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1 Dowód twierdzenia o pełności

Zostanie tutaj przedstawiony dowód twierdzenia o pełności, który być może przypomina do-
wód oryginalny, ale został opracowany później i zawiera elementy przypisywane L. Henkinowi.
Dowód będzie nieefektywny, nie będzie podawał konstrukcji dowodu twierdzenia, sprowadzi
do sprzeczności fakt nieistnienia dowodu. Zostanie przeprowadzony przy milczącym założeniu,
że teoria jest zapisana w przeliczalnym języku (wykorzystuje przeliczalnie wiele symboli funk-
cyjnych i relacyjnych). Założenie to nie jest istotne, ale po jego opuszczeniu konieczne jest
odwołanie się do aksjomatu wyboru. Dowód zostanie też przedstawiony w przypadku teorii
bez równości. Dla teorii z równością potrzebna jest jeszcze dodatkowa konstrukcja ilorazowa,
która zostanie pominięta.

Potrzebne będą dwa pomocnicze twierdzenia.

Twierdzenie 1.1 (o dedukcji, Jacques Herbrand) Niech ϕ będzie zdaniem. Formuła ψ

jest twierdzeniem teorii T z dodatkowym aksjomatem ϕ (teorii T ∪ {ϕ}) wtedy i tylko wtedy,
gdy implikacja ϕ⇒ ψ jest twierdzeniem teorii T . 2

Twierdzenie 1.2 (o stałej) Przypuśćmy, że stała c nie występuje w formule ϕ, ani w ak-
sjomatach teorii T . Jeżeli formuła ϕ[x ← c] jest twierdzeniem teorii T , to w teorii T można
dowieść także formuły ∀xϕ oraz ϕ. Co więcej, można to zrobić nie używając w tych dowodach
stałej c (formuły te można dowieść w języku bez stałej c). 2

Przystępujemy teraz do dowodu twierdzenia o pełności.

Twierdzenie 1.3 (o pełności, Kurt Gödel, 1929) Jeżeli formuła ϕ jest spełniona w każ-
dym modelu teorii T , to ϕ daje się dowieść w teorii T .

Dowód. Na razie twierdzenie o pełności sprowadzimy do innej, następującej postaci: Jeżeli
teoria T ′ jest niesprzeczna, to istnieje struktura, w której są spełnione wszystkie aksjomaty
teorii T ′.

O ϕ możemy dodatkowo założyć, że jest zdaniem. Załóżmy też dla dowodu nie wprost, że
ϕ nie jest twierdzeniem teorii T .

Nietrudno zauważyć, że wtedy teoria T ∪ {¬ϕ} jest niesprzeczna. Gdyby bowiem istniała
formuła σ taka, że

T ∪ {¬ϕ} ` σ ∧ ¬σ,

to na mocy twierdzenia o dedukcji otrzymalibyśmy, że

T ` ¬ϕ⇒ σ ∧ ¬σ.

Dalej, z prawa kontrapozycji wynikało by, że

T ` ¬(σ ∧ ¬σ)⇒ ϕ,

i ostatecznie, wbrew założonej własności ϕ otrzymalibyśmy, że T ` ϕ.
Istnieje więc struktura A, w której oprócz wszystkich aksjomatów teorii T jest spełnione

zdanie ¬ϕ. Z założenia otrzymujemy jednak, że strukturze A jest spełnione także zdanie ϕ.
Otrzymaliśmy sprzeczność, gdyż w żadnej strukturzenie nie mogą być jednocześnie spełnione
zdanie i jego negacja. 2

Twierdzenie 1.4 Jeżeli teoria T jest niesprzeczna, to istnieje struktura, w której są spełnione
wszystkie aksjomaty teorii T .
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Dowód. Teoria T mówi o czymś i wiemy, że nie wynika z tego sprzeczność. Aby dowieść na-
sze twierdzenie, powinniśmy wyjaśnić, o czym mówimy. Wyjaśnimy to zgodnie z następującą
ideą: termy, których używamy do określania przedmiotów możemy uznać za rzeczy, o których
mówimy. Na przykład, jeżeli mówimy o liczbach naturalnych, to termy 0, 1, 1 + 1, 1 + 1 + 1
itd. oznaczają liczby naturalne i możemy je uznać za liczby naturalne. Pamiętajmy jednak,
że możemy wprowadzać bardzo mało stałych i operacji. Tak postępujemy na przykład aksjo-
matyzując liczby rzeczywiste. Wtedy brakuje nam termów oznaczających przedmioty, których
istnienie możemy dowieść.

Krok 1. Do języka dodajemy nieskończony ciąg stałych a1, a2, a3, . . .. W bogatszym języku
możemy teoretycznie tworzyć więcej dowodów. Z twierdzenia o stałej wynika, że jeżeli teoria
T jest niesprzeczna, to nie uda nam się utworzyć dowodu sprzeczności korzystając z nowych
stałych. Gdyby istniał dowód sprzeczności wykorzystujący te stałe, to możnaby je stopniowo
eliminować z dowodu i w końcu utworzyć dowód sprzeczności nie zawierający stałych. To jest
jednak sprzeczne z założeniem o niesprzeczności teorii.

Krok 2. Nadajemy znaczenie nowym stałym. W tym celu tworzymy ciąg

ϕ1(x1), ϕ2(x2), ϕ3(x3), . . .

zawierający wszystkie formuły z jedną zmienną wolną (xi oznacza jedyną zmienną wolną w
ϕi(xi)) w języku z nowymi stałymi. Następnie indukcyjnie tworzymy formuły

Φn = (∃xn ϕn(xn))⇒ ϕn[xn ← cn]

dobierając stałą cn tak, aby nie występowała we wcześniej utworzonych formułach tej postaci
i w samej formule ϕn. Formuły te będziemy uważać za nowe aksjomaty. Przyjmijmy, że Tn

oznacza teorię T uzupełnioną o n pierwszych aksjomatów tej postaci.

Fakt 1.5 Teorie Tn są niesprzeczne.

Dowód. Dowód przez indukcję ze względu na n. Oczywiście teoria T0 (czyli sama T bez
nowych aksjomatów) jest niesprzeczna. Załózmy teraz, że teoria Tn−1 jest niesprzeczna, a Tn

– sprzeczna. Ponieważ dodane aksjomaty są zdaniami, możemy skorzystać z twierdzenia o
dedukcji. Otrzymamy, że

Tn−1 ` ((∃xn ϕn(xn))⇒ ϕn[xn ← cn])⇒ σ ∧ ¬σ.

Korzystając z prawa kontrapozycji, prawa wyłączonego środka i prawa negowania implikacji
(i kilku innych) otrzymujemy, że

Tn−1 ` ∃xn ϕn(xn) ∧ ¬ϕn[xn ← cn].

Oba człony powyższej koniunkcji dają się więc dowieść. Z dowodliwości drugiego członu i z
twierdzenia o stałej wynika, że także

Tn−1 ` ∀xn ¬ϕn(xn).

Wobec odpowiedniego prawa de Morgana, stąd i z dowodliwości pierwszego członu wynika
wbrew założeniu, że teoria Tn−1 jest sprzeczna. 2

Z udowodnionego faktu wynika, że teoria

T∞ =
⋃

n∈N

Tn
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jest niesprzeczna. Ponieważ ewentualny dowód sprzeczności zawierałby skończenie wiele wy-
razów i powoływałby się na skończenie wiele aksjomatów, byłby także dowodem sprzeczności
pewnej teorii Tn dla dostatecznie dużego n.

Krok 3. Na koniec teorię T∞ powiększymy do teorii zupełnej. Weźmy w tym celu ciąg

ψ1, ψ2, ψ3, . . .

wszystkich możliwych zdań i przyjmijmy, że T ∗

0 = T∞ oraz

T ∗

n+1 =

{

T ∗

n
jeżeli T ∗

n
` ψn+1,

T ∗

n
∪ {¬ψn+1} w przeciwnym przypadku.

Przez indukcję dowodzimy, że wszystkie teorie T ∗

n
są niesprzeczne. Niesprzeczna jest również

teoria
T ∗ =

⋃

n∈N

T ∗

n
.

Z konstrukcji wynika, że teoria T ∗ jest zupełna. Dowolne zdanie ψ jest jednym z wyrazów
rozważanego ciągu zdań, na przykład ψn+1 = ψ. Definiując T ∗

n+1 podejmujemy decyzję, czy w
teorii T ∗ da się dowieść zdanie ψ, czy jego negację. Jeżeli T ∗

n
` ψn+1, to oczywiście T ∗ ` ψ. W

przeciwnym razie ¬ψn+1 uznajemy za nowy aksjomat teorii T ∗ i wtedy mamy T ∗ ` ¬ψ.
Udało się nam skonstruować niesprzeczną, zupełną teorię T ∗ zawierającą teorię T i wszyst-

kie aksjomaty henkinowskie Φn. Dla takich teorii łatwo zbudować ich model.
Krok 4. Konstrukcja modelu teorii T ∗. Będziemy definiować pewną strukturę A. Uniwer-

sum tej struktury będzie zbiór Tc termów stałych rozważanego języka (ze stałymi ai). W takiej
strukturze w naturalny sposób definiujemy interpretacje symboli funkcyjnych: k-argumentowy
symbol f jest interpretowany jako funkcja F : T k

c
→ Tc zdefiniowana wzorem

F (t1, . . . , tk) = f(t1, . . . , tk),

a więc F oznacza operację tworzenia termu zaczynającego się symbolem f . W takich struk-
turach dla dowolnego termu t i dowolnego wartościowania h zachodzi wzór t[h] = t[x ←
h(x)][y ← h(y)] . . . (wartością termu t przy wartościowaniu h jest wynik podstawiania za
zmienne termów wskazanych przez wartościowanie h). Zauważmy też, że w takiej sytuacji t[h]
jest zarówno wartością termu, jak również jest to szczególny term stały, może być więc częścią
innego termu lub formuły, i może być ponownie wartościowany. Jako term stały, t[h] spełnia
równość t[h][h′] = t[h].

Interpretację R w strukturze A symbolu relacyjnego r definiujemy w następujący sposób:

(t1, . . . , tk) ∈ R ⇐⇒ T ∗ ` r(t1, . . . , tk)

dla dowolnych t1, . . . , tk ∈ Tc. W ten sposób struktura A została zdefiniowana. Bez trudu
sprawdzamy, że dla dowolnych termów t1, . . . , tk (niekoniecznie stałych) i wartościowania h

zachodzi następującą własność:

A |= r(t1, . . . , tk)[h] ⇐⇒ T ∗ ` r(t1[h], . . . , tk[h]).

Dla stałych termów t1, . . . , tk zachodzi także

A |= r(t1, . . . , tk) ⇐⇒ T ∗ ` r(t1, . . . , tk).

Aby zakończyć dowód wystarczy pokazać, że dla dowolnego zdania ψ zachodzi równoważ-
ność

A |= ψ ⇐⇒ T ∗ ` ψ.

W dowodzie przyda się następujący lemat:
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Lemat 1.6 Przypuśćmy, że T jest teorią niesprzeczną i zupełną, a ϕ i ψ są zdaniami. Wtedy
następujące warunki są równoważne:

1) T ` ϕ ∨ ψ oraz T ` ϕ lub T ` ψ,

2) T ` ¬ϕ oraz nieprawda, że T ` ϕ.2

Przytoczoną przed lematem równoważność dowodzimy przez indukcję ze względu na budo-
wę zdania ψ. Uustaliliśmy już, że ta równoważność zachodzi dla zdań atomowych. Z podanego
lematu wynika, że zachodzi dla zdań będących negacjami i alternatywami zdań prostszych pod
warunkiem, że zachodzi dla członów tych zdań. Pozostało zająć się zdaniami rozpoczynającymi
się kwantyfikatorem.

Przyjmijmy więc, że ψ = ∃xϕ. Załóżmy, że A |= ψ. Z definicji spełniania wynika, że wtedy

A |= ϕ[h]

dla pewnego wartościowania h. Z lematu o podstawianiu (zadanie z listy 1) otrzymujemy, że

A |= ϕ[x← h(x)]

(pamiętajmy, że ϕ[x← h(x)] jest zdaniem i spełnianie tej formuły nie zależy od wartościowa-
nia). Dla formuły ϕ[x← h(x)] możemy skorzystać z załóżenia indukcyjnego. Wynika z niego,
że

T ∗ ` ϕ[x← h(x)].

Stąd oczywiście wynika, że
T ∗ ` ∃xϕ, czyli T ∗ ` ψ.

Aby dowieść implikację odwrotną zakładamy, że T ∗ ` ψ, czyli że T ∗ ` ∃xϕ. Formuła ϕ ma
tylko jedną zmienną wolną i jest postaci ϕn(xn) dla pewnego n. Wobec tego ψ = ∃xnϕn(xn).
Wiemy też, że Φn jest jednym z aksjomatów teorii T ∗. Wobec tego, T ∗ ` ϕn[xn ← cn]. Stąd i
z założenia indukcyjnego wynika, że

A |= ϕn[xn ← cn].

Z lematu o podstawianiu (zadanie z listy 1) otrzymujemy, że

A |= ϕn[h], albo A |= ϕ[h]

dla podstawienia h takiego, że h(x) = h(xn) = cn. Teraz wystarczy skorzystać z definicji
spełniania:

A |= ∃xϕ, czyli A |= ψ.

W ten sposób pokazaliśmy, że T ∗ jest teorią modelu A. W szczególności więc struktura A jest
modelem mniejszej teorii T . 2


