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1 Sylwetka Herbranda

Jacques Herbrand urodził się 12 lutego 1908 roku. Był nieslychanie zdolnym czło-
wiekiem. W latach 1928-29 przygotował rozprawę doktorską opublikowaną w Pol-
sce w 1930 roku. Zawiera ona m.in. dowód twierdzenia o dedukcji i konstruktywny
dowód twierdzenia Gödla o pełności, otrzymany w oparciu o tzw. twierdzenie Her-
branda, którego dowód zawiera algorytm semirozstrzygający, czy dane zdanie jest
tautologią rachunku kwantyfikatorów. Wiosną 1931 roku Herbrand miał zasuge-
rował Gödlowi rozszerzenie definicji klasy funkcji rekurencyjnych (pochodzącej z
pracy Gödla) po to, by opisać pojęcie obliczalności. Latem 1931 roku, 27 sierpnia,
zginął w Alpach podczas wspinaczki.
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2 Twierdzenie Herbranda

2.1 Rodzaje formuł

Formuła jest tautologią, jeżeli jest spełniona w każdej strukturze przy każdym
wartościowaniu. Oczywiście, zdanie jest tautologią wtedy i tylko wtedy, gdy jest
spełnione w każdej strukturze.

Formuła jest sprzeczna, jeżeli nie jest spełniona przy żadnym wartościowaniu
w żadnej strukturze. Dowodzi się korzystając z lematu 5.4 z części 2, że zdanie jest
sprzeczne wtedy i tylko wtedy, gdy nie jest spełnione w żadnej strukturze.

Formuła jest spełnialna, jeżeli jest struktura, w której jest spełniona przy pew-
nym wartościowaniu. Podobnie jak wyżej dowodzi się, że zdanie jest spełnialne
wtedy i tylko wtedy, gdy jest spełnione w pewnej strukturze.

Lemat 2.1 Dla dowolnej formuły ϕ zachodzą następujące równoważności:

1) ϕ jest tautologią wtedy i tylko wtedy, gdy ¬ϕ jest sprzeczna,

2) ϕ jest spełnialna wtedy i tylko wtedy, gdy ϕ nie jest sprzeczna. 2

2.2 Skolemizacja

Będziemy teraz rozważać ustalony język pierwszego rzędu, pozwalający na za-
pisywanie dowolnych formuł z kwantyfikatorami. Każdej formule ϕ tego języka
przypiszemy pewną formułę ϕ∗.

Formułę ϕ∗ wyliczamy w następujący sposób:

1) sprowadzamy ϕ do preneksowej postaci normalnej, a więc znajdujemy rów-
noważną jej formułę, która zaczyna się blokiem kwantyfikatorów, po którym
znajduje się formuła bezkwantyfikatorowa (można dodatkowo sprowadzić tę
formułe na przykład do koniunkcyjnej postaci normalnej),

2) domykamy postać normalną formuły ϕ (dopisując do niej kwantyfikatory
ogólne po wszystkich zmiennych wolnych),

3) dopóki są w otrzymanej formule kwantyfikatory egzystencjalne i można jej
nadać postać

∀x1 . . . ∀xn ∃y ψ

zastępujemy ją formułą

∀x1 . . . ∀xn ∃y ψ[y ← f(x1, . . . , xn)],

gdzie f jest nowym symbolem funkcyjnym. Analogiczną definicję przyjmu-
jemy w przypadku, gdy n = 0, wtedy symbol f powinien być nową stała.

4) usuwamy z otrzymanej w ten sposób formuły kwantyfikatory dopisane w
punkcie 2). Otrzymaną w ten sposób formułę oznaczamy symbolem ϕ∗.
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2.3 Własność skolemizacji

W logice klasę formuły definiujemy nieco inaczej niż w arytmetyce. Formuła jest
klasy Π1 (Σ1), jeżeli zaczyna się blokiem kwantyfikatorów uniwersalnych (odpo-
wiednio: egzystencjalnych), po której jest już formuła bez kwantyfikatorów.

Najpierw powinniśmy zauważyć, że zachodzi oczywisty

Lemat 2.2 Formuła ϕ∗ jest klasy Π1. 2

Lemat 2.3 Zdanie ∀~x ∃y ϕ jest spełnione w strukturze A wtedy i tylko wtedy, gdy
w pewnym rozszerzeniu A′ struktury A o interpretację symbolu funkcyjnego f jest
spełnione zdanie ∀~x ϕ[y ← f(~x)].

Dowód. Zdanie ∀~x ∃y ϕ jest logiczną konsekwencją zdania ∀~x ϕ[y ← f(~x)], jest
więc spełnione w strukturze A′, a także w strukturze powstającej przez usunięcie
interpretacji zbędnych symboli.

Aby dowieść implikację w drugą stronę zauważmy, że strukturze można zdefi-
niować całkowitą funkcję F taką, że

A |= ϕ[~x← ~a][y ← F (~a)].

Łatwo sprawdzić posługując się lematem ?? (lemat 5.3 z części 2), że jeżeli F
uznamy za interpretację symbolu f i dodamy do A, to w otrzymanej strukturze
A′ będzie spełnione zdanie ∀~x ϕ[y ← f(~x)]. 2

Możemy teraz wyprowadzić wersję lematu 2.3 dotyczącą operacji ∗:

Lemat 2.4 Formuła ϕ jest spełniona w strukturze A wtedy i tylko wtedy, gdy w
pewnym rozszerzeniu A′ struktury A o interpretacje dodanych symboli funkcyjnych
jest spełniona formuła ϕ∗.

Dowód. Konstrukcja ϕ∗ polega utworzeniu pewnego ciągu formuł zaczynającego
się ϕ i kończącego się ϕ∗. Dla każdej pary kolejnych formuł w tym ciągu, spełnianie
w strukturze A pierwszej jest równoważne spełnianiu w pewnym rozszerzeniu A
drugiej. W większości przypadków tak jest na podstawie lematu 2.3.

Pierwsze przekształcenie polega na zastąpieniu formuły ϕ jej postacią normal-
ną ψ. Równoważność ϕ ⇔ ψ jest prawem rachunku kwantyfikatorów, na mocy
twierdzenia 5.6 o poprawności (część 2) jest spełniona w każdej strukturze. Stąd
spełnianie w strukturze ϕ jest równoważne spełnianiu w niej ψ. W pozostałych
przypadkach potrzebny fakt wynika z lematu 5.5 z części 2. 2

Z powyższego lematów wynika seria wniosków wyjaśniających sens logiczny
operacji ∗. W szczególności

Wniosek 2.5 Zdanie ϕ jest spełnialne wtedy i tylko wtedy, gdy spełnialne jest ϕ∗.

Dowód. Jest to właściwie oczywista konsekwencja poprzedniego lematu. 2

Wniosek 2.6 Zdanie ϕ jest sprzeczne wtedy i tylko wtedy, gdy ϕ∗ jest sprzeczne.2

Wniosek 2.7 Zdanie ϕ jest tautologią wtedy i tylko wtedy, gdy (¬ϕ)∗ jest sprzecz-
na. 2

Wniosek 2.8 Zdanie ϕ jest tautologią wtedy i tylko wtedy, gdy ¬(¬ϕ)∗ jest tau-
tologią. 2

Na koniec zauważmy, że formuła ¬(¬ϕ)∗ jest z oczywistych powodów równo-
ważna formule klasy Σ1. Tak więc badanie, czy ϕ jest tautologią, sprowadza się
do badania, czy jest tautologią pewna, łatwa do zalgorytmizowanego wyliczenia
formuła klasy Σ1.
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2.4 Model Herbranda

Teraz musimy rozważać język z przynajmniej jedną stałą. Jeżeli z jakiś powodów
rozważamy język bez stałych, to dodajemy do niego pewną stałą, która ma je-
dynie spełnić podany wymóg formalny. Niech T0 oznacza zbiór termów stałych
w tym języku. Będziemy rozważać modele dla rozważanego języka z uniwersum
równym T0.

W takich modelach symbole funkcyjne możemy interpretować w specyficzny
sposób. Przyjmujemy, że k-argumentowy symbol f oznacza funkcję F : T k0 → T0
taką, że

F (t1, . . . , tk) = f(t1, . . . , tk),

czyli operację tworzenia termu z głównym symbolem f . Analogicznie, stałą c w
takim uniwersum interpretujemy jako term c.

Modele o uniwersum T0, w których stałe i symbole funkcyjne interpretujemy w
podany sposób, nazywamy modelami Herbranda.

Lemat 2.9 W dowolnym modelu Herbranda H wartość termu t przy wartościo-
waniu h jest równa

t[x← h(x)][y ← h(y)] . . . .

W szczególności, wartością termu stałego t przy dowolnym wartościowaniu w mo-
delu Herbranda jest term t. Ponadto, dla dowolnej formuły ϕ mamy

H |= ϕ[h] ⇔ H |= ϕ[x← h(x)][y ← h(y)] . . . 2

Tak więc w modelach Herbranda liczenie wartości termu przy danym warto-
ściowaniu można sprowadzić do liczenia wartości pewnego termu stałego. Podobnie
spełnianie formuły przy danym wartościowaniu jest równoważne spełnianiu pewnej
formuły stałej, czyli bez zmiennych wolnych.

2.5 Model Herbranda wyznaczony przez daną strukturę

Przypuśćmy, że A jest dowolną, ustaloną strukturą dla rozważanego języka. Sym-
bolem val będziemy w tym rozdziale oznaczać funkcję przyporządkowującą termo-
wi t ∈ T0 jego wartość w strukturze A.

Lemat 2.10 Jeżeli h jest wartościowaniem zmiennych w modelu Herbranda, to

val(t[h]) = t[val ◦ h]. 2

Struktura A wyznacza pewien model Herbranda HA. W modelu HA symbol
relacyjny r jest interpretowany jako relacja R taka, że

〈t1, . . . , tk〉 ∈ R ⇐⇒ A |= r(t1 . . . , tk).

Z powyższej definicji otrzymuje, że dla specyficznych wartościowań zmiennych,
mających postać val ◦ h zachodzi równoważność

A |= r(t1, . . . , tn)[val ◦ h]⇔ HA |= r(t1, . . . , tn)[h].

Mamy bowiem

A |= r(t1, . . . , tn)[val ◦ h]⇔ 〈t1[val ◦ h], . . . , tn[val ◦ h]〉 ∈ RA ⇔

⇔ 〈val(t1[h]), . . . , val(tn[h])〉 ∈ RA ⇔ A |= r(t1[h], . . . , tn[h])⇔
⇔ 〈t1[h], . . . , tn[h]〉 ∈ R⇔ HA |= r(t1[h], . . . , tn[h])⇔ HA |= r(t1, . . . , tn)[h].
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Lemat 2.11 Jeżeli ϕ jest formułą bez kwantyfikatorów, a h jest wartościowaniem
zmiennych w strukturze HA (w zbiorze T0), to następujące warunki są równoważne;

1) A |= ϕ[val ◦ h]

2) HA |= ϕ[h]. 2

Wniosek 2.12 Jeżeli ϕ jest formułą klasy Σ1 oraz HA |= ϕ, to A |= ϕ.

Wniosek 2.13 Zdanie ϕ klasy Σ1 jest tautologią wtedy i tylko wtedy, gdy jest
spełnione w każdym modelu Herbranda.

Wniosek 2.14 Zdanie ¬ϕ∗ jest tautologią wtedy i tylko wtedy, gdy zdanie ¬ϕ∗
jest spełnione w każdym modelu Herbranda.

Twierdzenie 2.15 Zdanie ϕ jest tautologią wtedy i tylko wtedy, gdy zdanie ¬(¬ϕ)∗

jest spełnione w każdym modelu Herbranda.

W tzw. teorii modeli pokazuje się, że dla zwykłych niesprzecznych teorii T każ-
dy nieskończony zbiór można przekształcić w model teorii T . Jeżeli nawet utoż-
samimy izomorficzne modele teorii T , to jest ich więcej niż każda z góry zadana
moc. Modeli Herbranda jest jednak albo skończenie wiele (w przypadku skończo-
nego uniwersum), albo continuum. Twierdzenie 2.15 mówi więc, że badając, czy ϕ
jest tautologią, można sprawdzić spełnianie prostszej formuły ¬(¬ϕ)∗ w stosunko-
wo małej „liczbie” modeli, dla najwyżej continuum modeli.

2.6 Kolejny krok

Twierdzenie 2.16 Niech ψ będzie formułą bez kwantyfikatorów. Zdanie ϕ =
∃x1 . . . ∃xnψ = ∃~x ψ jest spełnione w każdym modelu Herbranda wtedy i tylko
wtedy, gdy istnieje skończenie wiele układów termów ~t1, . . . ,~tm ∈ T n0 takich, że
formuła

ψ[~x← ~t1] ∨ . . . ∨ ψ[~x← ~tm]

jest tautologią w sensie rachunku zdań (różne formuły atomowe uważamy za różne
zmienne zdaniowe).

Dowód. Zauważmy, że formuła ϕ wynika z każdego członu podanej alternatywy i z
całej alternatywy. Jeżeli ta alternatywa jest tautologią, to jest spełniona w każdym
modelu Herbranda, w każdym takim modelu są też spełnione wszystkie wnioski z
tej alternatywy i ostatecznie, w każdym modelu Herbranda jest spełniona formuła
ϕ. Dowód w drugą stronę jest trudniejszy.

Ustawmy w ciąg wszystkie zdania atomowe (czyli formuły atomowe bez zmien-
nych wolnych). Na ogół jest ich nieskończenie wiele, taki jest zresztą istotny przy-
padek. Niech σn oznacza n-te zdanie atomowe w utworzonym ciągu. Będziemy
teraz rozważać skończone i nieskończone ciągi zero-jedynkowe.

Aby zdefniować model Herbranda należy podać, które zdania atomowe są w
nim spełnione. Mając więc nieskończony ciąg zero-jedynkowy α ∈ 2N możemy
zdefiniować model Herbranda Hα przyjmując, że

Hα |= σn ⇐⇒ α(n) = 1.

Zauważmy od razu, że w ten sposób można opisać wszystkie modele Herbranda.
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Przy okazji zwróćmy też uwagę na to, że taki ciąg α może być dla nas warto-
ściowaniem w sensie znanym z rachunku zdań. Faktycznie jest to wartościowanie
zdań atomowych, ale także pewnych obiektów, które możemy uważać za zmien-
ne zdaniowe i z których możemy budować formuły rachunku zdań. Mając takie
wartościowanie możemy wyliczyć wartość logiczną dowolnego zdania zapisanego w
rozważanym języku bez użycia kwantyfikatorów.

Każdemu α ∈ 2N przypiszemy teraz pewną liczbę

m(α) = min{k ∈ N : ∃~t ∈ T n0 (Hα |= ψ[~x← ~t] ∧

∧ ∀l > k formuła σl nie jest podformułą ψ[~x← ~t])}.
Z założenia, że w modelu Hα jest spełnione zdanie ϕ wynika, że liczba m(α) jest
dobrze zdefiniowana. Tak jest, ponieważ w modelach Herbranda każdy element
jest wartością termu stałego.

Liczby m(α) mają interesujące własności. Na przykład, jeżeli α, β ∈ 2N oraz
α(i) = β(i) dla wszystkich i ¬ m(α), to m(α) = m(β).

Teraz będziemy zajmować się wartością

max{m(α) : α ∈ 2N}

i – aby zbadać tę wartość – rozważać zbiór

X = {〈α(0), . . . , α(m(α))〉 : α ∈ 2N}

skończonych ciągów zero-jedynkowych.
Przypuśćmy, że wspomniane maksimum nie jest określone. Wtedy zbiór X jest

nieskończony i zawiera dowolnie długie ciągi. W takiej sytuacji istnieje nieskoń-
czony ciąg γ, którego każdy skończony ciąg początkowy jest prefiksem pewnego
elementu zbioru X. Takie γ konstruujemy przez indukcję. Przypuśćmy, że zdefi-
niowaliśmy już γ(0), γ(1), . . . , γ(n− 1) i ciąg ten jest taki, że

Xn = {〈x0, x1, . . . , xm−1〉 ∈ X : n < m ∧ ∀i < n γ(i) = xi}

jest nieskończony. Oczywiście,

Xn = {〈x0, x1, . . . , xm−1〉 ∈ X : n < m ∧ xn = 0 ∧ ∀i < n γ(i) = xi}∪

∪{〈x0, x1, . . . , xm−1〉 ∈ X : n < m ∧ xn = 1 ∧ ∀i < n γ(i) = xi}.
Jeden ze składników tej sumy jest nieskończony. Jeżeli jest to pierwszy skład-
nik, to przyjmujemy, że γ(n) = 0. Zbiór Xn+1 jest nieskończony, gdyż różni się
od pierwszego składnika najwyżej jednym elementem 〈γ(0), γ(1), . . . , γ(n− 1), 0〉.
Analogicznie definiujemy γ(n) w drugim z możliwych przypadków.

Każdy prefiks tak zdefiniowanego ciągu γ daje się wydłużyć do elementu X
(nawet na nieskończenie wiele sposobów).

Także ciąg 〈γ(0), . . . , γ(m(γ))〉 można więc wydłużyć do 〈β(0), . . . , β(m(β))〉
dla pewnego β takiego, że m(γ) < m(β). Ze wspomnianej wyżej własności wynika
jednak, że m(γ) = m(β). Uzyskana sprzeczność dowodzi, że wspomniane maksi-
mum jest liczbą naturalną, a zbiór X jest skończony.

Teraz, dla każdego elementu s ∈ X bierzemy ciąg αs taki, że s = 〈αs(0), . . . , αs(m(αs))〉
oraz termy ~ts, dla których

Hαs |= ψ[~x← ~ts].

Nietrudno zauważyć, że alternatywa∨
s∈X

ψ[~x← ~ts]

jest szukaną tautologią rachunku zdań. 2
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Twierdzenie 2.17 (Herbrand) Przypuśćmy, że mamy zdanie ϕ i formuła ¬(¬ϕ)∗

jest równoważna ∃x1 . . . xn ψ, gdzie ψ jest formułą bez kwantyfikatorów. Zdanie ϕ
jest tautologią wtedy i tylko wtedy, gdy istnieje skończony ciąg układów termów
~t1, . . . ,~tm ∈ T n0 taki, że formuła

ψ[~x← ~t1] ∨ . . . ∨ ψ[~x← ~tm]

jest tautologią. Dokładniej, jest ona prawdziwa bez względu na to, jakie są wartości
logiczne formuł atomowych z tej formuly.

Dowód. Jest to wniosek z twierdzeń 2.15 i 2.16. 2

2.7 Implementacje algorytmu Herbranda

2.7.1 Próba Paula Gilmora

Twierdzenie Herbranda podaje zalgorytmizowany sposób badania, czy dana for-
muła jest prawem rachunku kwantyfikatorów, określany jako algorytm Herbranda.
Wobec twierdzenia o dedukcji może być też podstawą algorytmu badającego, czy
daną formułę można dowieść w skończenie aksjomatyzowalnej teorii, np. w teorii Q
Robinsona. Oczywiście, w obu wspomianych przypadkach otrzymujemy algorytmy
semirozstrzygające.

Pierwszą próbę implementacji algorytmu Herbranda podjął w 1960 roku Paul
Gilmore z IBM. Próba ta została uznana za nieudaną. Gilmore wykorzystywał
procedurę badania tautologii opartą o następujący

Lemat 2.18 Formuła rachunku zdań ϕ w koniunkcyjnej postaci normalnej jest
tautologią wtedy i tylko wtedy, gdy każdy występujący w niej człon koniunkcji jest
alternatywą postaci

. . . ∨ p ∨ . . . ∨ ¬p ∨ . . .
dla pewnej zmiennej zdaniowej p (ewentualnie dla negacji p). 2

2.7.2 Metoda Martina Davisa i Hilarego Putnama

Twierdzeniu 2.17 można też nadać postać

Twierdzenie 2.19 (Herbrand) Przypuśćmy, że mamy zdanie ϕ i formuła ¬(¬ϕ)∗

jest równoważna ∃x1 . . . xn ¬δ, gdzie δ jest formułą bez kwantyfikatorów, najlepiej
w koniunkcyjnej postaci normalnej. Zdanie ϕ jest tautologią wtedy i tylko wtedy,
gdy istnieje skończony ciąg układów termów ~t1, . . . ,~tm ∈ T n0 taki, że formuła

δ[~x← ~t1] ∧ . . . ∧ δ[~x← ~tm]

jest sprzeczną formułą rachunku zdań. Dokładniej, okaże się ona sprzeczna, jeżeli
różne jej formuły atomowe będziemy uważać za różne zmienne zdaniowe.

Dowód. Jest to oczywiste przeformułowanie twierdzenia 2.17. 2

Metodę badania tautologii lepiej dostosowaną do algorytmu Herbranda i opar-
tego na wyżej przytoczonej wersji twierdzenia Herbranda zaproponowali w 1960
roku Martin Davis i Hilary Putnam. Główną jej częścią jest algorytm

Φ := ε;
for all układów termów ~t

Φ := Φ ∧ δ[~x← ~t];
if Φ jest sprzeczna, then return ϕ jest tautologią.
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2.7.3 Badanie sprzeczności według Davisa i Putnama

Głównym osiągnięciem Davisa i Putnama było zwrócenie uwagi na regułę rezo-
lucji i opracowanie opartego o tę regułę algorytmu badania sprzeczności formuł
rachunku zdań w koniunkcyjnej postaci normalnej.

Koniunkcje i alternatywy w tym algorytmie są implementowane jako zbiory
członów. Tak więc sposób implementacji formuł gwarantuje przemienność i łącz-
ność obu spójników. Przy takiej implementacji dobrze jest założyć, że koniunkcje
i alternatywy rozumiane jako zbiory są niepuste. Taka implementacja zwykłych
formuł prowadzi do zbiorów niepustych. Dalej zakładamy, że zbiór pusty nie jest
ani koniunkcją, ani alternatywą.

Danymi dla algorytmu jest zbiór alternatyw literałów, czyli zbiorów zmiennych
zdaniowych i ich negacji. Interesuje nas, czy jest to zbiór sprzeczny lub czy dana
koniunkcja jest sprzeczna.

Dany zbiór alternatyw podczas badania sprzeczności jest upraszczany na kilka
sposobów, w tym oparte o następujące lematy i podobne. W skrócie, stosujemy
stosujemy trzy metody przekształcania danych: usuwanie tautologii, usuwanie po-
jedyńczych literałów i rezolucję.

Lemat 2.20 Jeżeli formuła τ jest tautologią, to formuła ϕ∧τ jest sprzeczna wtedy
i tylko wtedy, gdy sprzeczna jest formuła ϕ. 2

Zgodnie z tym lematem, dany zbiór alternatyw, którego sprzeczność jest badana
można uprościć usuwając z niego alternatywy, w których pewna zmienna występuje
z negacją i bez. Sprzeczność obydwu takich zbiorów jest równoważna.

Lemat 2.21 Jeżeli zmienna zdaniowa p nie występuje w ψ, to formuła (p∨ϕ)∧ψ
jest sprzeczna wtedy i tylko wtedy, gdy ψ jest sprzeczna. 2

Podany algorytm pozwala w pewnych przypadkach zastąpić badanie sprzeczno-
ści zbioru alternatyw badaniem innego zbioru, złożonego z alternatyw, w których
nie występuje określony literał p. Można tak postąpić, jeżeli w danym zbiorze nie
występuje ¬p.

Lemat 2.22 Jeżeli zmienna zdaniowa p nie występuje w ψ, to formuła p ∧ (p ∨
ϕ) ∧ (¬p ∨ ψ) jest sprzeczna wtedy i tylko wtedy, gdy ψ jest sprzeczna. 2

Jeżeli w danym zbiorze występuje alternatywa, której jedynym członem jest
literał p, to można taki zbiór uprościć usuwając z niego wszystkie alternatywy, w
których występuje literał i usuwając z pozostałych alternatyw negację tego literału.

Główny sposób przekształcania danego zbioru odpowiada wnioskowaniu za po-
mocą reguły rezolucji. Badanie metodą Davisa - Putnama, czy formuła jest tauto-
logią, może być rozumiane jako dowodzenie tego faktu metodą nie wprost stosując
tylko regułę rezolucji

δ ∨ ϕ, ¬δ ∨ ψ
ϕ ∨ ψ

,

choć w specyficznej sytuacji i ze wspomaganiem potrzebnym po to, by bez proble-
mów zatrzymać algorytm. Ten główny sposób przekształcania jest oparty o

Lemat 2.23 Załóżmy, że zmienna zdaniowa p nie występuje w formułach ϕ, ψ
oraz δ. Wtedy formuła (p ∨ ϕ) ∧ (¬p ∨ ψ) ∧ δ jest sprzeczna wtedy i tylko wtedy,
gdy sprzeczna jest formuła (ϕ ∨ ψ) ∧ δ. 2
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2.7.4 Metoda Johna Alana Robinsona

Algorytm Herbranda korzystający z metody Davisa i Putnama polega szukaniu
dwóch rzeczy: odpowiednich podstawień i dowodu sprzeczności. W 1965 roku uka-
zała się praca Johna Robinsona, w której zauważył, że za jednym zamachem mo-
żemy szukać podstawień i dowodu sprzeczności. Metoda Robinsona oparta jest o
taką oto wersję wniosku 2.6:

Wniosek 2.24 Zdanie ϕ jest tautologią wtedy i tylko wtedy, gdy zdanie (¬ϕ)∗ jest
sprzeczne, lub równoważnie, gdy daje się z niego wyprowadzić sprzeczność. 2

Natomiast badanie sprzeczności w tej metodzie jest oparte o regułę rezolucji
bardziej ogólną niż stosowana przez Davisa.

Podstawianie i unifikatory. Najpierw musimy uogólnić operację podstawiania
ϕ[x ← t]. Zwykle podstawiamy za jedną zmienną, mogliśmy też iterować podsta-
wianie i podstawiać po kolei za kilka zmiennych. Teraz przez podstawianie bę-
dziemy rozumieć zbiór par złożonych ze zmiennej i termu, i będziemy stosować
następującą notację

θ = [x1 ← t1, . . . , xn ← tn],

gdzie xi są zmiennymi, a ti – termami. Wykonując podstawienie θ jednocześnie
za zmienne xi podstawiamy termy ti. Definiując takie podstawianie zmieniamy
sposób podstawiania za zmienne przyjmując

xiθ = xi[x1 ← t1, . . . , xn ← tn] = ti

oraz
yθ = y[x1 ← t1, . . . , xn ← tn] = y

dla zmiennych y różnych od x1, . . . , xn.
Podstawienie θ = [x1 ← y1, . . . , xn ← yn] nazywamy przemianowaniem zmien-

nych, jeżeli y1, . . . , yn są zmiennymi i zależność między xi oraz yi jest różnowarto-
ściowa.

Podstawienie θ jest unifikatorem termów t1 i t2, jeżeli t1θ = t2θ. Analogicznie
definiujemy unifikator formuł bez kwantyfikatorów (takie formuły można uważać
za termy, w których występują także funkcje o wartościach boolowskich).

Podstawienie θ0 jest najogólniejszym unifikatorem termów t1 i t2, jeżeli jest
unifikatorem tych termów i dla każdego innego unifikatora θ istnieje podstawienie
θ′ takie, że t1θ = t1θ0θ

′ oraz t2θ = t2θ0θ
′.

Reguła rezolucji wg Robinsona. Robinson zauważył, że do wyprowadzania
sprzeczności w tym kontekście przydatna jest następująca reguła rezolucji

δ1 ∨ ϕ, ¬δ2 ∨ ψ
ϕθ ∨ ψθ

,

gdzie θ jest najogólniejszym unifikatorem formuł (atomowych) δ1 i δ2, rozumiana
podobnie, jak w Prologu. W szczególności dopuszczamy stosowanie tej reguły w
sytuacjach, gdy podane przesłanki (jedna lub obie) redukują się do formuł δ1 i
¬δ2.

Przytoczona reguła rezolucji rozumiana literalnie nie wystarcza do wyprowa-
dzania sprzeczności ze sprzecznych zbiorów formuł. Świadczy o tym następujący
przykład: za pomocą tej reguły nie wyprowadzimy sprzeczności z formuł A(x),
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¬B(x) oraz ¬A(x) ∨ B(f(x)). Możemy z nich wyprowadzić tylko B(f(x)). Z for-
muł ¬B(x) i B(f(x)) nic nie wyprowadzimy, ponieważ napisy B(x) i B(f(x)) nie
dają się zunifikować. Mimo to formuła ∀x (A(x) ∧ ¬B(x) ∧ (¬A(x) ∨ B(f(x))))
jest sprzeczna.

Wobec tego dopuszczamy jeszcze możliwość stosowania następującej reguły
wnioskowania:

ϕ

ϕθ

dla dowolnego przemianowania zmiennych θ. Zwykle obie podane tutaj reguły sto-
sujemy w powiązany sposób: najpierw w formułach, które mają stać się przesłan-
kami reguły rezolucji przemianowujemy zmienne, a następnie stosujemy rezolucję.

W przytoczonym przykładzie łatwo uzyskać sprzeczność po przemianowaniu
w formule ¬B(x) zmiennej x na y. Najogólniejszym unifikatorem B(y) i B(f(x))
jest podstawienie [y ← f(x)]. Po wykonaniu tego podstawienia formuły ¬B(y) i
B(f(x)) stają się sprzeczne.

Zauważmy, że obie reguły w następującym sensie zachowują niesprzeczność:

Lemat 2.25 Przyjmijmy, że A jest dowolną strukturą, ϕ – formuła bez kwantyfi-
katorów, a θ – dowolnym podstawienie. Wtedy warunek A |= ϕ implikuje A |= ϕθ.
Jeżeli natomiast θ jest przemianowaniem zmiennych, to warunek A |= ϕ jest rów-
noważny z A |= ϕθ.

Dowód. Trzeba pamiętać, że spełnianie formuły oznacza jej spełnianie przy każ-
dym wartościowaniu zmiennych. 2

Lemat 2.26 Przyjmijmy, że w strukturze A spełnione są formuły δ1 ∨ ϕ oraz
¬δ2 ∨ ψ i θ jest unifikatorem formuł δ1 i δ2. Wtedy A |= (ϕ ∨ ψ)θ. 2

Wniosek 2.27 Jeżeli ψ1, . . . , ψn są alternatywami literałów i posługując się po-
danymi regułami potrafimy wyprowadzić z nich sprzeczność, to formuła

∀~x
n∧
i=1

ψi

jest sprzeczna. 2

Twierdzenie o pełności dla metody rezolucji. Aby uzasadnić korzystanie z
metody rezolucji Robinson udowodnił

Twierdzenie 2.28 Przypuśćmy, że mamy formułę ∀~x (ψ1 ∧ . . . ∧ ψm) klasy Π1
w koniunkcyjnej postaci normalnej. Formuła ta jest sprzeczna wtedy i tylko wte-
dy, gdy z alternatyw literałów ψ1, . . . , ψm daje się wyprowadzić sprzeczność (czyli
alternatywę bez członów) stosując jedynie przemianowanie zmiennych i regułę re-
zolucji.

Dowód. Wobec wniosku 2.27 wystarczy pokazać, jak z formuły sprzecznej można
wyprowadzić sprzeczność. W tym celu będziemy korzystać z aparatu i oznaczeń
wprowadzonych w dowodzie twierdzenia 2.16 Herbranda.

Najpierw przyjmijmy, że σ0 = ¬σ oraz σ1 = σ. To oznaczenie pozwala inaczej
sformułować definicję modeli Hα są to modele takie, że

Hα |=
∧
i¬n

σ
α(i)
i
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dla wszystkich n ∈ N . Teraz zmodyfikujemy nieco definicję m(α). Założenie o
sprzeczności danej formuły oznacza, że w każdym modelu HerbrandaHα spełniona
jest formuła

∃~x (¬ψ1 ∨ . . . ∨ ¬ψm),

a więc także pewna formuła postaci ¬ψi[~x← ~t]. Przyjmijmy, że

m(α) = min{k ∈ N : ∃j ¬ m ∃~t ∈ T0 t.że
∧
i¬k

σ
α(i)
i ⇒ ¬ψj[~x← ~t] jest tautologią}.

Liczby m(α) są dobrze zdefiniowane i mają własność podaną w dowodzie twier-
dzenia 2.16: jeżeli α, β ∈ 2N oraz α(i) = β(i) dla wszystkich i ¬ m(α), to
m(α) = m(β). Dlatego też można powtórzyć rozumowanie z dowodu tego twier-
dzenia i wykazać, że zbiór

X = {〈α(0), . . . , α(m(α))〉 : α ∈ 2N}

jest skończony.
Zbiór X może być uważany za zbiór wszystkich maksymalnych gałęzi pewnego

drzewa binarnego i może być z takim drzewem utożsamianym. To drzewo pozwala
odtworzyć interesujące nas wyprowadzenie sprzeczności.

Niech 〈α(0), . . . , α(m(α))〉 będzie najdłuższym elementem zbioru X. Dla usta-
lenia uwagi przyjmijmy, że α(m(α)) = 0. Weźmy ciąg β ∈ 2N taki, że β(i) = α(i)
dla i < m(α) oraz β(m(α)) = 1. Z wyboru α wynika, że m(β) ¬ m(α), ostra nie-
równość prowadzi do sprzeczności z przytoczoną własnością przyporządkowania
m. Stąd m(α) = m(β) i w zbiorze X mamy dwa ciągi

〈α(0), . . . , α(m(α)− 1), 0〉 = 〈α(0), . . . , α(m(α))〉

oraz
〈α(0), . . . , α(m(α)− 1), 1〉 = 〈β(0), . . . , β(m(β))〉.

Z należenia do X pierwszego z ciągów wynika, że dla pewnych j i ~t0 formuła ∧
i¬m(α)

σ
α(i)
i

⇒ ¬ψj[~x← ~t0]

jest tautologią. Po uwzględnieniu, że ψj[~x← ~t0] jest alternatywą
∨
v Cj,v literałów

Cj,v formułę tę można inaczej zapisać, w postaci∧
v

(¬σα(0)0 ∨ . . . ∨ ¬σα(m(α)−1)m(α)−1 ∨ ¬σ0m(α) ∨ ¬Cj,v). (1)

Ponieważ przytoczona formuła jest tautologią i w ciągu σ0, σ1, . . . są same formuły
atomowe, więc każdy literał Cj,v jest równoważny ¬σα(l)l dla pewnego l ¬ m(α).

Z drugiej strony, na mocy definicji m(α), formuła ∧
i¬m(α)−1

σ
α(i)
i

⇒ ¬ψj[~x← ~t], czyli
∧
v

(¬σα(0)0 ∨ . . . ∨ ¬σα(m(α)−1)m(α)−1 ∨ ¬Cj,v)

nie jest tautologią. Pewien literał Cj,v nie jest więc postaci ¬σα(l)l dla l < m(α).
Nietrudno zauważyć, że ten literał jest równy σm(α). Spostrzeżenie to pozwala
przedstawić formułę ψj[~x← ~t0] w postaci

ψj[~x← ~t0] = σα(m) ∨ ϕ′0 = ρ0[~x← ~t0] ∨ ϕ0[~x← ~t0] (2)
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dla pewnej atomowej formuły ρ0 i pewnej klauzuli ϕ0 (alternatywy literałów z ψj
różnych od ρ0).

Na koniec zauważmy, że jeżeli w koniunkcji (1) opuścimy człon odpowiadający
literałowi σm(α), to otrzymamy tautologię postaci ∧

i¬m(α)−1
σ
α(i)
i

⇒ ¬ϕ0[~x← ~t0]. (3)

To samo rozumowanie możemy przeprowadzić dla należącego do X ciągu
〈α(0), . . . , α(m(α) − 1), 1〉. Przyjmijmy, że w tym przypadku dla pewnych j′ i
~t1 tautologią okazuje się formuła ∧

i¬m(α)
σ
α(i)
i

⇒ ¬ψj′ [~x← ~t1].

W tym przypadku formuła ψj′ [~x← ~t1] daje się przedstawić w postaci

ψj′ [~x← ~t1] = ¬σα(m) ∨ ϕ′1 = ¬ρ1[~x← ~t1] ∨ ϕ1[~x← ~t1] (4)

dla pewnej atomowej formuły ρ1 i pewnej klauzuli ϕ1 (alternatywy literałów z ψj′
różnych od ρ1). Podobnie, jak poprzednio, pokazujemy także, że tautologią jest
formuła  ∧

i¬m(α)−1
σ
α(i)
i

⇒ ¬ϕ1[~x← ~t1]. (5)

Teraz możemy już zacząć konstruować rezolucyjny dowód sprzeczności klauzul
ψ1, . . . , ψm. Z tych klauzul wybieramy dwie: ψj oraz ψj′ . Najpierw urozłączniamy
zmienne zastępując ψj′ przez ψj′ [~x← ~y]. Zgodnie z wzorami (2) i (4) mamy

ψj = ρ0 ∨ ϕ0 oraz ψj′ [~x← ~y] = ¬ρ1[~x← ~y] ∨ ϕ1[~x← ~y].

Weźmy podstawienie θ = [~x ← ~t0, ~y ← ~t1]. To podstawienie unifikuje formuły ρ0
oraz ρ1[~x← ~y]. Mamy bowiem

ρ0θ = ρ0[~x← ~t0, ~y ← ~t1] = ρ0[~x← ~t0] = σα(m)

oraz

ρ1[~x← ~y]θ = ρ1[~x← ~y][~x← ~t0, ~y ← ~t1] = ρ1[~x← ~y][~y ← ~t1] = ρ1[~x← ~t1] = σα(m).

Niech więc θ0 będzie najogólniejszym unifikatorem formuł ρ0 i ρ1[~x ← ~y], a θ′

– takim podstawieniem, że

ψjθ = ψjθ0θ
′ oraz ψj′ [~x← ~y]θ = ψj′ [~x← ~y]θ0θ′. (6)

Reguła rezolucji pozwala z formuł ψj przez ψj′ [~x← ~y] wywnioskować formułę

ϕ0θ0 ∨ ϕ1[~x← ~y]θ0.

Dołączmy tę formułę do klauzul ψ1, . . . , ψm. Gdyby z tego zbioru udało nam
się wyprowadzić sprzeczność, to potrafilibyśmy ją wyprowadzić także ze zbioru
ψ1, . . . , ψm.

Dla nowego zbioru klauzul spróbujemy wyliczyć funkcję m′ zdefiniowaną tak,
jak funkcja m dla zbioru ψ1, . . . , ψm. Dla dowolnego γ ∈ 2N wartości m(γ) i
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m′(γ) zależą od możliwości wskazywania klauzul i konstruowania odpowiednich
podstawień. Jeżeli definiując m(γ) rozpatrywaliśmy klauzulę ψj z podstawieniem
termów ~t, to nadal możemy to robić. Wynika stąd, że nowe możliwości mogą do-
prowadzić najwyżej do zmniejszenia wartości m(γ), a więc zachodzą nierówności
m′(γ) ¬ m(γ). Jeżeli X jest zbiorem maksymalnych gałęzi pewnego drzewa binar-
nego T , to zbiór

X ′ = {〈α(0), . . . , α(m′(α))〉 : α ∈ 2N}
opisuje drzewo, którego maksymalne gałęzie uległy pewnemu skróceniu, a więc
poddrzewo drzewa T . Pokażemy teraz, że przejście do nowego drzewa powoduje
skrócenie przynajmniej jednej gałęzi.

Przypomnijmy, że rozpoczęliśmy konstrukcję od wyboru ciągu α ∈ 2N wy-
znaczającego maksymalną gałąź 〈α(0), . . . , α(m(α))〉 ∈ X. Otóż dla tego ciągu α
zachodzi nierówność m′(α) < m(α). Aby się o tym przekonać, zgodnie z definicją
m′(α), wystarczy wskazać odpowiednią klauzulę i podstawienie na przykład dla
k = m(α)− 1. Tą odpowiednią jest dołączona klauzulą

ϕ0θ0 ∨ ϕ1[~x← ~y]θ0,

a szukanym podstawieniem jest θ′. Interesująca nas nierówność wynika z tego, że
formuła  ∧

i¬m(α)−1
σ
α(i)
i

⇒ ¬(ϕ0θ0 ∨ ϕ1[~x← ~y]θ0)θ′ (7)

jest tautologią. Z wzorów (6) i definicji podstawienia θ wynika, że jest to formuła ∧
i¬m(α)−1

σ
α(i)
i

⇒ ¬(ϕ0[~x← ~t0] ∨ ϕ1[~x← ~t1]).

Jest ona równoważna koniunkcji ∧
i¬m(α)−1

σ
α(i)
i

⇒ ¬ϕ0[~x← ~t0]

 ∧
 ∧

i¬m(α)−1
σ
α(i)
i

⇒ ¬ϕ1[~x← ~t1]


formuł (3) i (5), które są tautologiami. Stąd również formuła (7) jest tautologią.

Tak więc drzewo wyznaczone przez zbiór X ′ okazało się mniejsze od drzewa opi-
sanego przez zbiór X. Jeżeli będziemy dowód prowadzić przez indukcję ze względu
na wielkość takich drzew, to z założenia indukcyjnego otrzymamy wyprowadzenie
sprzeczności z klauzul ψ1, . . . , ψm uzupełnionych o

ϕ0θ0 ∨ ϕ1[~x← ~y]θ0.

Wyprowadzenie sprzeczności z ψ1, . . . , ψm nie stanowi problemu, ponieważ dodat-
kową klauzulę otrzymujemy z nich za pomocą reguły rezolucji.

Teraz pozostaje najwyżej sprawdzenie pierwszego kroku indukcyjnego. 2

2.8 Przykład

Przykład ten świadczy m. in. o tym, że dowodzenie twierdzeń prowadzi do zbiorów
klauzul, które nie tworzą poprawnego programu prologowego.

Zauważmy najpierw, że zachodzi

Lemat 2.29 Jeżeli ϕ i ψ są zdaniami, to koniunkcja ϕ∧ψ jest sprzeczna wtedy i
tylko wtedy, gdy sprzeczna jest koniunkcja ϕ∗ ∧ ψ∗. 2
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Przykład 2.30 Za pomocą tego lematu i metody rezolucji pokażemy, że ze zdań

ϕ1 = ∀x (E(x) ∧ ¬V (x)⇒ ∃y (S(x, y) ∧ C(y))),

ϕ2 = ∃x (P (x) ∧ E(x) ∧ ∀y (S(x, y)⇒ P (y))),

ϕ3 = ∀x (P (x)⇒ ¬V (x))

wynika zdanie
ψ = ∃x (P (x) ∧ C(x)).

Na mocy twierdzenia o dedukcji mamy więc dowieść, że implikacja

ϕ1 ∧ ϕ2 ∧ ϕ3 ⇒ ψ

jest tautologią. Jest to równoważne stwierdzeniu, że formuła

ϕ1 ∧ ϕ2 ∧ ϕ3 ∧ ¬ψ

jest sprzeczna. Z przytoczonego lematu i wniosku 2.6 wynika, że wystarczy dowieść
sprzeczność zdania

(ϕ1)∗ ∧ (ϕ2)∗ ∧ (ϕ3)∗ ∧ (¬ψ)∗.

Formuła ta po wyciągnięciu na początek i usunięciu kwantyfikatorów, oraz po
sprowadzeniu do postaci koniunkcyjnej jest koniunkcją następujących alternatyw:

¬E(x) ∨ V (x) ∨ S(x, f(x)), (1)

¬E(x) ∨ V (x) ∨ C(f(x)), (2)

P (a), (3)

E(a), (4)

¬S(a, y) ∨ P (y), (5)

¬P (x) ∨ ¬V (x), (6)

¬P (x) ∨ ¬C(x). (7)

Zauważmy, że stosując regułę rezolucji możemy z tych alternatyw wyprowadzić

¬V (a), (8), z (3) i (6)

V (a) ∨ C(f(a)), (9) z (2) i (4)

C(f(a)), (10) z (8) i (9)

V (a) ∨ S(a, f(a)), (11) z (1) i (4)

S(a, f(a)), (12) z (8) i (11)

P (f(a)), (13) z (5) i (12)

¬C(f(a)), (14) z (7) i (13)

2, (15) z (10) i (14)

2.9 Twierdzenie o pełności wg Herbranda

Wniosek 2.31 Jeżeli formuła ϕ jest tautologią, to formuła ¬(¬ϕ)∗ jest twierdze-
niem rachunku kwantyfikatorów.
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Dowód. Jest to wniosek z twierdzenia Herbranda 2.17 i twierdzenia o pełności dla
rachunku zdań. 2

Mając dowód formuły ¬(¬ϕ)∗ możemy spróbować odtworzyć także dowód for-
muły ϕ. Gdyby to się udało, to można by dowieść twierdzenie o pełności. Dowód
tego twierdzenia musi być jednak bardziej subtelny. Będzie w nim potrzebne

Twierdzenie 2.32 (o stałej) Jeżeli stała c nie występuje aksjomatach teorii T ,
ani w formule ϕ oraz T ` ϕ[x← c], to T ` ∀x ϕ.

Dowód. Wystarczy zauważyć, że wszędzie tam, gdzie w dowodzie mamy prawo
użyć stałej c, możemy też użyć zmiennej tym bardziej, że stała ta nie występuje
w aksjomatach. 2

Analiza dowodu twierdzenia o stałej pozwala zauważyć

Wniosek 2.33 Jeżeli T jest teorią w języku L, ϕ jest formułą z tego języka, a c
– stałą spoza L, to ϕ można dowieść w teorii T posługując się formułami języka
L ∪ {c} wtedy i tylko wtedy, gdy ϕ można dowieść w teorii T posługując się for-
mułami języka L. 2

Opuszczanie kwntyfikatora egzystencjalnego. Metoda budowania dowodów
zaproponowana przez Herbranda korzysta z reguły opuszczania kwantyfikatora eg-
zystencjalnego wykorzystywanej w niektórych systemach logicznych, zwłaszcza w
systemie dedukcji naturalnej, patrz część 2, rozdziały 6.1 i 6.3. Najpierw dowie-
dziemy w nieco ograniczonym zakresie, że w dowolnym systemie można z tej reguły
korzystać.

Niech T będzie teorią w języku L. Rozszerzamy L o pewien zbiór stałych i po-
większamy zbiór aksjomatów T tworząc w ten sposób teorię Tc. Robimy to dodając
do L dla każdego zdania postaci ∃x ϕ specjalną stałą c (wyznaczoną przez to zda-
nie) i do teorii T nowy aksjomat (∃xϕ) ⇒ ϕ[x ← c]. Teorię Tc konstruujemy tak
długo aż dla każdej takiej formuły będzie istniała w języku odpowiednia stała, a
w teorii znajdzie się odpowiedni aksjomat. Zwykle wymaga to nieskończenie wielu
kroków. Czasem taką teorię nazywa się teorią Henkina.

Twierdzenie 2.34 Jeżeli ϕ jest formułą zapisaną w języku L i Tc ` ϕ, to także
T ` ϕ.

Dowód. Twierdzenie to mówi, że w dowodach mamy prawo posługiwać się regułą
opuszczania kwantyfikatora egzystencjalnego przynajmniej w szczególnych przy-
padkach, gdy przesłanka jest zdaniem.

Dowodząc zdanie ϕ w teorii Tc korzystamy ze skończonej liczby specjalnych
aksjomatów. Niech ∃x ψ ⇒ ψ[x ← c] będzie najpóźniej dodanym, wykorzystywa-
nym w dowodzie specjalnym aksjomatem, a Ψ – koniunkcją pozostałych. Stała c
nie występuje więc w Ψ. Na mocy twierdzenia o dedukcji

T ` ((∃x ψ)⇒ ψ[x← c])⇒ (Ψ⇒ ϕ).

Możemy też założyć, że zmienna x nie występuje w ϕ. Wtedy

((∃x ψ)⇒ ψ[x← c])⇒ (Ψ⇒ ϕ) = (((∃x ψ)⇒ ψ)⇒ (Ψ⇒ ϕ))[x← c].

Stąd na mocy twierdzenia o stałej otrzymujemy, że

T ` ∀x (((∃x ψ)⇒ ψ)⇒ (Ψ⇒ ϕ)).
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Korzystając jak zwykle z praw logiki możemy zauważyć, że także

T ` ((∃x ψ)⇒ ∃x ψ)⇒ (Ψ⇒ ϕ)

i w konsekwencji,
T ` Ψ⇒ ϕ.

Powołując się na indukcję ze względu na liczbę potrzebnych w dowodzie aksjoma-
tów specjalnych i wniosek 2.33 otrzymujemy, że nawet w języku bez specjalnych
stałych

T ` ϕ. 2

Wstępny przykład. Teoria Tc ma kilka ciekawych własności. Na przykład, je-
żeli ∃x ϕ jest zdaniem i c jest stałą specjalną dla tego zdania, to

Tc ` ∃x ϕ⇒ ϕ[x← c].

Implikacja odwrotna jest prawem logicznym, a więc także

Tc ` ∃x ϕ⇔ ϕ[x← c],

a nawet
Tc ` ∀x ¬ϕ⇔ ¬ϕ[x← c].

W teorii Tc dowodzenie zdań z kwantyfikatorem sprowadza się więc do dowodzenia
zdań bez kwantyfikatora.

W szczególności, jeżeli ∃x ¬ϕ jest zdaniem i c jest stałą specjalną dla tego
zdania, to

Tc ` ϕ[x← c]⇔ ∀x ϕ.

Tego typu własność można skomplikować.
Przypuśćmy, że mamy formułę

∃x ∀y ∃z ∀w ψ(x, y, z, w),

a a jest termem stałym, który w przyszłości zostanie odpowiednio dobrany. Dla
tego termu istnieje stała specjalna τ(a) dla zdania

∃y ¬∃z ∀w ψ[x← a].

Z przytoczonego spostrzeżenia otrzymujemy teraz

Tc ` ∃z ∀w ψ[x← a][y ← τ(a)]⇔ ∀y ∃z ∀w ψ[x← a],

a także
Tc ` ∃z ∀w ψ[x← a][y ← τ(a)]⇒ ∃x ∀y ∃z ∀w ψ.

Powtórzmy to rozumowanie raz jeszcze. Dla termu stałego b (i termu a) bie-
rzemy stałą specjalną σ(a, b) dla zdania

∃w ¬ψ[x← a][y ← τ(a)][z ← b].

Mamy więc

Tc ` ψ[x← a][y ← τ(a)][z ← b][w ← σ(a, b)]⇔ ∀w ψ[x← a][y ← τ(a)][z ← b]
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oraz

Tc ` ψ[x← a][y ← τ(a)][z ← b][w ← σ(a, b)]⇒ ∃z ∀w ψ[x← a][y ← τ(a)].

Łącząc dwa udowodnione twierdzenia otrzymujemy, że

Tc ` ψ[x← a][y ← τ(a)][z ← b][w ← σ(a, b)]⇒ ∃x ∀y ∃z ∀w ψ.

Gdyby teraz udało nam się tak dobrać termy a i b, aby

Tc ` ψ[x← a][y ← τ(a)][z ← b][w ← σ(a, b)],

to przedstawione rozumowanie dawałoby, że

Tc ` ∃x ∀y ∃z ∀w ψ.

Przedstawione rozumowanie, które może zostać przeprowadzone dla dowolnych
formuł w postaci preneksowej, klasy Σ2k zostanie wykorzystane do dowodu kolej-
nego twierdzenia Herbranda.

Dowód twierdzenia o pełności.

Twierdzenie 2.35 (Herbrand) Przypuśćmy, że ϕ jest formułą i formuła ¬(¬ϕ)∗

jest równoważna formule ∃x . . . ψ, gdzie ψ jest formułą otwartą. Jeżeli istnieją
układy termów ~t1, . . . ,~tm ∈ T n0 takie, że formuła

ψ[~x← ~t1] ∨ . . . ∨ ψ[~x← ~tm]

jest tautologią, to ϕ jest prawem rachunku kwantyfikatorów.

Dowód. Dowód przedstawimy na przykładzie formuły klasy Σ4. Niech więc

ϕ = ∃x ∀y ∃z ∀w ψ(x, y, z, w).

Wtedy formuła ¬(¬ϕ)∗ ma postać

∃x ∃z ψ(x, f(x), z, g(x, z))

dla pewnych nowych symboli funkcyjnych f i g. Zakładamy więc, że istnieją układy
termów stałych ti oraz si takie, że formuła

Φ =
∨
i

ψ(ti, f(ti), si, g(ti, si))

jest tautologią. Niech teraz T oznacza rachunek kwantyfikatorów, czyli teorię po-
zbawioną aksjomatów. Dla uproszczenia zakładamy także, że T nie zawiera nawet
aksjomatów równości (dla teorii z równością są potrzebne dodatkowe konstrukcje,
które nie zostaną przedstawione). Utwórzmy teorię Tc i weźmy zdefiniowane wyżej
operacje τ i σ przyporządkowujące termom stałym specjalne stałe. Formułę Φ bę-
dziemy przekształcać wielokrotnie wykonując przekształcenie następującej postaci:
sprawdzamy, czy w Φ występuje podterm postaci f(a) dla pewnego termu stałego
a nie zawierającego ani f , ani g, i jeżeli taki podterm znajdziemy, to zastępuje-
my go we wszystkich miejscach stałą τ(a). Analogicznie, wszystkie wystąpienia
podtermów postaci g(a, b) zastępujemy stałą σ(a, b).



18

Zauważmy, że przekształcenia te zachowują „bycie tautologią”. Przypuśćmy, że
po wykonaniu wszystkich możliwych takich przekształceń otrzymaliśmy formułę
Φ∗. Tak więc Φ∗ jest tautologią.

Podczas wykonywania opisanych przekształceń w jakiś sposób zmieniały się
termy ti oraz si. Przyjmimy, że zostały przekształcone w ai oraz bi odpowiednio.
Nietrudno zauważyć, że formuła Φ∗ ma postać

Φ∗ =
∨
i

ψ(ai, τ(ai), bi, σ(ai, bi)).

Zgodnie z uwagami z poprzedniego paragrafu, człony tej alternatywy implikują
zdanie ϕ. Wobec tego, także mamy

Tc ` Φ∗ ⇒ ϕ.

Na mocy twierdzenia o pełności dla rachunku zdań dowód ma także formuła Φ∗.
Tak więc ϕ jest twierdzeniem teorii Tc, a ponieważ nie zawiera stałych specjalnych,
jest też twierdzeniem rachunku kwantyfikatorów. 2

Przykład konstruowania dowodu. Weźmy tautologię

ϕ = ∃x ∀y A(x, y)⇒ ∀y∃xA(x, y)

i spróbujmy skonstruować jej dowód metodą Herbranda. Postacią normalną ϕ jest

∀x ∃y ∀z ∃t (A(x, y)⇒ A(t, z)),

a postacią normalną ¬ϕ –

∃x ∀y ∃z ∀t ¬(A(x, y)⇒ A(t, z)).

Z tej formuły po skolemizacji otrzymujemy

∀y ∀t ¬(A(c, y)⇒ A(t, f(y))).

Ostatecznie mamy

¬(¬ϕ)∗ ⇔ ∃y ∃t (A(c, y)⇒ A(t, f(y))).

Zgodnie z twierdzeniem Herbranda, formuła ϕ jest tautologią, ponieważ tautologią
jest

(A(c, d)⇒ A(c, f(d))) ∨ (A(c, f(d))⇒ A(d′, f(f(d)))). (8)

Pierwsza implikacja jest postaci (A(c, y) ⇒ A(t, f(y)))[y ← d][t ← c], a druga
(A(c, y)⇒ A(t, f(y)))[y ← f(d)][t← d′].

Weźmy teraz stałą specjalną α wprowadzoną aksjomatem

∃x ¬∃y ∀z ∃t (A(x, y)⇒ A(t, z)) ⇒ ¬∃y ∀z ∃t (A(α, y)⇒ A(t, z)).

Z tego aksjomatu wynika następująca własność stałej α:

∃y ∀z ∃t (A(α, y)⇒ A(t, z)) ⇒ ∀x ∃y ∀z ∃t (A(x, y)⇒ A(t, z)).

Dla dowolnego termu b weźmy jeszcze stałą specjalną βα(b) wprowadzoną aksjo-
matem

∃z ¬∃t (A(α, b)⇒ A(t, z)) ⇒ ¬∃t (A(α, b)⇒ A(t, βα(b))).
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Mamy więc

∃t (A(α, b)⇒ A(t, βα(b))) ⇒ ∀z ∃t (A(α, b)⇒ A(t, z)),

a także

∃t (A(α, b)⇒ A(t, βα(b))) ⇒ ∀x ∃y ∀z ∃t (A(x, y)⇒ A(t, z)).

Teraz w tautologii (8) symbole wprowadzone podczas skolemizacji zastępujemy
przez odpowiednie stałe specjalne. Tym razem skolemizacja wymagała posłużenia
się stałą c i symbolem f . Stałą c zastępujemy stałą specjalną α, a symbol f –
operacją βα(·). Po wykonaniu tych zastępowań w formule (8) otrzymujemy

(A(α, d)⇒ A(α, βα(d))) ∨ (A(α, βα(d))⇒ A(d′, βα(βα(d)))).

Analizując postać tej formuły oraz formuły (8) można utworzyć taki oto dowód
wprost formuły ϕ (a właściwie jej preneksowej postaci normalnej).

1) ∃x¬∃y∀z∃t(A(x, y)⇒ A(t, z)) ⇒ ¬∃y∀z∃t(A(α, y)⇒ A(t, z)) aksjomat Tc
2) ∃y∀z∃t(A(α, y)⇒ A(t, z)) ⇒ ∀x∃y∀z∃t(A(x, y)⇒ A(t, z)) kontrapoz. i 1)

3) ∃z¬∃t(A(α, d)⇒ A(t, z)) ⇒ ¬∃t(A(α, d)⇒ A(t, βα(d))) aksjomat Tc
4) ∃t(A(α, d)⇒ A(t, βα(d))) ⇒ ∀z∃t(A(α, d)⇒ A(t, z)) kontrapoz. i 3)

5) ∃z¬∃t(A(α, βα(d))⇒ A(t, z)) ⇒ ¬∃t(A(α, βα(d))⇒ A(t, βα(βα(d)))) aksjomat Tc
6) ∃t(A(α, βα(d))⇒ A(t, βα(βα(d)))) ⇒ ∀z∃t(A(α, βα(d))⇒ A(t, z)) kontrapoz. i 5)

7) A(α, βα(d)) ∨ ¬A(α, βα(d)) aksjomat logiki

8) (A(α, d)⇒ A(α, βα(d))) ∨ (A(α, βα(d))⇒ A(d′, βα(βα(d)))) wniosek z 7)

1.1) A(α, d)⇒ A(α, βα(d)) przypadek 1

1.2) A(α, d)⇒ A(t, βα(d))[t← α] 1.1) inaczej

1.3) ∃t(A(α, d)⇒ A(t, βα(d))) z 1.2)

1.4) ∀z∃t(A(α, d)⇒ A(t, z)) RO z 1.3) i 4)

1.5) ∃y∀z∃t(A(α, y)⇒ A(t, z)) z 1.4)

1.6) ∀x∃y∀z∃t(A(x, y)⇒ A(t, z)) RO z 1.5) i 2)

2.1) A(α, βα(d))⇒ A(d′, βα(βα(d))) przypadek 2

2.2) A(α, βα(d))⇒ A(t, βα(βα(d)))[t← d′] 2.1) inaczej

2.3) ∃tA(α, βα(d))⇒ A(t, βα(βα(d))) z 2.2)

2.4) ∀z∃t(A(α, βα(d))⇒ A(t, z)) RO z 2.3) i 4)

2.5) ∃y∀z∃t(A(α, y)⇒ A(t, z)) z 2.4)

2.6) ∀x∃y∀z∃t(A(x, y)⇒ A(t, z)) RO z 2.5) i 2)

9) ∀x∃y∀z∃t(A(x, y)⇒ A(t, z)) z 1.6) i 2.6)

Przedstawiony dowód jest sprawia wrażenie sztucznego. Zwykle nie posługuję-
my się specjalnymi aksjomatami teorii Tc, a raczej tzw. regułą odrywania kwantyfi-
katora egzystencjalnego. Naturalniejszą jest niżej przedstawiona wersja nie wprost
tego dowodu. Należy pamiętać, że powstał na podstawie analizy tautologii (8).
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1) ¬∀x ∃y ∀z ∃t (A(x, y)⇒ A(t, z)) założenie dowodu nie wprost

2) ∃x ∀y ∃z ∀t ¬(A(x, y)⇒ A(t, z)) prawa de Morgana i 1)

3) ∀y ∃z ∀t ¬(A(α, y)⇒ A(t, z)) O∃ i 2)

4) ∃z ∀t ¬(A(α, d)⇒ A(t, z)) O∀ i 3)

5) ∀t ¬(A(α, d)⇒ A(t, β)) O∃ i 4)

6) ¬(A(α, d)⇒ A(α, β)) O∀ i 5)

7) ∃z ∀t ¬(A(α, β)⇒ A(t, z)) O∀ i 3)

8) ∀t ¬(A(α, β)⇒ A(t, γ)) O∃ i 7)

9) A(α, β) ∨ ¬A(α, β) aksjomat logiki

10) (A(α, d)⇒ A(α, β)) ∨ (A(α, β)⇒ A(d′, γ)) wniosek z 9)

11) A(α, β)⇒ A(d′, γ) wniosek z 9) i 6)

12) ¬(A(α, β)⇒ A(d′, γ)) O∀ i 8)

13) 2 sprzeczność 11) i 12)

2.10 Dodatek: Teorie Henkina i szczegółowy dowód twier-
dzenia o pełności

Jest to właściwie ten sam dowód co w poprzednim rozdziale, ale został on przed-
stawiony z wieloma dodatkowymi szczegółami.

Niech T będzie dowolną teorią zapisaną w języku L. Formuły zapisane w języku
L, z jedną zmienną wolną ustawiamy w ciąg ϕ1(x1), ϕ(x2), . . .. Bierzemy też ciąg
nowych stałych c1, c2, . . .. Niech

T1 = T ∪ {(∃xi ϕi(xi))⇒ ϕi[xi ← ci] : i ∈ N}

będzie teorią otrzymaną z T przez dodanie ciągu nowych aksjomatów. Stałą ci
użytą w konstrukcji tego ciągu będziemy nazywać stałą specjalną dla formuły
∃xi ϕi(xi).

Z twierdzenia o stałej wynika, że jeżeli zapisana w języku L formuła ϕ ma
dowód w teorii T1, to może też zostać dowiedziona w teorii T bez korzystania w
dowodzie ze stałych specjalnych.

Przedstawioną konstrukcję będziemy teraz powtarzać. Niech Ti+1 oznacza teo-
rię, która powstała w wyniku zastosowania przedstawionej konstrukcji do teorii Ti
(oczywiście za każdym razem bierzemy nowe stałe). Przyjmijmy, że T∞ oznacza⋃
i∈N Ti. Teorie tej postaci nazywa się teoriami Henkina.

Lemat 2.36 Jeżeli zapisana w języku L formuła ϕ ma dowód w teorii T∞, to może
też zostać dowiedziona w teorii T bez korzystania w dowodzie ze stałych specjalnych
użytych w konstrukcji T∞.

Dowód. Aby dowieść ten lemat trzeba zauważyć dwa fakty. Po pierwsze, jeżeli
formuła jest twierdzeniem T∞, to daje się też dowieść w teorii Tn dla pewnego n,
korzystając z aksjomatów tej teorii i posługując się jej językiem. Następnie trzeba
zauważyć, że daje się też dowieść w teorii Tn−1, a na mocy zasady indukcji, także
w teorii T . 2
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Twierdzenie 2.37 (Herbranda, o pełności) Jeżeli zdanie Φ jest tautologią, to
ma dowód w rachunku kwantyfikatorów, nie wymagający żadnych dodatkowych sym-
boli.

Dowód. Niech R oznacza rachunek kwantyfikatorów, a R∞ teorię Henkina otrzy-
maną z rachunku kwantyfikatorów R. Skorzystamy z poprzedniego lematu i dowie-
dziemy tylko, że Φ jest twierdzeniem R∞. Przy okazji będziemy musieli przyjrzeć
się trochę dokładniej skolemizacji.

Możemy dodatkowo założyć, że Φ jest w preneksowej postaci normalnej. Przyj-
mijmy, że

Φ = ∃~x ∀y Ψ oraz Ψ = Q1z1 . . . Qkzk ψ

dla pewnych kwantyfikatorów Qi i dla bezkwantyfikatorowej formuły ψ. Dalsze
rozumowanie zostanie przeprowadzone przez indukcję ze względu na liczbę kwan-
tyfikatorów ogólnych w formule Φ (lub egzystencjalnych w ¬Φ).

Równolegle będziemy definiować postać skolemowską formuły ¬Φ, ciąg symboli
funkcyjnych f, . . . występujących w postaci skolemowskiej, pewne funkcje F, . . .,
które stałym teorii R∞ przyporządkowują inne stałe tej teorii, funkcje te będą
wyznaczane przez wprowadzane symbole funkcyjne, a także ciąg podstawień η
za zmienne występujące w ¬Φ i skwantyfikowane egzystencjalnie. Oprócz tego
będziemy rozważać ciągi α postawień stałych specjalnych za zmienne występujące
w ¬Φ i skwantyfikowane ogólnie.

Jeżeli η jest pewnym podstawieniem, to symbolem ηc będziemy oznaczać posta-
wienie, które za dowolną zmienną z, zamiast termu η(z) podstawia stałą, która jest
obliczana tak, jak wartość termu η(z) przy interpretacji symboli funkcyjnych f, . . .
jako funkcji F, . . . i zmiennych jako odpowiednio określonych stałych (szczegóły
później staną się jasne).

Cała konstrukcja będzie miała następujące (dowodzone przez indukcję) wła-
sności:

1) Domknięcie kwantyfikatorami ogólnymi formuły ¬ψη jest postacią skolemow-
ską ¬Φ.

2) Dla każdego podstawienia α za wszystkie zmienne (występujące w ∃y ¬Ψ, a
także w ¬ψηc) zdanie (∃y ¬Ψα) ⇒ ¬ψηcα ma dowód w R∞ korzystający z
symboli formuły Ψ i stałych specjalnych.

Ponieważ zostały już wprowadzone oznaczenia implikujące konieczność prze-
prowadzenia drugiego kroku indukcyjnego, więc zaczynamy od niego.

Przeprowadzając skolemizację ¬Φ wprowadzamy symbol funkcyjny f . Mamy
więc

(¬Φ)∗ = (∀~x ¬Ψ[y ← f(~x)])∗.

Dla formuły Ψ[y ← . . .] możemy skorzystać z założenia indukcyjnego. Wobec tego

(∀~x ¬Ψ[y ← f(~x)])∗ = ∀ . . . ¬ψ[y ← f(~x)]η′

dla podstawienia η′ konstruowanego przez indukcję. Możemy więc przyjąć, że

η = [y ← f(~x)]η′.

Nietrudno zauważyć, że wtedy przeprowadzana konstrukcja ma własność 1), gdyż

(¬Φ)∗ = ∀ . . . ¬ψ[y ← f(~x)]η′ = ∀ . . . ¬ψη.
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Teraz zdefiniujemy interpretację symbolu f . Dla stałych ~a symbolem F (~a) bę-
dziemy oznaczać stałą specjalną dla formuły

∃y ¬Ψ[~x← ~a].

Wobec tego aksjomatem teorii R∞ jest każda formuła

(∃y ¬Ψ[~x← ~a])⇒ ¬Ψ[y ← F (~a)][~x← ~a]

(zauważmy, że kolejność podstawień nie ma znaczenia).
Możemy już przystąpić do dowodu własności 2). Weźmy dowolne podstawie-

nie α. Przyjmijmy też, że (¬Ψ)− to formuła ¬Ψ pozbawiona początkowego bloku
kwantyfikatorów ogólnych. Formuła

(∃y ¬Ψ[~x← α(~x)])⇒ ¬Ψ[y ← F (α(~x))][~x← α(~x)],

czyli
(∃y ¬Ψα)⇒ ¬Ψ[y ← F (α(~x))]α

jest aksjomatem teorii R∞, formuła

¬Ψ[y ← F (α(~x))]α⇒ (¬Ψ)−[y ← F (α(~x))]α

jest prawem rachunku kwantyfikatorów, a formuła

(¬Ψ)−[y ← F (α(~x))]α⇒ ¬ψ[y ← F (α(~x))]η′cα

na mocy założenia indukcyjnego daje dowieść się w R∞. W końcu mamy

¬ψ[y ← F (α(~x))]η′cα = ¬ψ([y ← f(~x)]η′)cα = ¬ψηcα.

Składając te trzy implikacje i korzystając z definicji η otrzymujemy

R∞ ` (∃y ¬Ψα)⇒ ¬ψηcα,

a więc własność 2).
Sprawdzenie pierwszego kroku indukcyjnego jest proste. W tym przypadku nie

wprowadzamy symboli funkcyjnych, nie definiujemy ich interpretacji, a podstawie-
nie η definiujemy jako puste. Tym samym dowód indukcyjny jest zakończony i obie
podane na początku dowodu własności przeprowadzanej konstrukcji zachodzą dla
wszystkich formuł, w tym dla rozważanej formuły Φ.

Skorzystamy teraz z twierdzenia 2.17 dla zdania Φ. Postacią skolemowską ¬Φ
jest formuła ∀ . . . ¬ψη, jej negacja ¬(¬Φ)∗ jest równa ∃ . . . ψη Ponieważ Ψ jest
tautologią, na mocy twierdzenia 2.17 tautologią jest formuła postaci∨

i

ψηγi (9)

dla pewnych podstawień, które zmiennym przyporządkowują termy stałe. W pod-
stawieniach η i γi występują symbole funkcyjne wprowadzone podczas skolemi-
zacji. Stopniowo zinterpretujemy je jako wskazane funkcje na stałych. Niech więc
αi(x) oznacza stałą będącą tak zinterpretowaną wartością termu γi. Po zastąpieniu
wszystkich zmiennych w formule ψη stałymi analogicznie możemy interpretować
symbole funkcyjne w termach podstawianych przez η. Po tych interpretacjach tau-
tologia (9) przekształci się w formułę∨

i

ψηcαi.
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Ta formuła też jest tautologią. Zmiany dokonywane na termach nie wpływają na
postać formuły, w ich wyniku może najwyżej dojść do utożsamienia niektórych
formuł atomowych.

Teraz skorzystamy z własności 2) dla podstawień αi. Wynika z niej, że

R∞ ` ∃y ¬Ψαi ⇒ ¬ψηcαi

dla wszystkich i. Ponieważ formuły

¬Φ⇒ ∃y ¬Ψαi

są prawami logicznymi, więc

R∞ ` ¬Φ⇒ ¬ψηcαi.

Na mocy prawa kontrapozycji otrzymujemy, że

R∞ ` ψηcαi ⇒ Φ

dla wszystkich i. Stąd

R∞ `
(∨

i

ψηcαi

)
⇒ Φ,

a ponieważ poprzednik tej implikacji jest tautologią, więc także

R∞ ` Φ,

a to kończy dowód. Można też zauważyć, że jeżeli znajdziemy konkretną tautologię
(9), to na podstawie przedstawionego rozumowania można skonstruować efektyw-
nie dowód formuły Φ w rachunku kwantyfikatorów. 2

3 Funkcje obliczalne według Herbranda i Gödla

Koncepcja funkcji rekurencyjnych zasugerowana przez Herbranda została przed-
stawiona przez Gödla podczas wykładów Institute for Advanced Study w 1934 roku
i opublikowana w formie notatek z wykładu sporządzonych przez J.B. Rossera i
S.C. Kleene’ego, doktorantów Alonzo Churcha.

3.1 Termy

Będziemy posługiwać się alfabetem, w którym jest nieskończenie wiele (przynaj-
mniej potencjalnie) zmiennych i jest nieskończenie wiele symboli funkcyjnych każ-
dej możliwej arności.

W tym alfabecie wyróżniamy jedną zmienną 0 i jeden symbol funkcyjny jedno-
argumentowy S. Zmienna 0 jest taką zmienną, pod którą nie wolno podstawiać.

Dalej rozważamy termy nad takim alfabetem. Symbolem n oznaczamy termy
zdefiniowane rekurencyjnie równościami 0 = 0 oraz n+ 1 = S(n) zachodzącymi
dla wszystkich liczb naturalnych n.
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3.2 Równości i układy

Równości to pary termów. Równość dwóch termów zapisujemy w postaci t1 = t2.
Od termu t1 występującego w równości żądamy, aby nie zaczynał się symbolem S.
Zwróćmy uwagę, że podany warunek świadczy o tym, że termy t1 i t2 odgrywają
w równości inną rolę. Intuicyjnie równość t1 = t2 interpretujemy jako informację,
że aby znaleźć wartość termu t1 (czyli termu postaci f(. . .), a więc wartość funkcji
f dla pewnych argumentów) należy obliczyć wartość termu t2.

Układem równości nazywamy ciąg równości. Pierwszy symbol pierwszego termu
ostatniej równości układu E nazywamy symbolem głównym układu E. Intuicyjnie,
układ E definiuje funkcję oznaczaną symbolem głównym układu E.

3.3 Wyprowadzenia

Wyprowadzeniem z układu E nazywamy ciąg równości r1, . . . , rn taki, że dla każ-
dego i ¬ n równość ri z tego ciągu

1) albo należy do E,

2) albo powstała przez podstawienie w równości rj dla j < i za pewną zmienną
x (różną od 0) termu postaci n dla pewnego naturalnego n (ri = rj[x← n]).

3) albo też powstała przez zastąpienie w pewnym miejscu w równości rj dla
j < i podtermu postaci f(n1, . . . , nk) termem m pod warunkiem, że dla
pewnego k < i równość rk jest tożsama z f(n1, . . . , nk) = m.

3.4 Analiza pojęcia wyprowadzenia

Teraz termy będziemy uwazać także za drzewa z podwójnymi etykietami. Oprócz
zwykłych etykiet poszczególne węzły będą etykietowane liczbami naturalnymi z
tym, że te etykiety będą zdefiniowane lub nie. Etykiety będące liczbami natural-
nymi będziemy nazywać wartościami i będziemy mówić o drzewach z wartościo-
waniem.

Drzewo będzie poprawnie zwartościowane (albo dwa drzewa będą poprawnie
zwartościowane), jeżeli

1) dla każdej zmiennej x w sytuacji, gdy jeden z węzłów z etykietą x ma zde-
finiowaną wartość, pozostałe też mają zdefiniowaną wartość i wartościami
tych węzłów jest ta sama liczba,

2) każdy węzeł z etykietą 0 ma wartość 0,

3) węzeł z etykietą S ma wartość n wtedy i tylko wtedy, gdy n > 0 i węzeł
potomny ma wartość n− 1.

Drzewo jest poprawnie zwartościowane ze względu na układ równości E, jeżeli
jest poprawnie zwartościowane i dodatkowo

1) jeżeli węzeł z symbolem funkcyjnym f 6= S ma wartość m, to wszystkie węzły
potomne mają wartości,

2) jeżeli węzly potomne takiego węzła mają wartości n1, . . . , nk, toE ` f(n1, . . . , nk) =
m.
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Niech T będzie drzewem z wartościami. Każdy węzeł w tego drzewa opisuje
pewien term T (w) zdefiniowany zgodnie ze wzorem

T (w) =


n jeżeli w ma określoną wartość i równa się ona n,
x jeżeli w nie ma wartości i jest etykietowany zmienną x,
f(T (w1), . . .) jeżeli w nie ma wartości, ma etykietę f i potomków w1, . . .

Będziemy mówić, że drzewo T opisuje term T (w0), gdzie w0 jest korzeniem T .

Lemat 3.1 Przypuśćmy, że E ` t = s. Wtedy istnieje równość t′ = s′ ∈ E, a
jeżeli termy t′ i s′ potraktujemy jako drzewa D(t′) i D(s′) odpowiednio, to istnieją
też poprawne ze względu na E wartościowania tych drzew takie, że D(t′) opisuje t
i D(s′) opisuje s.

3.5 Funkcje obliczalne

Częściowa funkcja F : Nk → N jest obliczalna według Herbranda-Gödla, jeżeli
istnieje układ równości E z k-arnym symbolem głównym f taki, że

F (n1, . . . , nk) = m ⇐⇒ E ` f(n1, . . . , nk) = m

dla wszystkich liczb naturalnych n1, . . . , nk,m.

Lemat 3.2 Dodawanie, mnożenie, funkcje In,k, funkcja charakterystyczna nierów-
ności i funkcja Ackermanna są obliczalne według Herbranda-Gödla.

Lemat 3.3 Klasa funkcji obliczalnych według Herbranda-Gödla jest zamknięta ze
względu na składanie oraz rekursję prostą (i inne, poprawne schematy rekursji).

Lemat 3.4 Klasa funkcji obliczalnych według Herbranda-Gödla jest zamknięta ze
względu na operację minimum.

Dowód. Przypuśćmy, że f jest funkcją obliczalną według Herbranda-Gödla, defi-
niowaną układem równań Ef z symbolem głównym f . Weźmy następujący układ
równań:

g(x, 0) = S(0),
g(x, S(y)) = g(x, y) · f(x, y),
h(S(x), 0, y) = y,
k(x) = h(g(x, y), g(x, S(y)), y).

Układ E, czyli podany układ uzupełniony o Ef i układ definiujący mnożenie de-
finiuje funkcję µy (f(x, y) = 0).

Najpierw zauważmy, że dwie pierwsze równości definiują funkcję g, którą można
też zdefiniować wzorem

g(x, y) =
∏
z<y

f(x, z).

Zauważmy też, że

µy (f(x, y) = 0) = µy (g(x, S(y)) = 0).

Dalej wystarczy więc wykazać, że cały układ E definiuje funkcję

k(x) = µy(g(x, S(y)) = 0).
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Przypuśćmy, że E ` k(n) = m. Równość ta może wynikać tylko z ostatniej rów-
ności E. Oznacza to, że w jej dowodzie zostały dowiedzione też równości pozwalają-
ce na zwartościowanie wszystkich podtermów termu h(g(x, y), g(x, S(y)), y), a tak-
że w jakiś sposób została zwartościowana zmienna y. Tak więc istnieją liczby u, v, w
takie, że w jest wartością zmiennej y oraz E ` g(n,w) = u, E ` g(n, S(w)) = v i
E ` h(u, v, w) = m. Ponieważ układ E definiuje też opisaną wyżej funkcję g, więc
g(n,w) = u oraz g(n,w + 1) = v. Ostatnia z równości musiała natomiast zostać
wyprowadzona z przedostatniej równości układu E. Tak więc w = m, v = 0 oraz
u > 0. Mamy więc, że g(n,m) > 0 oraz g(n,m + 1) = 0. Funkcja g jest jednak
specyficzna: warunek g(n,m) > 0 implikuje, że także g(n, i) > 0 dla wszystkich
i ¬ m. Stąd otrzymujemy, że µy (g(n, S(y)) = 0) = m. 2

Wniosek 3.5 Wszystkie funkcje rekurencyjne są obliczalne według Herbranda-
Gödla.

Twierdzenie 3.6 Klasa funkcji obliczalnych według Herbranda-Gödla jest równa
klasie funkcji rekurencyjnych.


