i<m(a)—1 i<m(a)—1

formut (3) 1 (5), ktore sa tautologiami. Stad réwniez formula (7) jest tautologia.

Tak wiec drzewo wyznaczone przez zbior X’ okazalo sie mniejsze od drzewa opi-
sanego przez zbior X. Jezeli bedziemy dowod prowadzié¢ przez indukcje ze wzgledu
na wielkos¢ takich drzew, to z zatozenia indukcyjnego otrzymamy wyprowadzenie
sprzecznosci z klauzul 4, . .., 1, uzupetionych o

wobo V 1T — y)bo.

Wyprowadzenie sprzecznosci z 11, . . ., ¥, nie stanowi problemu, poniewaz dodat-
kowa klauzule otrzymujemy z nich za pomoca reguty rezolucji.
Teraz pozostaje najwyzej sprawdzenie pierwszego kroku indukcyjnego. O

2.8 Przyktad

Przyktad ten Sswiadczy m. in. o tym, ze dowodzenie twierdzen prowadzi do zbioréw
klauzul, ktére nie tworzg poprawnego programu prologowego.
Zauwazmy najpierw, ze zachodzi

Lemat 2.29 Jezeli ¢ i1 sq zdaniami, to koniunkcja p A jest sprzeczna wtedy 1
tylko wtedy, gdy sprzeczna jest koniunkcja @* A *. O
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Przyktad 2.30 Za pomocy tego lematu i metody rezolucji pokazemy, ze ze zdan
p1 = Va (E(x) A=V(z) = Jy (S(z,y) AC(y))),
o = Jz (P(x) A E(x) AVy (S(2,y) = P(y))),
w3 = Vo (P(x) = —-V(x))

wynika zdanie

Y = Jx (P(x) ANC(x)).
Na mocy twierdzenia o dedukcji mamy wiec dowiesé, ze implikacja
P1 A\ pa N3 =1

jest tautologia. Jest to réwnowazne stwierdzeniu, ze formuta

©1 A\ a2 N3 A1

jest sprzeczna. Z przytoczonego lematu i wniosku 2.6 wynika, ze wystarczy dowies¢
sprzecznos¢ zdania

(1)" A (02)" A (p3)" A ()"

Formuta ta po wyciggnieciu na poczatek i usunieciu kwantyfikatoréw, oraz po
sprowadzeniu do postaci koniunkcyjnej jest koniunkcja nastepujacych alternatyw:

—E(z)VV(x)V Sz, f(x)), (1)
—E(@)vV(z)vC(f(z), (2)
P(a), (3)
E(a), (4)
~S(a,y) vV P(y), (5)
~P(x) v -V(z), (6)
—P(z) vV -C(x) (7)

—V(a), (8), 2 (3) 1 (6)
Via) v C(f(a)), (9)z(2)i(4)
C(f(a)), (10) z (8) i (9)
V(a) v S(a, f(a)), (11) 2 (1)1 (4)
S(a, f(a)), (12) z (8) i (11)
P(f(a)), (13) z (5) 1 (12)
~C(f(a)), (14) z (7) 1 (13)
O, (15) z (10) i (14)

2.9 Twierdzenie o pelnosci wg Herbranda

Whniosek 2.31 Jezeli formula ¢ jest tautologiq, to formula —(—¢)* jest twierdze-
niem rachunku kwantyfikatorow.
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Dowdd. Jest to wniosek z twierdzenia Herbranda 2.17 i twierdzenia o petnosci dla
rachunku zdan. O

Majac dowdd formuly —(—¢p)* mozemy sprobowaé odtworzy¢ takze dowéd for-
muly . Gdyby to si¢ udato, to mozna by dowies¢ twierdzenie o petnosci. Dowod
tego twierdzenia musi by¢ jednak bardziej subtelny. Bedzie w nim potrzebne

Twierdzenie 2.32 (o stalej) Jezeli stala ¢ nie wystepuje aksjomatach teorii T,
ani w formule @ oraz T F plz «— ¢], to T+ Yz .

Dowdéd. Wystarczy zauwazy¢, ze wszedzie tam, gdzie w dowodzie mamy prawo
uzy¢ stalej ¢, mozemy tez uzy¢ zmiennej tym bardziej, ze stata ta nie wystepuje
w aksjomatach. O

Analiza dowodu twierdzenia o statej pozwala zauwazy¢

Whniosek 2.33 Jezeli T jest teorig w jezyku L, ¢ jest formulq z tego jezyka, a c
— stalg spoza L, to ¢ mozna dowies¢ w teorii T postugujgc sie formutami jezyka
L U{c} wtedy i tylko wtedy, gdy ¢ mozna dowiesé w teorii T postugujgc sie for-
mutami jezyka L. O

Opuszczanie kwntyfikatora egzystencjalnego. Metoda budowania dowoddw
zaproponowana przez Herbranda korzysta z reguty opuszczania kwantyfikatora eg-
zystencjalnego wykorzystywanej w niektorych systemach logicznych, zwtaszcza w
systemie dedukcji naturalnej, patrz czes¢ 2, rozdziaty 6.1 i 6.3. Najpierw dowie-
dziemy w nieco ograniczonym zakresie, ze w dowolnym systemie mozna z tej reguty
korzystac.

Niech T" bedzie teoria w jezyku L. Rozszerzamy L o pewien zbior statych i po-
wigkszamy zbior aksjomatéw T tworzac w ten sposob teorie T,.. Robimy to dodajac
do L dla kazdego zdania postaci 3z ¢ specjalng stata ¢ (wyznaczona przez to zda-
nie) i do teorii 7' nowy aksjomat (Jzp) = @[z < ¢|. Teorie¢ T, konstruujemy tak
dhugo az dla kazdej takiej formuly bedzie istniala w jezyku odpowiednia stala, a
w teorii znajdzie sie odpowiedni aksjomat. Zwykle wymaga to nieskonczenie wielu
krokéw. Czasem taka teorie nazywa sie teorig Henkina.

Twierdzenie 2.34 Jezeli ¢ jest formulqg zapisang w jezyku L 1T, & , to takze
TF .

Dowdéd. Twierdzenie to méwi, ze w dowodach mamy prawo postugiwac sie reguty
opuszczania kwantyfikatora egzystencjalnego przynajmniej w szczegdlnych przy-
padkach, gdy przestanka jest zdaniem.

Dowodzac zdanie ¢ w teorii 7. korzystamy ze skonczonej liczby specjalnych
aksjomatow. Niech Jx ¢ = o[z < ¢| bedzie najp6iniej dodanym, wykorzystywa-
nym w dowodzie specjalnym aksjomatem, a ¥ — koniunkcja pozostatych. Stata ¢
nie wystepuje wiec w W. Na mocy twierdzenia o dedukcji

TH((3xY) = Ylx— )= (V= ).
Mozemy tez zalozy¢, ze zmienna x nie wystepuje w . Wtedy
(B ) = dlr — ) = (V=) = (Br ) =) = (V= ¢))r —
Stad na mocy twierdzenia o statej otrzymujemy, ze

THYz ((Bx ) =1Y)= (V=)
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Korzystajac jak zwykle z praw logiki mozemy zauwazy¢, ze takze
TH((Jzv)=3Jz¢) = (V=)

i w konsekwencji,
THY = .

Powotujac sie na indukcje ze wzgledu na liczbe potrzebnych w dowodzie aksjoma-
tow specjalnych i wniosek 2.33 otrzymujemy, ze nawet w jezyku bez specjalnych
statych

THe. O

Wstepny przyklad. Teoria T, ma kilka ciekawych wtasnosci. Na przyktad, je-
zeli dz ¢ jest zdaniem i ¢ jest stata specjalna dla tego zdania, to

T.F 3z o= gl — .
Implikacja odwrotna jest prawem logicznym, a wiec takze
T.F 3z p & plr — ),

a nawet
T.F V¥ —p & —plr «— .

W teorii T, dowodzenie zdan z kwantyfikatorem sprowadza sie wiec do dowodzenia
zdan bez kwantyfikatora.
W szczegoélnosci, jezeli dr —¢ jest zdaniem i ¢ jest stala specjalng dla tego
zdania, to
T.F glr — ] & Vz p.

Tego typu wlasnos¢ mozna skomplikowac.
Przypu$émy, ze mamy formute

Jz Vy 3z Yw Y (z,y, 2, w),

a a jest termem statym, ktory w przysziosci zostanie odpowiednio dobrany. Dla
tego termu istnieje stata specjalna 7(a) dla zdania

Jy —3z Vw Y[z — a].
Z przytoczonego spostrzezenia otrzymujemy teraz
T.F 3z Vw Y[z — ally « 7(a)] & Yy Iz Yw Yz — a],

a takze
T.F 3z Vw Y[z « ally « 7(a)] = Jz Vy Fz Vw .

Powtérzmy to rozumowanie raz jeszcze. Dla termu statego b (i termu a) bie-
rzemy stala specjalng o(a,b) dla zdania

Fw ¢z — ally — 7(a)][z — b].
Mamy wiec

T F 9l —dlly = 7(a)][z = B[w — a(a,b)] & Yw Yl — ally — 7(a)][z I
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oraz

T.F e < dly = 7(a)][z < B[w — o(a,b)] = 32 Vw Y[z — ally — 7(a)].
Laczac dwa udowodnione twierdzenia otrzymujemy, ze

T. F ¢z — a]ly < 7(a)][z < b][w « o(a,b)] = Tz Yy Iz Yw 1.
Gdyby teraz udato nam sie tak dobraé¢ termy a i b, aby
T+ ¢lr —dlly — 7(a)]lz — b][w — o(a,b)],
to przedstawione rozumowanie dawatoby, ze
T, Jdx Vy 3z Vw 1.

Przedstawione rozumowanie, ktore moze zostaé¢ przeprowadzone dla dowolnych
formul w postaci preneksowej, klasy Yo, zostanie wykorzystane do dowodu kolej-
nego twierdzenia Herbranda.

Dowéd twierdzenia o pelnosci.

Twierdzenie 2.35 (Herbrand) Przypus$émy, Ze p jest formulq i formula —(—¢)*
jest rownowazna formule Jx ..., gdzie Y jest formulqg otwartg. Jezeli istniejq
uktady termow tq, ..., t,, € 1" takie, zZe formula

Y[Z — G V.. V[T — t,]
jest tautologiq, to ¢ jest prawem rachunku kwantyfikatorow.

Dowdd. Dowdd przedstawimy na przyktadzie formuty klasy 4. Niech wiec
p = Jx Vy 3z Vw Y(z,y, 2, w).
Wtedy formuta —(—¢)* ma postaé

3z 3z Y (x, f(2), 2, 9(z, 2))

dla pewnych nowych symboli funkcyjnych f i g. Zaktadamy wiec, ze istnieja uktady
terméw statych t; oraz s; takie, ze formuta

P = \/w(ti, f(ti), s g(ti, i)

jest tautologia. Niech teraz T oznacza rachunek kwantyfikatoréw, czyli teorie po-
zbawiong aksjomatéw. Dla uproszcezenia zaktadamy takze, ze T' nie zawiera nawet
aksjomatow réwnosei (dla teorii z réwnoscia sa potrzebne dodatkowe konstrukcje,
ktore nie zostana przedstawione). Utworzmy teorie T, i wezmy zdefiniowane wyzej
operacje T i o przyporzadkowujace termom statym specjalne state. Formute ® be-
dziemy przeksztatcaé¢ wielokrotnie wykonujac przeksztatcenie nastepujacej postaci:
sprawdzamy, czy w ¢ wystepuje podterm postaci f(a) dla pewnego termu stalego
a nie zawierajacego ani f, ani g, i jezeli taki podterm znajdziemy, to zastepuje-
my go we wszystkich miejscach stata 7(a). Analogicznie, wszystkie wystapienia
podterméw postaci g(a, b) zastepujemy stata o(a,b).
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Zauwazmy, ze przeksztaltcenia te zachowuja ,,bycie tautologia”. Przypusémy, ze
po wykonaniu wszystkich mozliwych takich przeksztatcen otrzymaliémy formute
®*. Tak wiec ®* jest tautologia.

Podczas wykonywania opisanych przeksztatcen w jakis sposéb zmienialty sie
termy t; oraz s;. Przyjmimy, ze zostaly przeksztatcone w a; oraz b; odpowiednio.
Nietrudno zauwazy¢, ze formuta ®* ma postac

o = \/ W(ag, m(a;), by, o(ag, b;)).

Zgodnie z uwagami z poprzedniego paragrafu, czlony tej alternatywy implikuja
zdanie ¢. Wobec tego, takze mamy

T.F " = .

Na mocy twierdzenia o petnosci dla rachunku zdan dowod ma takze formuta &*.
Tak wiec ¢ jest twierdzeniem teorii T, a poniewaz nie zawiera statych specjalnych,
jest tez twierdzeniem rachunku kwantyfikatorow. O

Przyktad konstruowania dowodu. Wezmy tautologie
¢ = JxVy A(z,y) = YyIzA(z,y)
i sprobujmy skonstruowac jej dowodd metoda Herbranda. Postacig normalng ¢ jest
Vo Jy Vz 3t (A(z,y) = Alt, 2)),
a postacig normalng —p —
dx Vy 3z Vt = (A(x,y) = A(t, z)).
Z tej formuly po skolemizacji otrzymujemy
Yy vt =(Alc,y) = Alt, f(y)))-
Ostatecznie mamy
S(~9) © Ty I (Aley) = At F))).

Zgodnie z twierdzeniem Herbranda, formuta ¢ jest tautologia, poniewaz tautologia
jest

(A(c,d) = Alc, f(d))) V (Ale, f(d)) = A(d', f(f(d))))- (8)
Pierwsza implikacja jest postaci (A(c,y) = A(t, f(v)))|y < d][t < ], a druga
(Ale,y) = A, f(Y)ly < f(d)][t — d].

Wezmy teraz stala specjalna o wprowadzona aksjomatem
Jr —Jy Vz 3t (A(z,y) = A(t,z)) = —JyVz 3t (Ala,y) = Alt, 2)).
7 tego aksjomatu wynika nastepujaca wtasno$é statej a:
Jy Vz 3t (Ala,y) = A(t,2)) = Vo Iy Vz 3t (A(z,y) = Alt, 2)).

Dla dowolnego termu b wezmy jeszcze stata specjalna (3, (b) wprowadzona aksjo-
matem

32 3t (A(a,b) = A(t,2)) = =3t (A(e,b) = A(t, B (b))).
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Mamy wiec
3t (A(a,b) = A(t, Ba (b)) = ¥z 3t (Ala,b) = A(t, 2)),
a takie
3t (A, b) = A(t, B (b)) = Vo Iy ¥z 3t (Alz,y) = A(L, 2)).

Teraz w tautologii (8) symbole wprowadzone podczas skolemizacji zastepujemy
przez odpowiednie state specjalne. Tym razem skolemizacja wymagata postuzenia
sie stata ¢ i symbolem f. Stala ¢ zastepujemy staly specjalng a, a symbol f —
operacja (4(+). Po wykonaniu tych zastepowan w formule (8) otrzymujemy

(Ala, d) = A, Ba(d))) V (A, Bald)) = Ald', Ba(Ba(d)))).

Analizujac postaé tej formuly oraz formuty (8) mozna utworzyé¢ taki oto dowod
wprost formuty ¢ (a wlasciwie jej preneksowej postaci normalnej).

1) Fx—-JyVz3t(A(z,y) = Alt, z)) = —JyVzIt(Ala,y) = A(t, 2)) aksjomat 7.
2) JyVzIt(Ala,y) = Alt, z)) = YadyVe3t(A(z,y) = A(t, 2)) kontrapoz. i 1)
3) Fz—TFt(Ala,d) = A(t, z)) = —Ft(A(a,d) = Alt, Ba(d))) aksjomat T,
4) Ft(A(a,d) = A(t, Ba(d))) = Vz3t(A(a,d) = A(t, 2)) kontrapoz. i 3)
5) Fz=3t(Ala, fa(d)) = A(t, 2)) = —3t(A(e, Bal(d)) = A(t, Ba(Ba(d)))) aksjomat T,
6) Ft(A(a, Bald)) = A(t, Ba(Bal(d)))) = Vz3t(A(w, Ba(d)) = A(t,z))  kontrapoz.ib)
7) Ao, Ba(d)) V = A(a, Ba(d)) aksjomat logiki
8) (Al d) = Ao, Buld))) V (A(0, fald) = A BulBa(d)))) wniosek 7 7)
1.1) A(a,d) = A(a, Ba(d)) przypadek 1
1.2) A(a,d) = A(t, Bo(d))[t — 1.1) inaczej
1.3) Ft(A(a,d) = A(t, Ba(d))) z 1.2)
1.4) Vz3t(A(a, d) = A(t, 2)) ROz 1.3) i 4)

1.5) JyVz3t(A(a,y) = A(t, 2)) z 1.4)
1.6) VadyVz3t(A(z,y) = A(t, 2)) ROz 1.5)i2)
2.1) A, Ba(d)) = A(d', Ba(Ba(d))) przypadek 2
22) A(a, Ba(d)) = A(t, Ba(Ba(d)))[t — d] 2.1) inaczej

2.3) A, fuld) = Alt, fu(Ga(d))) 22.2)

2.4) Vz3t(A(w, Ba(d)) = Alt, 2)) RO 7 2.3) i 4)
2.5) JyVz3t(A(a,y) = Al(t, 2)) z 2.4)
2.6) Vr3yVz3t(A(z,y) = Alt, 2)) RO z 2.5) i 2)
9) VadyVz3t(A(x,y) = A(t, z)) z 1.6)12.6)

Przedstawiony dowdd jest sprawia wrazenie sztucznego. Zwykle nie postuguje-

my sie specjalnymi aksjomatami teorii T, a raczej tzw. regutg odrywania kwantyfi-
katora egzystencjalnego. Naturalniejsza jest nizej przedstawiona wersja nie wprost
tego dowodu. Nalezy pamietaé, ze powstal na podstawie analizy tautologii (8).
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1) —Vz JyVz 3t (A(z,y) = Alt, 2)) zalozenie dowodu nie wprost
2) JxVy 3z Vit ~(A(z,y) = A(t, 2)) prawa de Morgana i 1)
3) Yy Iz Vi (Ao, y) = Alt, 2)) 0312)

4) Jz Vt ~(A(a,d) = Alt, 2)) OV i 3)

5) Vt =(Ala,d) = A(t,3)) 0O3i4)

6) —(A(a,d) = A(a, ) Ovib)

7) JzVt (A, B) = At 2)) OV i 3)

8) Vt (Ao, B) = A(t,v)) 03i7)

9) A(a,B)V -A(a, B) aksjomat logiki

10) (A(a,d) = A(a, B)) V (A, B) = A(d',y)) wniosek z 9)

11) Ao, 8) = A(d',7) wniosek z 9) i 6)

12) =(A(a, B) = A(d',v)) OV 8)

13) O sprzecznosé 11) i 12)

2.10 Dodatek: Teorie Henkina i szczegétowy dowdd twier-
dzenia o pelnosci

Jest to wlasciwie ten sam dowdd co w poprzednim rozdziale, ale zostat on przed-
stawiony z wieloma dodatkowymi szczegotami.

Niech T bedzie dowolng teorig zapisanag w jezyku L. Formuly zapisane w jezyku
L, z jedng zmienng wolna ustawiamy w ciag 1(x1), ¢(x2), . ... Bierzemy tez ciag
nowych statych ¢y, co, . ... Niech

Ty =T U{(3x; ¢i(x;)) = @i[zi — ¢]:i € N}

bedzie teorig otrzymang z T przez dodanie ciggu nowych aksjomatow. Stala c;
uzyta w konstrukcji tego ciggu bedziemy nazywaé staly specjalng dla formutly
3z 0i(;).

7 twierdzenia o stalej wynika, ze jezeli zapisana w jezyku L formuta ¢ ma
dowod w teorii 17, to moze tez zosta¢ dowiedziona w teorii T' bez korzystania w
dowodzie ze statych specjalnych.

Przedstawiona konstrukcje bedziemy teraz powtarzaé. Niech T, oznacza teo-
rig, ktora powstata w wyniku zastosowania przedstawionej konstrukeji do teorii 7T;
(oczywiscie za kazdym razem bierzemy nowe state). Przyjmijmy, ze T, oznacza
Uien 1. Teorie tej postaci nazywa sie teoriami Henkina.

Lemat 2.36 Jezeli zapisana w jezyku L formula ¢ ma dowod w teoriv T, to moze
tez zostaé dowiedziona w teorii T bez korzystania w dowodzie ze statych specjalnych
uzytych w konstrukcyi Ty .

Dowd6d. Aby dowie$¢ ten lemat trzeba zauwazy¢ dwa fakty. Po pierwsze, jezeli
formuta jest twierdzeniem T, to daje sie tez dowie$¢ w teorii 7, dla pewnego n,
korzystajac z aksjomatow tej teorii i postugujac sie jej jezykiem. Nastepnie trzeba
zauwazy¢, ze daje sie tez dowies¢ w teorii 7,1, a na mocy zasady indukcji, takze
w teorii 1. O
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Twierdzenie 2.37 (Herbranda, o pelnosci) Jezeli zdanie ® jest tautologiq, to
ma dowdd w rachunku kwantyfikatorow, nie wymagajgcy zZadnych dodatkowych sym-
boli.

Dowdéd. Niech R oznacza rachunek kwantyfikatorow, a R, teorie Henkina otrzy-
mang z rachunku kwantyfikatoréw R. Skorzystamy z poprzedniego lematu i dowie-
dziemy tylko, ze ® jest twierdzeniem R... Przy okazji bedziemy musieli przyjrzeé
sie troche doktadniej skolemizacji.

Mozemy dodatkowo zatozy¢, ze ® jest w preneksowej postaci normalnej. Przyj-
mijmy, ze

O =3¥Vy VU oraz ¥ =Q121...Qrzx ¥
dla pewnych kwantyfikatorow @; i dla bezkwantyfikatorowej formuty . Dalsze
rozumowanie zostanie przeprowadzone przez indukcje ze wzgledu na liczbe kwan-
tyfikatoréw ogélnych w formule ® (lub egzystencjalnych w —®).

Roéwnolegle bedziemy definiowac postac¢ skolemowska formuty =&, ciag symboli
funkcyjnych f,... wystepujacych w postaci skolemowskiej, pewne funkcje F, .. .,
ktore statym teorii R, przyporzadkowujg inne state tej teorii, funkcje te beda
wyznaczane przez wprowadzane symbole funkcyjne, a takze cigg podstawien n
za zmienne wystepujace w —® i skwantyfikowane egzystencjalnie. Oprocz tego
bedziemy rozwazaé ciggi o postawien stalych specjalnych za zmienne wystepujace
w —® i skwantyfikowane ogoélnie.

Jezeli n jest pewnym podstawieniem, to symbolem 7. bedziemy oznaczaé posta-
wienie, ktére za dowolna zmienna z, zamiast termu 7(z) podstawia stala, ktéra jest
obliczana tak, jak warto$é termu 7(z) przy interpretacji symboli funkeyjnych f,. ..
jako funkcji F ... i zmiennych jako odpowiednio okreslonych stalych (szczegdly
péZniej stang sie jasne).

Cata konstrukcja bedzie miata nastepujace (dowodzone przez indukcje) wta-
snosci:

1) Domkniecie kwantyfikatorami ogblnymi formuty —1n jest postacia skolemow-
Sk@ P,

2) Dla kazdego podstawienia « za wszystkie zmienne (wystepujace w Jy =\, a
takze w —n,) zdanie (Jy ~Va) = —n.cc ma dowdéd w R, korzystajacy z
symboli formuty ¥ i statych specjalnych.

Poniewaz zostaly juz wprowadzone oznaczenia implikujace koniecznosé prze-
prowadzenia drugiego kroku indukcyjnego, wiec zaczynamy od niego.
Przeprowadzajac skolemizacje =® wprowadzamy symbol funkcyjny f. Mamy
wiec
(=®)" = (VI ~Vly — f(D)])".
Dla formuly ¥[y < ...] mozemy skorzystaé z zatozenia indukcyjnego. Wobec tego
(VZ Uy — f@)" =V... Wy — f@)]

dla podstawienia 7’ konstruowanego przez indukcje. Mozemy wiec przyjaé, ze
n=[y— @)
Nietrudno zauwazy¢, ze wtedy przeprowadzana konstrukcja ma wtasnosé 1), gdyz

(=®)" =V... Wy — f@)] =V... ~n.
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Teraz zdefiniujemy interpretacje symbolu f. Dla statych @ symbolem F(&@) be-
dziemy oznaczaé stalg specjalng dla formuty

—

Jy ~V [ — a]
Wobec tego aksjomatem teorii R, jest kazda formuta
(Jy V[T — d]) = ~V[y «— F(a)|[¥ < d]

(zauwazmy, ze kolejno$é podstawienr nie ma znaczenia).

Mozemy juz przystapi¢ do dowodu wtasnosci 2). Wezmy dowolne podstawie-
nie . Przyjmijmy tez, ze (W)~ to formuta =¥ pozbawiona poczatkowego bloku
kwantyfikatorow ogoélnych. Formuta

(Fy ~V[Z — a(D)]) = ~V[y « F(a(@))][T — a(Z)],
czyli
(Jy Vo) = —V[y — F(a(?))]a

jest aksjomatem teorii R, formuta
Uy — Fla(D)]a = (-¥)"[y — F(a(7))]a
jest prawem rachunku kwantyfikatorow, a formuta
(=) [y < Fla(@)]a = 2y — Fa@))]na
na mocy zalozenia indukcyjnego daje dowies¢ sie w R.. W koncu mamy

Pl — F(a(@)mer = —(ly — f(@))eca = —ihnecr.

Sktadajac te trzy implikacje i korzystajac z definicji n otrzymujemy
R F (Fy “Ya) = —n.a,

a wiec wlasnosé 2).

Sprawdzenie pierwszego kroku indukcyjnego jest proste. W tym przypadku nie
wprowadzamy symboli funkcyjnych, nie definiujemy ich interpretacji, a podstawie-
nie 7 definiujemy jako puste. Tym samym dowdd indukcyjny jest zakonczony i obie
podane na poczatku dowodu wtasnosci przeprowadzanej konstrukeji zachodza dla
wszystkich formut, w tym dla rozwazanej formuty &.

Skorzystamy teraz z twierdzenia 2.17 dla zdania ®. Postacig skolemowska —~®
jest formuta V... —n, jej negacja —(—®)* jest réwna 3... 1¥n Poniewaz U jest
tautologia, na mocy twierdzenia 2.17 tautologia jest formuta postaci

\/ i (9)

dla pewnych podstawien, ktore zmiennym przyporzadkowuja termy state. W pod-
stawieniach 7 i y; wystepuja symbole funkcyjne wprowadzone podczas skolemi-
zacji. Stopniowo zinterpretujemy je jako wskazane funkcje na statych. Niech wigc
a;(x) oznacza stala bedaca tak zinterpretowana wartoscia termu ;. Po zastapieniu
wszystkich zmiennych w formule 7 statymi analogicznie mozemy interpretowac
symbole funkcyjne w termach podstawianych przez 7. Po tych interpretacjach tau-
tologia (9) przeksztalci si¢ w formule

\/ ¢ncai'
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Ta formuta tez jest tautologia. Zmiany dokonywane na termach nie wplywaja na
posta¢ formuty, w ich wyniku moze najwyzej dojé¢ do utozsamienia niektérych
formut atomowych.

Teraz skorzystamy z whasnosci 2) dla podstawien «;. Wynika z niej, ze

Ry F Jy Vo, = Yn.q
dla wszystkich i. Poniewaz formuty
P = Jdy Y
sg prawami logicznymi, wiec
Ry F —® = —n.q;.
Na mocy prawa kontrapozycji otrzymujemy, ze
Roo F Ynec; = @
dla wszystkich 7. Stad
R F <\/ @/}770%) = O,
a poniewaz poprzednik tej implikacji jest tautologia, wiec takze
Ry @,

a to konczy dowdd. Mozna tez zauwazy¢, ze jezeli znajdziemy konkretng tautologie
(9), to na podstawie przedstawionego rozumowania mozna skonstruowaé efektyw-
nie dowdd formuly ® w rachunku kwantyfikatoréw. O

3 Funkcje obliczalne wedtug Herbranda i Godla

Koncepcja funkcji rekurencyjnych zasugerowana przez Herbranda zostata przed-
stawiona przez Godla podczas wyktadow Institute for Advanced Study w 1934 roku
i opublikowana w formie notatek z wyktadu sporzadzonych przez J.B. Rossera i
S.C. Kleene’ego, doktorantow Alonzo Churcha.

3.1 Termy

Bedziemy postugiwaé sie alfabetem, w ktérym jest nieskonczenie wiele (przynaj-
mniej potencjalnie) zmiennych i jest nieskoniczenie wiele symboli funkcyjnych kaz-
dej mozliwej arnosci.

W tym alfabecie wyrdézniamy jedna zmienng 0 i jeden symbol funkcyjny jedno-
argumentowy S. Zmienna 0 jest taka zmienna, pod ktéra nie wolno podstawiac.

Dalej rozwazamy termy nad takim alfabetem. Symbolem n oznaczamy termy
zdefiniowane rekurencyjnie réwnosciami 0 = 0 oraz n+ 1 = S(n) zachodzacymi
dla wszystkich liczb naturalnych n.
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3.2 Roéwnosci i uktady

Roéwnosci to pary terméw. Rownosé dwoch termoéw zapisujemy w postaci t1 = ts.
Od termu t; wystepujacego w réwnosci zgdamy, aby nie zaczynat sie symbolem S.
Zwroéémy uwage, ze podany warunek swiadczy o tym, ze termy ¢ i t5 odgrywaja
w rownosci inng role. Intuicyjnie réwnosé t; = to interpretujemy jako informacje,
ze aby znalezé warto$¢ termu ¢ (czyli termu postaci f(...), a wiec warto$¢ funke;ji
f dla pewnych argumentéw) nalezy obliczy¢ wartosé termu ts.

Uktadem rownosci nazywamy ciag rownosci. Pierwszy symbol pierwszego termu
ostatniej réwnosci uktadu F nazywamy symbolem gtéwnym uktadu E. Intuicyjnie,
uktad F definiuje funkcje oznaczang symbolem gtéwnym uktadu F.

3.3 Wyprowadzenia

Wyprowadzeniem z uktadu E nazywamy ciag rownosci rq, ..., r, taki, ze dla kaz-
dego i < n r6WnNos¢ r; z tego ciggu

1) albo nalezy do F,

2) albo powstala przez podstawienie w rownosci r; dla j < i za pewng zmienng
x (rézng od 0) termu postaci n dla pewnego naturalnego n (r; = r;[z < nJ).

3) albo tez powstala przez zastgpienie w pewnym miejscu w réownosci r; dla
Jj < i podtermu postaci f(n,...,n;) termem m pod warunkiem, ze dla
pewnego k < i réwnosé 1, jest tozsama z f(ng,...,ng) = m.

3.4 Analiza pojecia wyprowadzenia

Teraz termy bedziemy uwazac¢ takze za drzewa z podwojnymi etykietami. Oprocz
zwyktych etykiet poszczegélne wezty beda etykietowane liczbami naturalnymi z
tym, ze te etykiety beda zdefiniowane lub nie. Etykiety bedace liczbami natural-
nymi bedziemy nazywaé¢ wartosciami i bedziemy moéwi¢ o drzewach z wartoscio-
waniem.

Drzewo bedzie poprawnie zwartosciowane (albo dwa drzewa beda poprawnie
zwarto$ciowane), jezeli

1) dla kazdej zmiennej x w sytuacji, gdy jeden z weztéw z etykieta x ma zde-
finiowang warto$¢, pozostate tez majg zdefiniowang wartos¢ i warto$ciami
tych weztéw jest ta sama liczba,

2) kazdy wezel z etykieta 0 ma wartosé 0,

3) wezet z etykieta S ma warto$¢ n wtedy i tylko wtedy, gdy n > 0 i wezel
potomny ma warto$¢ n — 1.

Drzewo jest poprawnie zwartosciowane ze wzgledu na uktad rownosci F, jezeli
jest poprawnie zwartosciowane i dodatkowo

1) jezeli wezet z symbolem funkcyjnym f # S ma wartosé m, to wszystkie wezty
potomne maja wartosci,

2) jezeli wezly potomne takiego wezta maja wartosci ny, ..., ng, to E'F f(ny, ..., ng)
m.
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Niech T bedzie drzewem z wartosciami. Kazdy wezet w tego drzewa opisuje
pewien term 7T'(w) zdefiniowany zgodnie ze wzorem

n jezeli w ma okreslong wartos¢ i rowna si¢ ona n,
T(w)=14 x jezeli w nie ma wartosci i jest etykietowany zmienng x,

f(T(wy),...) jezeli w nie ma wartosci, ma etykiete f i potomkow wy, ...

Bedziemy méwié, ze drzewo T opisuje term T'(wy), gdzie wy jest korzeniem 7.

Lemat 3.1 Przypus$émy, ze E - t = s. Wtedy istnieje réounosé t' = s’ € E, a
jezeli termy t' i ' potraktujemy jako drzewa D(t') i D(s') odpowiednio, to istniejq
tez poprawne ze wzgledu na E warto$ciowania tych drzew takie, ze D(t') opisuge t
i D(s') opisuje s.

3.5 Funkcje obliczalne

Czesciowa funkcja F' : N¥ — N jest obliczalna wedtug Herbranda-Godla, jezeli
istnieje uktad réwnosci £ z k-arnym symbolem gléwnym f taki, ze

F(ny,...,ng) =m <= EF f(ng,...,ng) =

3

dla wszystkich liczb naturalnych nq, ..., ng, m.

Lemat 3.2 Dodawanie, mnozenie, funkcje I, 1, funkcja charakterystyczna nieréw-
no$ci i funkcja Ackermanna sq obliczalne wedtug Herbranda-Gédla.

Lemat 3.3 Klasa funkcji obliczalnych wedtug Herbranda-Gddla jest zamknieta ze
wzgledu na skladanie oraz rekursje prostq (i inne, poprawne schematy rekursji).

Lemat 3.4 Klasa funkcji obliczalnych wedtug Herbranda-Gaodla jest zamknieta ze
wzgledu na operacje minimum.

Dowdd. Przypusémy, ze f jest funkcja obliczalng wedtug Herbranda-Godla, defi-
niowang uktadem réwnan Ey z symbolem gltéwnym f. Wezmy nastepujacy uktad
rownan:

g9(z,0) = 5(0),
9(x,S(y)) = g(z,y) - f(z,y),
h(S(x),0,y) =y,

k(x) = h(g(z,y), 9(x, S(y)), y)-
Uktad E, czyli podany uklad uzupetiony o E; i uklad definiujacy mnozenie de-

finiuje funkcje py (f(z,y) = 0).
Najpierw zauwazmy, ze dwie pierwsze réwnosci definiuja funkcje g, ktéra mozna
tez zdefiniowaé wzorem
g(x,y) - H f([)?, 2)

z2<y

Zauwazmy tez, ze

py (f(z,y) =0) = py (9(z,S(y)) = 0).

Dalej wystarczy wiec wykazacé, ze caly uktad E definiuje funkcje

k(x) = py(g(z, S(y)) = 0).
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Przypusémy, ze E F k(n) = m. Réwnosé ta moze wynikaé tylko z ostatniej row-
nosci £. Oznacza to, ze w jej dowodzie zostaly dowiedzione tez rownosci pozwalaja-
ce na zwartosciowanie wszystkich podterméw termu h(g(x,y), g(z, S(y)),y), a tak-
ze w jakis sposob zostata zwartosciowana zmienna y. Tak wiec istnieja liczby u, v, w
takie, ze w jest wartoscia zmiennej y oraz E F g(n,w) =u, E+F g(n,S(w)) =v i
E b h(u,v,w) = m. Poniewaz uktad E definiuje tez opisana wyzej funkcje g, wiec
g(n,w) = u oraz g(n,w + 1) = v. Ostatnia z réwnos$ci musiata natomiast zostaé
wyprowadzona z przedostatniej rownosci uktadu E. Tak wiec w = m, v = 0 oraz
u > 0. Mamy wiec, ze g(n,m) > 0 oraz g(n,m + 1) = 0. Funkcja ¢ jest jednak
specyficzna: warunek g(n,m) > 0 implikuje, ze takze g(n,i) > 0 dla wszystkich
i < m. Stad otrzymujemy, ze uy (g(n,S(y)) =0) =m. O

Whniosek 3.5 Wszystkie funkcje rekurencyjne sq obliczalne wedtug Herbranda-
Godla.

Twierdzenie 3.6 Klasa funkcji obliczalnych wedtug Herbranda-Gddla jest réwna
klasie funkcji rekurencyjnych.



