
Lista zadań z matematycznych podstaw informatyki nr 6.

Zad. 1. Wykaż następujący lemat: Przypuśćmy, że A jest strukturą, x – zmienną,
s – termem w języku tej struktury, a h – wartościowaniem zmiennych w tej struk-
turze. Niech h′ będzie wartościowaniem zmiennych takim, że h′(x) = s[h] oraz
h′(y) = h(y) dla wszystkich zmiennych y 6= x. Wtedy mamy

t[x← s][h] = t[h′]

dla wszystkich termów t oraz

A |= ϕ[x← s][h]⇔ A |= ϕ[h′]

dla wszystkich formuł ϕ, w których s jest podstawialny za x.

Zad. 2. (Twierdzenie o poprawności) Pokaż, że twierdzenia teorii T są prawdzi-
we w każdym modelu teorii T . Właściwie przez indukcję ze względu na pozycję
w dowodzie należy pokazać, że wszystkie formuły znajdujące się w jakimkolwiek
dowodzie w teorii T są spełnione w dowolnym modelu tej teorii.

Zad. 3. Niech Z[x] oznacza zbiór wielomianów (formalnych) o współczynnikach
całkowitych. W tym zbiorze w naturalny sposób określamy dodawanie i mnożenie.
Ponadto w zbiorze Z[x] w następujący sposób definiujemy porządek: wielomian
w(x) jest dodatni wtedy i tylko wtedy, gdy jest dodatni jego współczynnik przy
najwyższej potędze x występującej w w(x) ze współczynnikiem różnym od 0; wie-
lomian w1(x) jest mniejszy od wielomianu w2(x) (zachodzi relacja w1(x) < w2(x))
wtedy i tylko wtedy, gdy wielomian w2(x) − w1(x) jest dodatni. Z algebraiczne-
go punktu widzenia Z[x] jest uporządkowanym pierścieniem. Pokaż, że w zbiorze
nieujemnych elementów Z[x] z tak zdefiniowanymi działaniami i porządkiem speł-
nione są wszystkie aksjomaty teorii Q.

Zad. 4. Niech N∞ oznacza zbiór N ∪ {∞}. W tym zbiorze w następujący sposób
definiujemy dodawanie i porządek: m + n jest zwykłą sumą, jeżeli m,n ∈ N ,
x + ∞ = ∞ + x = ∞ w pozostałych przypadkach; m < n, jeżeli m,n ∈ N
oraz m jest mniejsze od n w zwykłym sensie, x < ∞ dla wszystkich x ∈ N∞.
Mnożenie i operację następnika definiujemy analogicznie, jak dodawanie. Pokaż,
że w zbiorze N∞ z tak zdefiniowanymi działaniami i porządkiem spełnione są
wszystkie aksjomaty teorii Q.

Zad. 5. Rozstrzygnij, które z niżej podanych formuł są prawdziwe przy standar-
dowym rozumieniu liczb naturalnych, a które są dowodliwe w arytmetyce Peano
lub teorii Q:

1) x < S(x),

2) x 6= S(x),

3) ∃y (x = y + y ∨ x = S(y + y)).

Zad. 6. Niech Φ oznacza formułę

∃x∃y∀z((A(x, y)⇒ A(y, z) ∧ A(z, z)) ∧ (A(x, y) ∧B(x, y)⇒ B(x, z) ∧B(z, z)))

(jest to formuła wykorzystywana do testowania programu Gilmora). Udowodnij,
że Φ jest tautologią (prawem logiki). Zrób to wprost oraz korzystając z algorytmu
Herbranda.



Zad. 7. Korzystając z algorytmu Herbranda pokaż, że formuła

∃x ∀y R(x, y)→ ∀y ∃x R(x, y)

jest tautologią, natomiast formuła

∀x ∃y R(x, y)→ ∃y ∀x R(x, y)

nie jest. Druga część zadania dzięki twierdzeniu Herbranda sprowadza się do pro-
blemu unifikacji.

Zad. 8. Rozważamy formuły bez stałych i symboli funkcyjnych, formuła ϕ nie
zawiera ponadto kwantyfikatorów. Udowodnij, że Zdanie ∃x1 . . . ∃xn ϕ jest tau-
tologią wtedy i tylko wtedy, gdy formuła ϕ jest spełniona przy każdym (jedynym
możliwym) wartościowaniu w każdej strukturze o jednoelementowym uniwersum.
Jak sprawdzić warunek z prawej strony tej równoważności posługując się metodą
zerojedynkową? Zbadaj, czy formuła

∃x ∃y ∃z ((F (x, y)⇒ F (y, z) ∧ F (z, z)) ∧ (F (x, y) ∧G(x, y)⇒ G(x, z) ∧G(z, z)))

jest tautologią.

Zad. 9. Zmodyfikuj równoważność z poprzedniego zadania tak, aby była prawdzi-
wa dla formuł ϕ, w których mogą dodatkowo występować stałe.

Zad. 10. Opracuj algorytm, który odpowiada na pytanie, czy zdanie

∀x1 . . . ∀xn ∃y1 . . . ∃ym ϕ

jest tautologią. Zakładamy, że w formule ϕ nie ma już kwantyfikatorów.

Zad. 11. Przypuśćmy, że formuła ϕ nie zawiera kwantyfikatorów i zdanie ∃x∀yϕ
jest tautologią. Podaj dowód tego zdania. Wskazówka. Trudno napisać dowód, ale
można korzystając z twierdzenia Herbranda opisać metodę konstruowania dowodu.
Taka metoda powinna składać się z dwóch części: z metody konstruowania dowodu
tautologii rachunku zdań (na poziomie rachunku zdań) i rozumowania dotyczącego
kwantyfikatorów. Pierwsza część powinna być znana z logiki, można też posłużyć
się koniunkcyjną postacią, druga część nie jest trudna, zawiera dość oczywiste ro-
zumowanie. Reszta rozumowania to pewien trick. Twierdzenie Herbranda w tym
przypadku mówi, że pewna alternatywa postaci

∨
ϕ(t, f(t)) (f to symbol skole-

mowski) jest tautologią w sensie rachunku zdań. W tej tautologii, dla kolejnych t
wszystkie wystąpienia termu f(t) zastępujemy zmienną. Robimy to tak, aby nie
utożsamić jakichkolwiek dwóch termów w całej alternatywie. Dzięki temu, ta al-
ternatywa po zastąpieniu nadal jest tautologią. Po zamianie wszystkich termów
postaci f(t) na zmienne dowodzimy tautologię, a następnie wyprowadzamy z niej
wyjściową formułę. W ten sposób z twierdzenia Herbranda wyprowadzamy twier-
dzenie o pełności, a także otrzymujemy ogólną metodę konstruowania dowodów w
rachunku kwantyfikatorów.

Zad. 12. 1) [Jacques Herbrand, 1930] Rozważamy teorię następnika, a więc za-
pisaną w języku złożonym z trzech symboli pozalogicznych: stałej 0, symbolu
funkcyjnego S oraz relacji =, złożoną ze zdań w tym języku, prawdziwych
w standardowym modelu liczb naturalnych. Wykaż rozstrzygalność teorii
następnika, a więc dowiedź istnienie algorytmu pozwalającego na sprawdze-
nie, czy dane zdanie należy do teorii następnika. Wskazówka. Algorytm
rozwiązujący to zadanie ma następującą konstrukcję: najpierw sprowadza
daną do postaci normalnej, z blokiem kwantyfikatorów na początku formu-
ły. Następnie poprawia tę postać tak, aby ostatni kwantyfikator był egzy-
stencjalny, a bezkwantyfikatorowa część formuły miała alternatywną postać



normalną (wymaga to czasem umieszczenia negacji wśród kwantyfikatorów,
ale to nam nie przeszkadza). Teraz kwantyfikator egzystencjalny jest prze-
stawiany z alternatywą. W rozważanej teorii koniunkcję formuł atomowych i
negacji takich formuł, poprzedzoną kwantyfikatorem egzystencjalnym, moż-
na zastąpić formułą pozbawioną kwantyfikatorów. Prowadzi to do skrócenia
bloku kwantyfikatorów, a po stosownej iteracji postępowania, do zastąpienia
danego zdania zdaniem pozbawionym kwantyfikatorów. Prawdziwość tych
ostatnich zdań jest łatwo rozstrzygalna.

2) Udowodnij, że teoria następnika z (równością oraz) aksjomatami

∀x ∀y S(x) = S(y)⇒ x = y,

∀x (¬S(x) = 0),

∀x (x = 0 ∨ ∃y x = S(y)),

∀x (x = 0 ∨ x = S(0) ∨ ∃y x = S(S(y)))(?, itd.).

jest zupełna.

3) Pokaż, że algorytm z pierwszej części zadania jest wielomianowy pod wa-
runkiem, że możemy posłużyć się czarną skrzynką pozwalającą sprowadzić
formułę bezkwantyfikatorową do alternatywnej postaci normalnej. Pokaż też,
że jest to algorytm NP-trudny.

4) (*) Uogólnij dwie pierwsze części zadania tak, by dotyczyły teorii dodawa-
nia, w której zamiast następnika S mamy symbol dodawania +. Zadanie
jest trochę trudniejsze, ale metoda rozwiązania – podobna. Zrobił je po raz
pierwszy w 1928 roku Mojżesz Presburger, Polak pochodzenia żydowskie-
go, studiujący matematykę na Uniwesytecie Warszawskim u prof. Alfreda
Tarskiego. Po ukazaniu się pracy Gödla wynik okazał się znaczący, ale w
pierwszej chwili nie został doceniony przez profesora i był tylko podstawą
magisterium Presburgera. Dzisiaj teoria dodawania nazywa się arytmetyką
Presburgera.


